blob: bb4782bd4194244defcc283b7c86ec7c3e7e6e22 [file] [log] [blame]
//! Unification and canonicalization logic.
use std::{fmt, mem};
use chalk_ir::{
CanonicalVarKind, FloatTy, IntTy, TyVariableKind, UniverseIndex, cast::Cast,
fold::TypeFoldable, interner::HasInterner, zip::Zip,
};
use chalk_solve::infer::ParameterEnaVariableExt;
use either::Either;
use ena::unify::UnifyKey;
use hir_def::{AdtId, lang_item::LangItem};
use hir_expand::name::Name;
use intern::sym;
use rustc_hash::FxHashMap;
use smallvec::SmallVec;
use triomphe::Arc;
use super::{InferOk, InferResult, InferenceContext, TypeError};
use crate::{
AliasEq, AliasTy, BoundVar, Canonical, Const, ConstValue, DebruijnIndex, DomainGoal,
GenericArg, GenericArgData, Goal, GoalData, InEnvironment, InferenceVar, Interner, Lifetime,
OpaqueTyId, ParamKind, ProjectionTy, ProjectionTyExt, Scalar, Substitution, TraitEnvironment,
TraitRef, Ty, TyBuilder, TyExt, TyKind, VariableKind, WhereClause,
consteval::unknown_const,
db::HirDatabase,
fold_generic_args, fold_tys_and_consts, to_chalk_trait_id,
traits::{FnTrait, NextTraitSolveResult},
};
impl InferenceContext<'_> {
pub(super) fn canonicalize<T>(&mut self, t: T) -> Canonical<T>
where
T: TypeFoldable<Interner> + HasInterner<Interner = Interner>,
{
self.table.canonicalize(t)
}
pub(super) fn clauses_for_self_ty(
&mut self,
self_ty: InferenceVar,
) -> SmallVec<[WhereClause; 4]> {
self.table.resolve_obligations_as_possible();
let root = self.table.var_unification_table.inference_var_root(self_ty);
let pending_obligations = mem::take(&mut self.table.pending_obligations);
let obligations = pending_obligations
.iter()
.filter_map(|obligation| match obligation.value.value.goal.data(Interner) {
GoalData::DomainGoal(DomainGoal::Holds(clause)) => {
let ty = match clause {
WhereClause::AliasEq(AliasEq {
alias: AliasTy::Projection(projection),
..
}) => projection.self_type_parameter(self.db),
WhereClause::Implemented(trait_ref) => {
trait_ref.self_type_parameter(Interner)
}
WhereClause::TypeOutlives(to) => to.ty.clone(),
_ => return None,
};
let uncanonical =
chalk_ir::Substitute::apply(&obligation.free_vars, ty, Interner);
if matches!(
self.resolve_ty_shallow(&uncanonical).kind(Interner),
TyKind::InferenceVar(iv, TyVariableKind::General) if *iv == root,
) {
Some(chalk_ir::Substitute::apply(
&obligation.free_vars,
clause.clone(),
Interner,
))
} else {
None
}
}
_ => None,
})
.collect();
self.table.pending_obligations = pending_obligations;
obligations
}
}
#[derive(Debug, Clone)]
pub(crate) struct Canonicalized<T>
where
T: HasInterner<Interner = Interner>,
{
pub(crate) value: Canonical<T>,
free_vars: Vec<GenericArg>,
}
impl<T: HasInterner<Interner = Interner>> Canonicalized<T> {
pub(crate) fn apply_solution(
&self,
ctx: &mut InferenceTable<'_>,
solution: Canonical<Substitution>,
) {
// the solution may contain new variables, which we need to convert to new inference vars
let new_vars = Substitution::from_iter(
Interner,
solution.binders.iter(Interner).map(|k| match &k.kind {
VariableKind::Ty(TyVariableKind::General) => ctx.new_type_var().cast(Interner),
VariableKind::Ty(TyVariableKind::Integer) => ctx.new_integer_var().cast(Interner),
VariableKind::Ty(TyVariableKind::Float) => ctx.new_float_var().cast(Interner),
// Chalk can sometimes return new lifetime variables. We just replace them by errors
// for now.
VariableKind::Lifetime => ctx.new_lifetime_var().cast(Interner),
VariableKind::Const(ty) => ctx.new_const_var(ty.clone()).cast(Interner),
}),
);
for (i, v) in solution.value.iter(Interner).enumerate() {
let var = &self.free_vars[i];
if let Some(ty) = v.ty(Interner) {
// eagerly replace projections in the type; we may be getting types
// e.g. from where clauses where this hasn't happened yet
let ty = ctx.normalize_associated_types_in(new_vars.apply(ty.clone(), Interner));
tracing::debug!("unifying {:?} {:?}", var, ty);
ctx.unify(var.assert_ty_ref(Interner), &ty);
} else {
let v = new_vars.apply(v.clone(), Interner);
tracing::debug!("try_unifying {:?} {:?}", var, v);
let _ = ctx.try_unify(var, &v);
}
}
}
}
/// Check if types unify.
///
/// Note that we consider placeholder types to unify with everything.
/// This means that there may be some unresolved goals that actually set bounds for the placeholder
/// type for the types to unify. For example `Option<T>` and `Option<U>` unify although there is
/// unresolved goal `T = U`.
pub fn could_unify(
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
tys: &Canonical<(Ty, Ty)>,
) -> bool {
unify(db, env, tys).is_some()
}
/// Check if types unify eagerly making sure there are no unresolved goals.
///
/// This means that placeholder types are not considered to unify if there are any bounds set on
/// them. For example `Option<T>` and `Option<U>` do not unify as we cannot show that `T = U`
pub fn could_unify_deeply(
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
tys: &Canonical<(Ty, Ty)>,
) -> bool {
let mut table = InferenceTable::new(db, env);
let vars = make_substitutions(tys, &mut table);
let ty1_with_vars = vars.apply(tys.value.0.clone(), Interner);
let ty2_with_vars = vars.apply(tys.value.1.clone(), Interner);
let ty1_with_vars = table.normalize_associated_types_in(ty1_with_vars);
let ty2_with_vars = table.normalize_associated_types_in(ty2_with_vars);
table.resolve_obligations_as_possible();
table.propagate_diverging_flag();
let ty1_with_vars = table.resolve_completely(ty1_with_vars);
let ty2_with_vars = table.resolve_completely(ty2_with_vars);
table.unify_deeply(&ty1_with_vars, &ty2_with_vars)
}
pub(crate) fn unify(
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
tys: &Canonical<(Ty, Ty)>,
) -> Option<Substitution> {
let mut table = InferenceTable::new(db, env);
let vars = make_substitutions(tys, &mut table);
let ty1_with_vars = vars.apply(tys.value.0.clone(), Interner);
let ty2_with_vars = vars.apply(tys.value.1.clone(), Interner);
if !table.unify(&ty1_with_vars, &ty2_with_vars) {
return None;
}
// default any type vars that weren't unified back to their original bound vars
// (kind of hacky)
let find_var = |iv| {
vars.iter(Interner).position(|v| match v.data(Interner) {
GenericArgData::Ty(ty) => ty.inference_var(Interner),
GenericArgData::Lifetime(lt) => lt.inference_var(Interner),
GenericArgData::Const(c) => c.inference_var(Interner),
} == Some(iv))
};
let fallback = |iv, kind, default, binder| match kind {
chalk_ir::VariableKind::Ty(_ty_kind) => find_var(iv)
.map_or(default, |i| BoundVar::new(binder, i).to_ty(Interner).cast(Interner)),
chalk_ir::VariableKind::Lifetime => find_var(iv)
.map_or(default, |i| BoundVar::new(binder, i).to_lifetime(Interner).cast(Interner)),
chalk_ir::VariableKind::Const(ty) => find_var(iv)
.map_or(default, |i| BoundVar::new(binder, i).to_const(Interner, ty).cast(Interner)),
};
Some(Substitution::from_iter(
Interner,
vars.iter(Interner).map(|v| table.resolve_with_fallback(v.clone(), &fallback)),
))
}
fn make_substitutions(
tys: &chalk_ir::Canonical<(chalk_ir::Ty<Interner>, chalk_ir::Ty<Interner>)>,
table: &mut InferenceTable<'_>,
) -> chalk_ir::Substitution<Interner> {
Substitution::from_iter(
Interner,
tys.binders.iter(Interner).map(|it| match &it.kind {
chalk_ir::VariableKind::Ty(_) => table.new_type_var().cast(Interner),
// FIXME: maybe wrong?
chalk_ir::VariableKind::Lifetime => table.new_type_var().cast(Interner),
chalk_ir::VariableKind::Const(ty) => table.new_const_var(ty.clone()).cast(Interner),
}),
)
}
bitflags::bitflags! {
#[derive(Default, Clone, Copy)]
pub(crate) struct TypeVariableFlags: u8 {
const DIVERGING = 1 << 0;
const INTEGER = 1 << 1;
const FLOAT = 1 << 2;
}
}
type ChalkInferenceTable = chalk_solve::infer::InferenceTable<Interner>;
#[derive(Clone)]
pub(crate) struct InferenceTable<'a> {
pub(crate) db: &'a dyn HirDatabase,
pub(crate) trait_env: Arc<TraitEnvironment>,
pub(crate) tait_coercion_table: Option<FxHashMap<OpaqueTyId, Ty>>,
var_unification_table: ChalkInferenceTable,
type_variable_table: SmallVec<[TypeVariableFlags; 16]>,
pending_obligations: Vec<Canonicalized<InEnvironment<Goal>>>,
/// Double buffer used in [`Self::resolve_obligations_as_possible`] to cut down on
/// temporary allocations.
resolve_obligations_buffer: Vec<Canonicalized<InEnvironment<Goal>>>,
}
pub(crate) struct InferenceTableSnapshot {
var_table_snapshot: chalk_solve::infer::InferenceSnapshot<Interner>,
type_variable_table: SmallVec<[TypeVariableFlags; 16]>,
pending_obligations: Vec<Canonicalized<InEnvironment<Goal>>>,
}
impl<'a> InferenceTable<'a> {
pub(crate) fn new(db: &'a dyn HirDatabase, trait_env: Arc<TraitEnvironment>) -> Self {
InferenceTable {
db,
trait_env,
tait_coercion_table: None,
var_unification_table: ChalkInferenceTable::new(),
type_variable_table: SmallVec::new(),
pending_obligations: Vec::new(),
resolve_obligations_buffer: Vec::new(),
}
}
/// Chalk doesn't know about the `diverging` flag, so when it unifies two
/// type variables of which one is diverging, the chosen root might not be
/// diverging and we have no way of marking it as such at that time. This
/// function goes through all type variables and make sure their root is
/// marked as diverging if necessary, so that resolving them gives the right
/// result.
pub(super) fn propagate_diverging_flag(&mut self) {
for i in 0..self.type_variable_table.len() {
if !self.type_variable_table[i].contains(TypeVariableFlags::DIVERGING) {
continue;
}
let v = InferenceVar::from(i as u32);
let root = self.var_unification_table.inference_var_root(v);
self.modify_type_variable_flag(root, |f| {
*f |= TypeVariableFlags::DIVERGING;
});
}
}
pub(super) fn set_diverging(&mut self, iv: InferenceVar, diverging: bool) {
self.modify_type_variable_flag(iv, |f| {
f.set(TypeVariableFlags::DIVERGING, diverging);
});
}
fn fallback_value(&self, iv: InferenceVar, kind: TyVariableKind) -> Ty {
let is_diverging = self
.type_variable_table
.get(iv.index() as usize)
.is_some_and(|data| data.contains(TypeVariableFlags::DIVERGING));
if is_diverging {
return TyKind::Never.intern(Interner);
}
match kind {
TyVariableKind::General => TyKind::Error,
TyVariableKind::Integer => TyKind::Scalar(Scalar::Int(IntTy::I32)),
TyVariableKind::Float => TyKind::Scalar(Scalar::Float(FloatTy::F64)),
}
.intern(Interner)
}
pub(crate) fn canonicalize_with_free_vars<T>(&mut self, t: T) -> Canonicalized<T>
where
T: TypeFoldable<Interner> + HasInterner<Interner = Interner>,
{
// try to resolve obligations before canonicalizing, since this might
// result in new knowledge about variables
self.resolve_obligations_as_possible();
let result = self.var_unification_table.canonicalize(Interner, t);
let free_vars = result
.free_vars
.into_iter()
.map(|free_var| free_var.to_generic_arg(Interner))
.collect();
Canonicalized { value: result.quantified, free_vars }
}
pub(crate) fn canonicalize<T>(&mut self, t: T) -> Canonical<T>
where
T: TypeFoldable<Interner> + HasInterner<Interner = Interner>,
{
// try to resolve obligations before canonicalizing, since this might
// result in new knowledge about variables
self.resolve_obligations_as_possible();
self.var_unification_table.canonicalize(Interner, t).quantified
}
/// Recurses through the given type, normalizing associated types mentioned
/// in it by replacing them by type variables and registering obligations to
/// resolve later. This should be done once for every type we get from some
/// type annotation (e.g. from a let type annotation, field type or function
/// call). `make_ty` handles this already, but e.g. for field types we need
/// to do it as well.
#[tracing::instrument(skip(self), ret)]
pub(crate) fn normalize_associated_types_in<T>(&mut self, ty: T) -> T
where
T: HasInterner<Interner = Interner> + TypeFoldable<Interner>,
{
fold_tys_and_consts(
ty,
|e, _| match e {
Either::Left(ty) => {
let ty = self.resolve_ty_shallow(&ty);
tracing::debug!(?ty);
Either::Left(match ty.kind(Interner) {
TyKind::Alias(AliasTy::Projection(proj_ty)) => {
let ty = self.normalize_projection_ty(proj_ty.clone());
self.resolve_ty_shallow(&ty)
}
TyKind::AssociatedType(id, subst) => {
if ty.data(Interner).flags.intersects(
chalk_ir::TypeFlags::HAS_TY_INFER
| chalk_ir::TypeFlags::HAS_CT_INFER,
) {
return Either::Left(ty);
}
let var = self.new_type_var();
let proj_ty = chalk_ir::ProjectionTy {
associated_ty_id: *id,
substitution: subst.clone(),
};
let normalize = chalk_ir::Normalize {
alias: AliasTy::Projection(proj_ty),
ty: var.clone(),
};
let goal = chalk_ir::Goal::new(
Interner,
chalk_ir::GoalData::DomainGoal(chalk_ir::DomainGoal::Normalize(
normalize,
)),
);
let in_env = InEnvironment::new(&self.trait_env.env, goal);
let canonicalized = {
let result =
self.var_unification_table.canonicalize(Interner, in_env);
let free_vars = result
.free_vars
.into_iter()
.map(|free_var| free_var.to_generic_arg(Interner))
.collect();
Canonicalized { value: result.quantified, free_vars }
};
let solution = self.db.trait_solve(
self.trait_env.krate,
self.trait_env.block,
canonicalized.value.clone(),
);
if let NextTraitSolveResult::Certain(canonical_subst) = solution {
// This is not great :) But let's just assert this for now and come back to it later.
if canonical_subst.value.subst.len(Interner) != 1 {
ty
} else {
let normalized = canonical_subst.value.subst.as_slice(Interner)
[0]
.assert_ty_ref(Interner);
match normalized.kind(Interner) {
TyKind::Alias(AliasTy::Projection(proj_ty)) => {
if id == &proj_ty.associated_ty_id
&& subst == &proj_ty.substitution
{
ty
} else {
normalized.clone()
}
}
TyKind::AssociatedType(new_id, new_subst) => {
if new_id == id && new_subst == subst {
ty
} else {
normalized.clone()
}
}
_ => normalized.clone(),
}
}
} else {
ty
}
}
_ => ty,
})
}
Either::Right(c) => Either::Right(match &c.data(Interner).value {
chalk_ir::ConstValue::Concrete(cc) => match &cc.interned {
crate::ConstScalar::UnevaluatedConst(c_id, subst) => {
// FIXME: Ideally here we should do everything that we do with type alias, i.e. adding a variable
// and registering an obligation. But it needs chalk support, so we handle the most basic
// case (a non associated const without generic parameters) manually.
if subst.len(Interner) == 0 {
if let Ok(eval) = self.db.const_eval(*c_id, subst.clone(), None) {
eval
} else {
unknown_const(c.data(Interner).ty.clone())
}
} else {
unknown_const(c.data(Interner).ty.clone())
}
}
_ => c,
},
_ => c,
}),
},
DebruijnIndex::INNERMOST,
)
}
/// Works almost same as [`Self::normalize_associated_types_in`], but this also resolves shallow
/// the inference variables
pub(crate) fn eagerly_normalize_and_resolve_shallow_in<T>(&mut self, ty: T) -> T
where
T: HasInterner<Interner = Interner> + TypeFoldable<Interner>,
{
fn eagerly_resolve_ty<const N: usize>(
table: &mut InferenceTable<'_>,
ty: Ty,
mut tys: SmallVec<[Ty; N]>,
) -> Ty {
if tys.contains(&ty) {
return ty;
}
tys.push(ty.clone());
match ty.kind(Interner) {
TyKind::Alias(AliasTy::Projection(proj_ty)) => {
let ty = table.normalize_projection_ty(proj_ty.clone());
eagerly_resolve_ty(table, ty, tys)
}
TyKind::InferenceVar(..) => {
let ty = table.resolve_ty_shallow(&ty);
eagerly_resolve_ty(table, ty, tys)
}
_ => ty,
}
}
fold_tys_and_consts(
ty,
|e, _| match e {
Either::Left(ty) => {
Either::Left(eagerly_resolve_ty::<8>(self, ty, SmallVec::new()))
}
Either::Right(c) => Either::Right(match &c.data(Interner).value {
chalk_ir::ConstValue::Concrete(cc) => match &cc.interned {
crate::ConstScalar::UnevaluatedConst(c_id, subst) => {
// FIXME: same as `normalize_associated_types_in`
if subst.len(Interner) == 0 {
if let Ok(eval) = self.db.const_eval(*c_id, subst.clone(), None) {
eval
} else {
unknown_const(c.data(Interner).ty.clone())
}
} else {
unknown_const(c.data(Interner).ty.clone())
}
}
_ => c,
},
_ => c,
}),
},
DebruijnIndex::INNERMOST,
)
}
pub(crate) fn normalize_projection_ty(&mut self, proj_ty: ProjectionTy) -> Ty {
let var = self.new_type_var();
let alias_eq = AliasEq { alias: AliasTy::Projection(proj_ty), ty: var.clone() };
let obligation = alias_eq.cast(Interner);
self.register_obligation(obligation);
var
}
fn modify_type_variable_flag<F>(&mut self, var: InferenceVar, cb: F)
where
F: FnOnce(&mut TypeVariableFlags),
{
let idx = var.index() as usize;
if self.type_variable_table.len() <= idx {
self.extend_type_variable_table(idx);
}
if let Some(f) = self.type_variable_table.get_mut(idx) {
cb(f);
}
}
fn extend_type_variable_table(&mut self, to_index: usize) {
let count = to_index - self.type_variable_table.len() + 1;
self.type_variable_table.extend(std::iter::repeat_n(TypeVariableFlags::default(), count));
}
fn new_var(&mut self, kind: TyVariableKind, diverging: bool) -> Ty {
let var = self.var_unification_table.new_variable(UniverseIndex::ROOT);
// Chalk might have created some type variables for its own purposes that we don't know about...
self.extend_type_variable_table(var.index() as usize);
assert_eq!(var.index() as usize, self.type_variable_table.len() - 1);
let flags = self.type_variable_table.get_mut(var.index() as usize).unwrap();
if diverging {
*flags |= TypeVariableFlags::DIVERGING;
}
if matches!(kind, TyVariableKind::Integer) {
*flags |= TypeVariableFlags::INTEGER;
} else if matches!(kind, TyVariableKind::Float) {
*flags |= TypeVariableFlags::FLOAT;
}
var.to_ty_with_kind(Interner, kind)
}
pub(crate) fn new_type_var(&mut self) -> Ty {
self.new_var(TyVariableKind::General, false)
}
pub(crate) fn new_integer_var(&mut self) -> Ty {
self.new_var(TyVariableKind::Integer, false)
}
pub(crate) fn new_float_var(&mut self) -> Ty {
self.new_var(TyVariableKind::Float, false)
}
pub(crate) fn new_maybe_never_var(&mut self) -> Ty {
self.new_var(TyVariableKind::General, true)
}
pub(crate) fn new_const_var(&mut self, ty: Ty) -> Const {
let var = self.var_unification_table.new_variable(UniverseIndex::ROOT);
var.to_const(Interner, ty)
}
pub(crate) fn new_lifetime_var(&mut self) -> Lifetime {
let var = self.var_unification_table.new_variable(UniverseIndex::ROOT);
var.to_lifetime(Interner)
}
pub(crate) fn resolve_with_fallback<T>(
&mut self,
t: T,
fallback: &dyn Fn(InferenceVar, VariableKind, GenericArg, DebruijnIndex) -> GenericArg,
) -> T
where
T: HasInterner<Interner = Interner> + TypeFoldable<Interner>,
{
self.resolve_with_fallback_inner(&mut Vec::new(), t, &fallback)
}
pub(crate) fn fresh_subst(&mut self, binders: &[CanonicalVarKind<Interner>]) -> Substitution {
Substitution::from_iter(
Interner,
binders.iter().map(|kind| {
let param_infer_var =
kind.map_ref(|&ui| self.var_unification_table.new_variable(ui));
param_infer_var.to_generic_arg(Interner)
}),
)
}
pub(crate) fn instantiate_canonical<T>(&mut self, canonical: Canonical<T>) -> T
where
T: HasInterner<Interner = Interner> + TypeFoldable<Interner> + std::fmt::Debug,
{
let subst = self.fresh_subst(canonical.binders.as_slice(Interner));
subst.apply(canonical.value, Interner)
}
fn resolve_with_fallback_inner<T>(
&mut self,
var_stack: &mut Vec<InferenceVar>,
t: T,
fallback: &dyn Fn(InferenceVar, VariableKind, GenericArg, DebruijnIndex) -> GenericArg,
) -> T
where
T: HasInterner<Interner = Interner> + TypeFoldable<Interner>,
{
t.fold_with(
&mut resolve::Resolver { table: self, var_stack, fallback },
DebruijnIndex::INNERMOST,
)
}
pub(crate) fn resolve_completely<T>(&mut self, t: T) -> T
where
T: HasInterner<Interner = Interner> + TypeFoldable<Interner>,
{
let t = self.resolve_with_fallback(t, &|_, _, d, _| d);
let t = self.normalize_associated_types_in(t);
// Resolve again, because maybe normalization inserted infer vars.
self.resolve_with_fallback(t, &|_, _, d, _| d)
}
/// Apply a fallback to unresolved scalar types. Integer type variables and float type
/// variables are replaced with i32 and f64, respectively.
///
/// This method is only intended to be called just before returning inference results (i.e. in
/// `InferenceContext::resolve_all()`).
///
/// FIXME: This method currently doesn't apply fallback to unconstrained general type variables
/// whereas rustc replaces them with `()` or `!`.
pub(super) fn fallback_if_possible(&mut self) {
let int_fallback = TyKind::Scalar(Scalar::Int(IntTy::I32)).intern(Interner);
let float_fallback = TyKind::Scalar(Scalar::Float(FloatTy::F64)).intern(Interner);
let scalar_vars: Vec<_> = self
.type_variable_table
.iter()
.enumerate()
.filter_map(|(index, flags)| {
let kind = if flags.contains(TypeVariableFlags::INTEGER) {
TyVariableKind::Integer
} else if flags.contains(TypeVariableFlags::FLOAT) {
TyVariableKind::Float
} else {
return None;
};
// FIXME: This is not really the nicest way to get `InferenceVar`s. Can we get them
// without directly constructing them from `index`?
let var = InferenceVar::from(index as u32).to_ty(Interner, kind);
Some(var)
})
.collect();
for var in scalar_vars {
let maybe_resolved = self.resolve_ty_shallow(&var);
if let TyKind::InferenceVar(_, kind) = maybe_resolved.kind(Interner) {
let fallback = match kind {
TyVariableKind::Integer => &int_fallback,
TyVariableKind::Float => &float_fallback,
TyVariableKind::General => unreachable!(),
};
self.unify(&var, fallback);
}
}
}
/// Unify two relatable values (e.g. `Ty`) and register new trait goals that arise from that.
pub(crate) fn unify<T: ?Sized + Zip<Interner>>(&mut self, ty1: &T, ty2: &T) -> bool {
let result = match self.try_unify(ty1, ty2) {
Ok(r) => r,
Err(_) => return false,
};
self.register_infer_ok(result);
true
}
/// Unify two relatable values (e.g. `Ty`) and check whether trait goals which arise from that could be fulfilled
pub(crate) fn unify_deeply<T: ?Sized + Zip<Interner>>(&mut self, ty1: &T, ty2: &T) -> bool {
let result = match self.try_unify(ty1, ty2) {
Ok(r) => r,
Err(_) => return false,
};
result.goals.iter().all(|goal| {
let canonicalized = self.canonicalize_with_free_vars(goal.clone());
self.try_resolve_obligation(&canonicalized).certain()
})
}
/// Unify two relatable values (e.g. `Ty`) and return new trait goals arising from it, so the
/// caller needs to deal with them.
pub(crate) fn try_unify<T: ?Sized + Zip<Interner>>(
&mut self,
t1: &T,
t2: &T,
) -> InferResult<()> {
match self.var_unification_table.relate(
Interner,
&self.db,
&self.trait_env.env,
chalk_ir::Variance::Invariant,
t1,
t2,
) {
Ok(result) => Ok(InferOk { goals: result.goals, value: () }),
Err(chalk_ir::NoSolution) => Err(TypeError),
}
}
/// If `ty` is a type variable with known type, returns that type;
/// otherwise, return ty.
pub(crate) fn resolve_ty_shallow(&mut self, ty: &Ty) -> Ty {
if !ty.data(Interner).flags.intersects(chalk_ir::TypeFlags::HAS_FREE_LOCAL_NAMES) {
return ty.clone();
}
self.resolve_obligations_as_possible();
self.var_unification_table.normalize_ty_shallow(Interner, ty).unwrap_or_else(|| ty.clone())
}
pub(crate) fn snapshot(&mut self) -> InferenceTableSnapshot {
let var_table_snapshot = self.var_unification_table.snapshot();
let type_variable_table = self.type_variable_table.clone();
let pending_obligations = self.pending_obligations.clone();
InferenceTableSnapshot { var_table_snapshot, pending_obligations, type_variable_table }
}
#[tracing::instrument(skip_all)]
pub(crate) fn rollback_to(&mut self, snapshot: InferenceTableSnapshot) {
self.var_unification_table.rollback_to(snapshot.var_table_snapshot);
self.type_variable_table = snapshot.type_variable_table;
self.pending_obligations = snapshot.pending_obligations;
}
#[tracing::instrument(skip_all)]
pub(crate) fn run_in_snapshot<T>(&mut self, f: impl FnOnce(&mut InferenceTable<'_>) -> T) -> T {
let snapshot = self.snapshot();
let result = f(self);
self.rollback_to(snapshot);
result
}
/// Checks an obligation without registering it. Useful mostly to check
/// whether a trait *might* be implemented before deciding to 'lock in' the
/// choice (during e.g. method resolution or deref).
#[tracing::instrument(level = "debug", skip(self))]
pub(crate) fn try_obligation(&mut self, goal: Goal) -> NextTraitSolveResult {
let in_env = InEnvironment::new(&self.trait_env.env, goal);
let canonicalized = self.canonicalize(in_env);
self.db.trait_solve(self.trait_env.krate, self.trait_env.block, canonicalized)
}
pub(crate) fn register_obligation(&mut self, goal: Goal) {
let in_env = InEnvironment::new(&self.trait_env.env, goal);
self.register_obligation_in_env(in_env)
}
#[tracing::instrument(level = "debug", skip(self))]
fn register_obligation_in_env(&mut self, goal: InEnvironment<Goal>) {
match goal.goal.data(Interner) {
chalk_ir::GoalData::DomainGoal(chalk_ir::DomainGoal::Holds(
chalk_ir::WhereClause::AliasEq(chalk_ir::AliasEq { alias, ty }),
)) => {
if ty.inference_var(Interner).is_some() {
match alias {
chalk_ir::AliasTy::Opaque(opaque) => {
if self.unify(
&chalk_ir::TyKind::OpaqueType(
opaque.opaque_ty_id,
opaque.substitution.clone(),
)
.intern(Interner),
ty,
) {
return;
}
}
_ => {}
}
}
}
_ => {}
}
let canonicalized = {
let result = self.var_unification_table.canonicalize(Interner, goal);
let free_vars = result
.free_vars
.into_iter()
.map(|free_var| free_var.to_generic_arg(Interner))
.collect();
Canonicalized { value: result.quantified, free_vars }
};
tracing::debug!(?canonicalized);
let solution = self.try_resolve_obligation(&canonicalized);
tracing::debug!(?solution);
if solution.uncertain() {
self.pending_obligations.push(canonicalized);
}
}
pub(crate) fn register_infer_ok<T>(&mut self, infer_ok: InferOk<T>) {
infer_ok.goals.into_iter().for_each(|goal| self.register_obligation_in_env(goal));
}
pub(crate) fn resolve_obligations_as_possible(&mut self) {
let _span = tracing::info_span!("resolve_obligations_as_possible").entered();
let mut changed = true;
let mut obligations = mem::take(&mut self.resolve_obligations_buffer);
while mem::take(&mut changed) {
mem::swap(&mut self.pending_obligations, &mut obligations);
for canonicalized in obligations.drain(..) {
tracing::debug!(obligation = ?canonicalized);
if !self.check_changed(&canonicalized) {
tracing::debug!("not changed");
self.pending_obligations.push(canonicalized);
continue;
}
changed = true;
let uncanonical = chalk_ir::Substitute::apply(
&canonicalized.free_vars,
canonicalized.value.value,
Interner,
);
self.register_obligation_in_env(uncanonical);
}
}
self.resolve_obligations_buffer = obligations;
self.resolve_obligations_buffer.clear();
}
pub(crate) fn fudge_inference<T: TypeFoldable<Interner>>(
&mut self,
f: impl FnOnce(&mut Self) -> T,
) -> T {
use chalk_ir::fold::TypeFolder;
#[derive(chalk_derive::FallibleTypeFolder)]
#[has_interner(Interner)]
struct VarFudger<'a, 'b> {
table: &'a mut InferenceTable<'b>,
highest_known_var: InferenceVar,
}
impl TypeFolder<Interner> for VarFudger<'_, '_> {
fn as_dyn(&mut self) -> &mut dyn TypeFolder<Interner> {
self
}
fn interner(&self) -> Interner {
Interner
}
fn fold_inference_ty(
&mut self,
var: chalk_ir::InferenceVar,
kind: TyVariableKind,
_outer_binder: chalk_ir::DebruijnIndex,
) -> chalk_ir::Ty<Interner> {
if var < self.highest_known_var {
var.to_ty(Interner, kind)
} else {
self.table.new_type_var()
}
}
fn fold_inference_lifetime(
&mut self,
var: chalk_ir::InferenceVar,
_outer_binder: chalk_ir::DebruijnIndex,
) -> chalk_ir::Lifetime<Interner> {
if var < self.highest_known_var {
var.to_lifetime(Interner)
} else {
self.table.new_lifetime_var()
}
}
fn fold_inference_const(
&mut self,
ty: chalk_ir::Ty<Interner>,
var: chalk_ir::InferenceVar,
_outer_binder: chalk_ir::DebruijnIndex,
) -> chalk_ir::Const<Interner> {
if var < self.highest_known_var {
var.to_const(Interner, ty)
} else {
self.table.new_const_var(ty)
}
}
}
let snapshot = self.snapshot();
let highest_known_var = self.new_type_var().inference_var(Interner).expect("inference_var");
let result = f(self);
self.rollback_to(snapshot);
result
.fold_with(&mut VarFudger { table: self, highest_known_var }, DebruijnIndex::INNERMOST)
}
/// This checks whether any of the free variables in the `canonicalized`
/// have changed (either been unified with another variable, or with a
/// value). If this is not the case, we don't need to try to solve the goal
/// again -- it'll give the same result as last time.
fn check_changed(&mut self, canonicalized: &Canonicalized<InEnvironment<Goal>>) -> bool {
canonicalized.free_vars.iter().any(|var| {
let iv = match var.data(Interner) {
GenericArgData::Ty(ty) => ty.inference_var(Interner),
GenericArgData::Lifetime(lt) => lt.inference_var(Interner),
GenericArgData::Const(c) => c.inference_var(Interner),
}
.expect("free var is not inference var");
if self.var_unification_table.probe_var(iv).is_some() {
return true;
}
let root = self.var_unification_table.inference_var_root(iv);
iv != root
})
}
#[tracing::instrument(level = "debug", skip(self))]
fn try_resolve_obligation(
&mut self,
canonicalized: &Canonicalized<InEnvironment<Goal>>,
) -> NextTraitSolveResult {
let solution = self.db.trait_solve(
self.trait_env.krate,
self.trait_env.block,
canonicalized.value.clone(),
);
tracing::debug!(?solution, ?canonicalized);
match &solution {
NextTraitSolveResult::Certain(v) => {
canonicalized.apply_solution(
self,
Canonical {
binders: v.binders.clone(),
// FIXME handle constraints
value: v.value.subst.clone(),
},
);
}
// ...so, should think about how to get some actually get some guidance here
NextTraitSolveResult::Uncertain(v) => {
canonicalized.apply_solution(self, v.clone());
}
NextTraitSolveResult::NoSolution => {}
}
solution
}
pub(crate) fn callable_sig(
&mut self,
ty: &Ty,
num_args: usize,
) -> Option<(Option<FnTrait>, Vec<Ty>, Ty)> {
match ty.callable_sig(self.db) {
Some(sig) => Some((None, sig.params().to_vec(), sig.ret().clone())),
None => {
let (f, args_ty, return_ty) = self.callable_sig_from_fn_trait(ty, num_args)?;
Some((Some(f), args_ty, return_ty))
}
}
}
fn callable_sig_from_fn_trait(
&mut self,
ty: &Ty,
num_args: usize,
) -> Option<(FnTrait, Vec<Ty>, Ty)> {
for (fn_trait_name, output_assoc_name, subtraits) in [
(FnTrait::FnOnce, sym::Output, &[FnTrait::Fn, FnTrait::FnMut][..]),
(FnTrait::AsyncFnMut, sym::CallRefFuture, &[FnTrait::AsyncFn]),
(FnTrait::AsyncFnOnce, sym::CallOnceFuture, &[]),
] {
let krate = self.trait_env.krate;
let fn_trait = fn_trait_name.get_id(self.db, krate)?;
let trait_data = fn_trait.trait_items(self.db);
let output_assoc_type =
trait_data.associated_type_by_name(&Name::new_symbol_root(output_assoc_name))?;
let mut arg_tys = Vec::with_capacity(num_args);
let arg_ty = TyBuilder::tuple(num_args)
.fill(|it| {
let arg = match it {
ParamKind::Type => self.new_type_var(),
ParamKind::Lifetime => unreachable!("Tuple with lifetime parameter"),
ParamKind::Const(_) => unreachable!("Tuple with const parameter"),
};
arg_tys.push(arg.clone());
arg.cast(Interner)
})
.build();
let b = TyBuilder::trait_ref(self.db, fn_trait);
if b.remaining() != 2 {
return None;
}
let mut trait_ref = b.push(ty.clone()).push(arg_ty).build();
let projection = TyBuilder::assoc_type_projection(
self.db,
output_assoc_type,
Some(trait_ref.substitution.clone()),
)
.fill_with_unknown()
.build();
let trait_env = self.trait_env.env.clone();
let obligation = InEnvironment {
goal: trait_ref.clone().cast(Interner),
environment: trait_env.clone(),
};
let canonical = self.canonicalize(obligation.clone());
if !self
.db
.trait_solve(krate, self.trait_env.block, canonical.cast(Interner))
.no_solution()
{
self.register_obligation(obligation.goal);
let return_ty = self.normalize_projection_ty(projection);
for &fn_x in subtraits {
let fn_x_trait = fn_x.get_id(self.db, krate)?;
trait_ref.trait_id = to_chalk_trait_id(fn_x_trait);
let obligation: chalk_ir::InEnvironment<chalk_ir::Goal<Interner>> =
InEnvironment {
goal: trait_ref.clone().cast(Interner),
environment: trait_env.clone(),
};
let canonical = self.canonicalize(obligation.clone());
if !self
.db
.trait_solve(krate, self.trait_env.block, canonical.cast(Interner))
.no_solution()
{
return Some((fn_x, arg_tys, return_ty));
}
}
return Some((fn_trait_name, arg_tys, return_ty));
}
}
None
}
pub(super) fn insert_type_vars<T>(&mut self, ty: T) -> T
where
T: HasInterner<Interner = Interner> + TypeFoldable<Interner>,
{
fold_generic_args(
ty,
|arg, _| match arg {
GenericArgData::Ty(ty) => GenericArgData::Ty(self.insert_type_vars_shallow(ty)),
// FIXME: insert lifetime vars once LifetimeData::InferenceVar
// and specific error variant for lifetimes start being constructed
GenericArgData::Lifetime(lt) => GenericArgData::Lifetime(lt),
GenericArgData::Const(c) => {
GenericArgData::Const(self.insert_const_vars_shallow(c))
}
},
DebruijnIndex::INNERMOST,
)
}
/// Replaces `Ty::Error` by a new type var, so we can maybe still infer it.
pub(super) fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty {
match ty.kind(Interner) {
TyKind::Error => self.new_type_var(),
TyKind::InferenceVar(..) => {
let ty_resolved = self.resolve_ty_shallow(&ty);
if ty_resolved.is_unknown() { self.new_type_var() } else { ty }
}
_ => ty,
}
}
/// Replaces ConstScalar::Unknown by a new type var, so we can maybe still infer it.
pub(super) fn insert_const_vars_shallow(&mut self, c: Const) -> Const {
let data = c.data(Interner);
match &data.value {
ConstValue::Concrete(cc) => match &cc.interned {
crate::ConstScalar::Unknown => self.new_const_var(data.ty.clone()),
// try to evaluate unevaluated const. Replace with new var if const eval failed.
crate::ConstScalar::UnevaluatedConst(id, subst) => {
if let Ok(eval) = self.db.const_eval(*id, subst.clone(), None) {
eval
} else {
self.new_const_var(data.ty.clone())
}
}
_ => c,
},
_ => c,
}
}
/// Check if given type is `Sized` or not
pub(crate) fn is_sized(&mut self, ty: &Ty) -> bool {
fn short_circuit_trivial_tys(ty: &Ty) -> Option<bool> {
match ty.kind(Interner) {
TyKind::Scalar(..)
| TyKind::Ref(..)
| TyKind::Raw(..)
| TyKind::Never
| TyKind::FnDef(..)
| TyKind::Array(..)
| TyKind::Function(..) => Some(true),
TyKind::Slice(..) | TyKind::Str | TyKind::Dyn(..) => Some(false),
_ => None,
}
}
let mut ty = ty.clone();
ty = self.eagerly_normalize_and_resolve_shallow_in(ty);
if let Some(sized) = short_circuit_trivial_tys(&ty) {
return sized;
}
{
let mut structs = SmallVec::<[_; 8]>::new();
// Must use a loop here and not recursion because otherwise users will conduct completely
// artificial examples of structs that have themselves as the tail field and complain r-a crashes.
while let Some((AdtId::StructId(id), subst)) = ty.as_adt() {
let struct_data = id.fields(self.db);
if let Some((last_field, _)) = struct_data.fields().iter().next_back() {
let last_field_ty = self.db.field_types(id.into())[last_field]
.clone()
.substitute(Interner, subst);
if structs.contains(&ty) {
// A struct recursively contains itself as a tail field somewhere.
return true; // Don't overload the users with too many errors.
}
structs.push(ty);
// Structs can have DST as its last field and such cases are not handled
// as unsized by the chalk, so we do this manually.
ty = last_field_ty;
ty = self.eagerly_normalize_and_resolve_shallow_in(ty);
if let Some(sized) = short_circuit_trivial_tys(&ty) {
return sized;
}
} else {
break;
};
}
}
let Some(sized) = LangItem::Sized.resolve_trait(self.db, self.trait_env.krate) else {
return false;
};
let sized_pred = WhereClause::Implemented(TraitRef {
trait_id: to_chalk_trait_id(sized),
substitution: Substitution::from1(Interner, ty),
});
let goal = GoalData::DomainGoal(chalk_ir::DomainGoal::Holds(sized_pred)).intern(Interner);
self.try_obligation(goal).certain()
}
}
impl fmt::Debug for InferenceTable<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("InferenceTable").field("num_vars", &self.type_variable_table.len()).finish()
}
}
mod resolve {
use super::InferenceTable;
use crate::{
ConcreteConst, Const, ConstData, ConstScalar, ConstValue, DebruijnIndex, GenericArg,
InferenceVar, Interner, Lifetime, Ty, TyVariableKind, VariableKind,
};
use chalk_ir::{
cast::Cast,
fold::{TypeFoldable, TypeFolder},
};
#[derive(chalk_derive::FallibleTypeFolder)]
#[has_interner(Interner)]
pub(super) struct Resolver<
'a,
'b,
F: Fn(InferenceVar, VariableKind, GenericArg, DebruijnIndex) -> GenericArg,
> {
pub(super) table: &'a mut InferenceTable<'b>,
pub(super) var_stack: &'a mut Vec<InferenceVar>,
pub(super) fallback: F,
}
impl<F> TypeFolder<Interner> for Resolver<'_, '_, F>
where
F: Fn(InferenceVar, VariableKind, GenericArg, DebruijnIndex) -> GenericArg,
{
fn as_dyn(&mut self) -> &mut dyn TypeFolder<Interner> {
self
}
fn interner(&self) -> Interner {
Interner
}
fn fold_inference_ty(
&mut self,
var: InferenceVar,
kind: TyVariableKind,
outer_binder: DebruijnIndex,
) -> Ty {
let var = self.table.var_unification_table.inference_var_root(var);
if self.var_stack.contains(&var) {
// recursive type
let default = self.table.fallback_value(var, kind).cast(Interner);
return (self.fallback)(var, VariableKind::Ty(kind), default, outer_binder)
.assert_ty_ref(Interner)
.clone();
}
if let Some(known_ty) = self.table.var_unification_table.probe_var(var) {
// known_ty may contain other variables that are known by now
self.var_stack.push(var);
let result = known_ty.fold_with(self, outer_binder);
self.var_stack.pop();
result.assert_ty_ref(Interner).clone()
} else {
let default = self.table.fallback_value(var, kind).cast(Interner);
(self.fallback)(var, VariableKind::Ty(kind), default, outer_binder)
.assert_ty_ref(Interner)
.clone()
}
}
fn fold_inference_const(
&mut self,
ty: Ty,
var: InferenceVar,
outer_binder: DebruijnIndex,
) -> Const {
let var = self.table.var_unification_table.inference_var_root(var);
let default = ConstData {
ty: ty.clone(),
value: ConstValue::Concrete(ConcreteConst { interned: ConstScalar::Unknown }),
}
.intern(Interner)
.cast(Interner);
if self.var_stack.contains(&var) {
// recursive
return (self.fallback)(var, VariableKind::Const(ty), default, outer_binder)
.assert_const_ref(Interner)
.clone();
}
if let Some(known_ty) = self.table.var_unification_table.probe_var(var) {
// known_ty may contain other variables that are known by now
self.var_stack.push(var);
let result = known_ty.fold_with(self, outer_binder);
self.var_stack.pop();
result.assert_const_ref(Interner).clone()
} else {
(self.fallback)(var, VariableKind::Const(ty), default, outer_binder)
.assert_const_ref(Interner)
.clone()
}
}
fn fold_inference_lifetime(
&mut self,
_var: InferenceVar,
_outer_binder: DebruijnIndex,
) -> Lifetime {
// fall back all lifetimes to 'error -- currently we don't deal
// with any lifetimes, but we can sometimes get some lifetime
// variables through Chalk's unification, and this at least makes
// sure we don't leak them outside of inference
crate::error_lifetime()
}
}
}