blob: ceb5eeeccb3d2fdc17f93bde1e0b0f382d6ce0d0 [file] [log] [blame]
//! Type inference for expressions.
use std::{
iter::{repeat, repeat_with},
mem,
sync::Arc,
};
use chalk_ir::{cast::Cast, fold::Shift, Mutability, TyVariableKind};
use hir_def::{
expr::{
ArithOp, Array, BinaryOp, CmpOp, Expr, ExprId, Literal, MatchGuard, Ordering, Statement,
UnaryOp,
},
path::{GenericArg, GenericArgs},
resolver::resolver_for_expr,
AssocContainerId, FieldId, FunctionId, Lookup,
};
use hir_expand::name::{name, Name};
use stdx::always;
use syntax::ast::RangeOp;
use crate::{
autoderef::{self, Autoderef},
consteval,
infer::coerce::CoerceMany,
lower::lower_to_chalk_mutability,
mapping::from_chalk,
method_resolution,
primitive::{self, UintTy},
static_lifetime, to_chalk_trait_id,
traits::FnTrait,
utils::{generics, Generics},
AdtId, Binders, CallableDefId, FnPointer, FnSig, FnSubst, InEnvironment, Interner,
ProjectionTyExt, Rawness, Scalar, Substitution, TraitRef, Ty, TyBuilder, TyExt, TyKind,
};
use super::{
find_breakable, BindingMode, BreakableContext, Diverges, Expectation, InferenceContext,
InferenceDiagnostic, TypeMismatch,
};
impl<'a> InferenceContext<'a> {
pub(super) fn infer_expr(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
let ty = self.infer_expr_inner(tgt_expr, expected);
if self.resolve_ty_shallow(&ty).is_never() {
// Any expression that produces a value of type `!` must have diverged
self.diverges = Diverges::Always;
}
if let Some(expected_ty) = expected.only_has_type(&mut self.table) {
let could_unify = self.unify(&ty, &expected_ty);
if !could_unify {
self.result.type_mismatches.insert(
tgt_expr.into(),
TypeMismatch { expected: expected_ty, actual: ty.clone() },
);
}
}
ty
}
/// Infer type of expression with possibly implicit coerce to the expected type.
/// Return the type after possible coercion.
pub(super) fn infer_expr_coerce(&mut self, expr: ExprId, expected: &Expectation) -> Ty {
let ty = self.infer_expr_inner(expr, expected);
let ty = if let Some(target) = expected.only_has_type(&mut self.table) {
match self.coerce(Some(expr), &ty, &target) {
Ok(res) => res.value,
Err(_) => {
self.result
.type_mismatches
.insert(expr.into(), TypeMismatch { expected: target, actual: ty.clone() });
// Return actual type when type mismatch.
// This is needed for diagnostic when return type mismatch.
ty
}
}
} else {
ty
};
ty
}
fn callable_sig_from_fn_trait(&mut self, ty: &Ty, num_args: usize) -> Option<(Vec<Ty>, Ty)> {
let krate = self.resolver.krate()?;
let fn_once_trait = FnTrait::FnOnce.get_id(self.db, krate)?;
let output_assoc_type =
self.db.trait_data(fn_once_trait).associated_type_by_name(&name![Output])?;
let mut arg_tys = vec![];
let arg_ty = TyBuilder::tuple(num_args)
.fill(repeat_with(|| {
let arg = self.table.new_type_var();
arg_tys.push(arg.clone());
arg
}))
.build();
let projection = {
let b = TyBuilder::assoc_type_projection(self.db, output_assoc_type);
if b.remaining() != 2 {
return None;
}
b.push(ty.clone()).push(arg_ty).build()
};
let trait_env = self.trait_env.env.clone();
let obligation = InEnvironment {
goal: projection.trait_ref(self.db).cast(&Interner),
environment: trait_env,
};
let canonical = self.canonicalize(obligation.clone());
if self.db.trait_solve(krate, canonical.value.cast(&Interner)).is_some() {
self.push_obligation(obligation.goal);
let return_ty = self.table.normalize_projection_ty(projection);
Some((arg_tys, return_ty))
} else {
None
}
}
pub(crate) fn callable_sig(&mut self, ty: &Ty, num_args: usize) -> Option<(Vec<Ty>, Ty)> {
match ty.callable_sig(self.db) {
Some(sig) => Some((sig.params().to_vec(), sig.ret().clone())),
None => self.callable_sig_from_fn_trait(ty, num_args),
}
}
fn infer_expr_inner(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
self.db.unwind_if_cancelled();
let body = Arc::clone(&self.body); // avoid borrow checker problem
let ty = match &body[tgt_expr] {
Expr::Missing => self.err_ty(),
&Expr::If { condition, then_branch, else_branch } => {
// if let is desugared to match, so this is always simple if
self.infer_expr(
condition,
&Expectation::has_type(TyKind::Scalar(Scalar::Bool).intern(&Interner)),
);
let condition_diverges = mem::replace(&mut self.diverges, Diverges::Maybe);
let mut both_arms_diverge = Diverges::Always;
let result_ty = self.table.new_type_var();
let then_ty = self.infer_expr_inner(then_branch, expected);
both_arms_diverge &= mem::replace(&mut self.diverges, Diverges::Maybe);
let mut coerce = CoerceMany::new(result_ty);
coerce.coerce(self, Some(then_branch), &then_ty);
let else_ty = match else_branch {
Some(else_branch) => self.infer_expr_inner(else_branch, expected),
None => TyBuilder::unit(),
};
both_arms_diverge &= self.diverges;
// FIXME: create a synthetic `else {}` so we have something to refer to here instead of None?
coerce.coerce(self, else_branch, &else_ty);
self.diverges = condition_diverges | both_arms_diverge;
coerce.complete()
}
Expr::Block { statements, tail, label, id: _ } => {
let old_resolver = mem::replace(
&mut self.resolver,
resolver_for_expr(self.db.upcast(), self.owner, tgt_expr),
);
let ty = match label {
Some(_) => {
let break_ty = self.table.new_type_var();
self.breakables.push(BreakableContext {
may_break: false,
coerce: CoerceMany::new(break_ty.clone()),
label: label.map(|label| self.body[label].name.clone()),
});
let ty = self.infer_block(
tgt_expr,
statements,
*tail,
&Expectation::has_type(break_ty),
);
let ctxt = self.breakables.pop().expect("breakable stack broken");
if ctxt.may_break {
ctxt.coerce.complete()
} else {
ty
}
}
None => self.infer_block(tgt_expr, statements, *tail, expected),
};
self.resolver = old_resolver;
ty
}
Expr::Unsafe { body } | Expr::Const { body } => self.infer_expr(*body, expected),
Expr::TryBlock { body } => {
let _inner = self.infer_expr(*body, expected);
// FIXME should be std::result::Result<{inner}, _>
self.err_ty()
}
Expr::Async { body } => {
// Use the first type parameter as the output type of future.
// existential type AsyncBlockImplTrait<InnerType>: Future<Output = InnerType>
let inner_ty = self.infer_expr(*body, &Expectation::none());
let impl_trait_id = crate::ImplTraitId::AsyncBlockTypeImplTrait(self.owner, *body);
let opaque_ty_id = self.db.intern_impl_trait_id(impl_trait_id).into();
TyKind::OpaqueType(opaque_ty_id, Substitution::from1(&Interner, inner_ty))
.intern(&Interner)
}
Expr::Loop { body, label } => {
self.breakables.push(BreakableContext {
may_break: false,
coerce: CoerceMany::new(self.table.new_type_var()),
label: label.map(|label| self.body[label].name.clone()),
});
self.infer_expr(*body, &Expectation::has_type(TyBuilder::unit()));
let ctxt = self.breakables.pop().expect("breakable stack broken");
if ctxt.may_break {
self.diverges = Diverges::Maybe;
ctxt.coerce.complete()
} else {
TyKind::Never.intern(&Interner)
}
}
Expr::While { condition, body, label } => {
self.breakables.push(BreakableContext {
may_break: false,
coerce: CoerceMany::new(self.err_ty()),
label: label.map(|label| self.body[label].name.clone()),
});
// while let is desugared to a match loop, so this is always simple while
self.infer_expr(
*condition,
&Expectation::has_type(TyKind::Scalar(Scalar::Bool).intern(&Interner)),
);
self.infer_expr(*body, &Expectation::has_type(TyBuilder::unit()));
let _ctxt = self.breakables.pop().expect("breakable stack broken");
// the body may not run, so it diverging doesn't mean we diverge
self.diverges = Diverges::Maybe;
TyBuilder::unit()
}
Expr::For { iterable, body, pat, label } => {
let iterable_ty = self.infer_expr(*iterable, &Expectation::none());
self.breakables.push(BreakableContext {
may_break: false,
coerce: CoerceMany::new(self.err_ty()),
label: label.map(|label| self.body[label].name.clone()),
});
let pat_ty =
self.resolve_associated_type(iterable_ty, self.resolve_into_iter_item());
self.infer_pat(*pat, &pat_ty, BindingMode::default());
self.infer_expr(*body, &Expectation::has_type(TyBuilder::unit()));
let _ctxt = self.breakables.pop().expect("breakable stack broken");
// the body may not run, so it diverging doesn't mean we diverge
self.diverges = Diverges::Maybe;
TyBuilder::unit()
}
Expr::Lambda { body, args, ret_type, arg_types } => {
assert_eq!(args.len(), arg_types.len());
let mut sig_tys = Vec::new();
// collect explicitly written argument types
for arg_type in arg_types.iter() {
let arg_ty = if let Some(type_ref) = arg_type {
self.make_ty(type_ref)
} else {
self.table.new_type_var()
};
sig_tys.push(arg_ty);
}
// add return type
let ret_ty = match ret_type {
Some(type_ref) => self.make_ty(type_ref),
None => self.table.new_type_var(),
};
sig_tys.push(ret_ty.clone());
let sig_ty = TyKind::Function(FnPointer {
num_binders: 0,
sig: FnSig { abi: (), safety: chalk_ir::Safety::Safe, variadic: false },
substitution: FnSubst(
Substitution::from_iter(&Interner, sig_tys.clone()).shifted_in(&Interner),
),
})
.intern(&Interner);
let closure_id = self.db.intern_closure((self.owner, tgt_expr)).into();
let closure_ty =
TyKind::Closure(closure_id, Substitution::from1(&Interner, sig_ty.clone()))
.intern(&Interner);
// Eagerly try to relate the closure type with the expected
// type, otherwise we often won't have enough information to
// infer the body.
self.deduce_closure_type_from_expectations(
tgt_expr,
&closure_ty,
&sig_ty,
expected,
);
// Now go through the argument patterns
for (arg_pat, arg_ty) in args.iter().zip(sig_tys) {
self.infer_pat(*arg_pat, &arg_ty, BindingMode::default());
}
let prev_diverges = mem::replace(&mut self.diverges, Diverges::Maybe);
let prev_ret_ty = mem::replace(&mut self.return_ty, ret_ty.clone());
self.infer_expr_coerce(*body, &Expectation::has_type(ret_ty));
self.diverges = prev_diverges;
self.return_ty = prev_ret_ty;
closure_ty
}
Expr::Call { callee, args } => {
let callee_ty = self.infer_expr(*callee, &Expectation::none());
let canonicalized = self.canonicalize(callee_ty.clone());
let mut derefs = Autoderef::new(
self.db,
self.resolver.krate(),
InEnvironment {
goal: canonicalized.value.clone(),
environment: self.table.trait_env.env.clone(),
},
);
let res = derefs.by_ref().find_map(|(callee_deref_ty, _)| {
self.callable_sig(
&canonicalized.decanonicalize_ty(callee_deref_ty.value),
args.len(),
)
});
let (param_tys, ret_ty): (Vec<Ty>, Ty) = match res {
Some(res) => {
self.write_expr_adj(*callee, self.auto_deref_adjust_steps(&derefs));
res
}
None => (Vec::new(), self.err_ty()),
};
self.register_obligations_for_call(&callee_ty);
let expected_inputs = self.expected_inputs_for_expected_output(
expected,
ret_ty.clone(),
param_tys.clone(),
);
self.check_call_arguments(args, &expected_inputs, &param_tys);
self.normalize_associated_types_in(ret_ty)
}
Expr::MethodCall { receiver, args, method_name, generic_args } => self
.infer_method_call(
tgt_expr,
*receiver,
args,
method_name,
generic_args.as_deref(),
expected,
),
Expr::Match { expr, arms } => {
let input_ty = self.infer_expr(*expr, &Expectation::none());
let expected = expected.adjust_for_branches(&mut self.table);
let result_ty = if arms.is_empty() {
TyKind::Never.intern(&Interner)
} else {
match &expected {
Expectation::HasType(ty) => ty.clone(),
_ => self.table.new_type_var(),
}
};
let mut coerce = CoerceMany::new(result_ty);
let matchee_diverges = self.diverges;
let mut all_arms_diverge = Diverges::Always;
for arm in arms {
self.diverges = Diverges::Maybe;
let _pat_ty = self.infer_pat(arm.pat, &input_ty, BindingMode::default());
match arm.guard {
Some(MatchGuard::If { expr: guard_expr }) => {
self.infer_expr(
guard_expr,
&Expectation::has_type(
TyKind::Scalar(Scalar::Bool).intern(&Interner),
),
);
}
Some(MatchGuard::IfLet { expr, pat }) => {
let input_ty = self.infer_expr(expr, &Expectation::none());
let _pat_ty = self.infer_pat(pat, &input_ty, BindingMode::default());
}
_ => {}
}
let arm_ty = self.infer_expr_inner(arm.expr, &expected);
all_arms_diverge &= self.diverges;
coerce.coerce(self, Some(arm.expr), &arm_ty);
}
self.diverges = matchee_diverges | all_arms_diverge;
coerce.complete()
}
Expr::Path(p) => {
// FIXME this could be more efficient...
let resolver = resolver_for_expr(self.db.upcast(), self.owner, tgt_expr);
self.infer_path(&resolver, p, tgt_expr.into()).unwrap_or_else(|| self.err_ty())
}
Expr::Continue { .. } => TyKind::Never.intern(&Interner),
Expr::Break { expr, label } => {
let mut coerce = match find_breakable(&mut self.breakables, label.as_ref()) {
Some(ctxt) => {
// avoiding the borrowck
mem::replace(
&mut ctxt.coerce,
CoerceMany::new(self.result.standard_types.unknown.clone()),
)
}
None => CoerceMany::new(self.result.standard_types.unknown.clone()),
};
let val_ty = if let Some(expr) = *expr {
self.infer_expr(expr, &Expectation::none())
} else {
TyBuilder::unit()
};
// FIXME: create a synthetic `()` during lowering so we have something to refer to here?
coerce.coerce(self, *expr, &val_ty);
if let Some(ctxt) = find_breakable(&mut self.breakables, label.as_ref()) {
ctxt.coerce = coerce;
ctxt.may_break = true;
} else {
self.push_diagnostic(InferenceDiagnostic::BreakOutsideOfLoop {
expr: tgt_expr,
});
};
TyKind::Never.intern(&Interner)
}
Expr::Return { expr } => {
if let Some(expr) = expr {
self.infer_expr_coerce(*expr, &Expectation::has_type(self.return_ty.clone()));
} else {
let unit = TyBuilder::unit();
let _ = self.coerce(Some(tgt_expr), &unit, &self.return_ty.clone());
}
TyKind::Never.intern(&Interner)
}
Expr::Yield { expr } => {
// FIXME: track yield type for coercion
if let Some(expr) = expr {
self.infer_expr(*expr, &Expectation::none());
}
TyKind::Never.intern(&Interner)
}
Expr::RecordLit { path, fields, spread } => {
let (ty, def_id) = self.resolve_variant(path.as_deref(), false);
if let Some(variant) = def_id {
self.write_variant_resolution(tgt_expr.into(), variant);
}
if let Some(t) = expected.only_has_type(&mut self.table) {
self.unify(&ty, &t);
}
let substs = ty
.as_adt()
.map(|(_, s)| s.clone())
.unwrap_or_else(|| Substitution::empty(&Interner));
let field_types = def_id.map(|it| self.db.field_types(it)).unwrap_or_default();
let variant_data = def_id.map(|it| it.variant_data(self.db.upcast()));
for field in fields.iter() {
let field_def =
variant_data.as_ref().and_then(|it| match it.field(&field.name) {
Some(local_id) => Some(FieldId { parent: def_id.unwrap(), local_id }),
None => {
self.push_diagnostic(InferenceDiagnostic::NoSuchField {
expr: field.expr,
});
None
}
});
let field_ty = field_def.map_or(self.err_ty(), |it| {
field_types[it.local_id].clone().substitute(&Interner, &substs)
});
self.infer_expr_coerce(field.expr, &Expectation::has_type(field_ty));
}
if let Some(expr) = spread {
self.infer_expr(*expr, &Expectation::has_type(ty.clone()));
}
ty
}
Expr::Field { expr, name } => {
let receiver_ty = self.infer_expr_inner(*expr, &Expectation::none());
let canonicalized = self.canonicalize(receiver_ty);
let mut autoderef = Autoderef::new(
self.db,
self.resolver.krate(),
InEnvironment {
goal: canonicalized.value.clone(),
environment: self.trait_env.env.clone(),
},
);
let ty = autoderef.by_ref().find_map(|(derefed_ty, _)| {
let def_db = self.db.upcast();
let module = self.resolver.module();
let is_visible = |field_id: &FieldId| {
module
.map(|mod_id| {
self.db.field_visibilities(field_id.parent)[field_id.local_id]
.is_visible_from(def_db, mod_id)
})
.unwrap_or(true)
};
match canonicalized.decanonicalize_ty(derefed_ty.value).kind(&Interner) {
TyKind::Tuple(_, substs) => name.as_tuple_index().and_then(|idx| {
substs
.as_slice(&Interner)
.get(idx)
.map(|a| a.assert_ty_ref(&Interner))
.cloned()
}),
TyKind::Adt(AdtId(hir_def::AdtId::StructId(s)), parameters) => {
let local_id = self.db.struct_data(*s).variant_data.field(name)?;
let field = FieldId { parent: (*s).into(), local_id };
if is_visible(&field) {
self.write_field_resolution(tgt_expr, field);
Some(
self.db.field_types((*s).into())[field.local_id]
.clone()
.substitute(&Interner, &parameters),
)
} else {
None
}
}
TyKind::Adt(AdtId(hir_def::AdtId::UnionId(u)), parameters) => {
let local_id = self.db.union_data(*u).variant_data.field(name)?;
let field = FieldId { parent: (*u).into(), local_id };
if is_visible(&field) {
self.write_field_resolution(tgt_expr, field);
Some(
self.db.field_types((*u).into())[field.local_id]
.clone()
.substitute(&Interner, &parameters),
)
} else {
None
}
}
_ => None,
}
});
let ty = match ty {
Some(ty) => {
self.write_expr_adj(*expr, self.auto_deref_adjust_steps(&autoderef));
ty
}
None => self.err_ty(),
};
let ty = self.insert_type_vars(ty);
self.normalize_associated_types_in(ty)
}
Expr::Await { expr } => {
let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
self.resolve_associated_type(inner_ty, self.resolve_future_future_output())
}
Expr::Try { expr } => {
let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
self.resolve_associated_type(inner_ty, self.resolve_ops_try_ok())
}
Expr::Cast { expr, type_ref } => {
// FIXME: propagate the "castable to" expectation (and find a test case that shows this is necessary)
let _inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
let cast_ty = self.make_ty(type_ref);
// FIXME check the cast...
cast_ty
}
Expr::Ref { expr, rawness, mutability } => {
let mutability = lower_to_chalk_mutability(*mutability);
let expectation = if let Some((exp_inner, exp_rawness, exp_mutability)) = expected
.only_has_type(&mut self.table)
.as_ref()
.and_then(|t| t.as_reference_or_ptr())
{
if exp_mutability == Mutability::Mut && mutability == Mutability::Not {
// FIXME: record type error - expected mut reference but found shared ref,
// which cannot be coerced
}
if exp_rawness == Rawness::Ref && *rawness == Rawness::RawPtr {
// FIXME: record type error - expected reference but found ptr,
// which cannot be coerced
}
Expectation::rvalue_hint(&mut self.table, Ty::clone(exp_inner))
} else {
Expectation::none()
};
let inner_ty = self.infer_expr_inner(*expr, &expectation);
match rawness {
Rawness::RawPtr => TyKind::Raw(mutability, inner_ty),
Rawness::Ref => TyKind::Ref(mutability, static_lifetime(), inner_ty),
}
.intern(&Interner)
}
Expr::Box { expr } => {
let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
if let Some(box_) = self.resolve_boxed_box() {
TyBuilder::adt(self.db, box_)
.push(inner_ty)
.fill_with_defaults(self.db, || self.table.new_type_var())
.build()
} else {
self.err_ty()
}
}
Expr::UnaryOp { expr, op } => {
let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
let inner_ty = self.resolve_ty_shallow(&inner_ty);
match op {
UnaryOp::Deref => match self.resolver.krate() {
Some(krate) => {
let canonicalized = self.canonicalize(inner_ty);
match autoderef::deref(
self.db,
krate,
InEnvironment {
goal: &canonicalized.value,
environment: self.trait_env.env.clone(),
},
) {
Some(derefed_ty) => {
canonicalized.decanonicalize_ty(derefed_ty.value)
}
None => self.err_ty(),
}
}
None => self.err_ty(),
},
UnaryOp::Neg => {
match inner_ty.kind(&Interner) {
// Fast path for builtins
TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_) | Scalar::Float(_))
| TyKind::InferenceVar(
_,
TyVariableKind::Integer | TyVariableKind::Float,
) => inner_ty,
// Otherwise we resolve via the std::ops::Neg trait
_ => self
.resolve_associated_type(inner_ty, self.resolve_ops_neg_output()),
}
}
UnaryOp::Not => {
match inner_ty.kind(&Interner) {
// Fast path for builtins
TyKind::Scalar(Scalar::Bool | Scalar::Int(_) | Scalar::Uint(_))
| TyKind::InferenceVar(_, TyVariableKind::Integer) => inner_ty,
// Otherwise we resolve via the std::ops::Not trait
_ => self
.resolve_associated_type(inner_ty, self.resolve_ops_not_output()),
}
}
}
}
Expr::BinaryOp { lhs, rhs, op } => match op {
Some(BinaryOp::Assignment { op: None }) => {
let lhs_ty = self.infer_expr(*lhs, &Expectation::none());
self.infer_expr_coerce(*rhs, &Expectation::has_type(lhs_ty));
self.result.standard_types.unit.clone()
}
Some(BinaryOp::LogicOp(_)) => {
let bool_ty = self.result.standard_types.bool_.clone();
self.infer_expr_coerce(*lhs, &Expectation::HasType(bool_ty.clone()));
let lhs_diverges = self.diverges;
self.infer_expr_coerce(*rhs, &Expectation::HasType(bool_ty.clone()));
// Depending on the LHS' value, the RHS can never execute.
self.diverges = lhs_diverges;
bool_ty
}
Some(op) => self.infer_overloadable_binop(*lhs, *op, *rhs, tgt_expr),
_ => self.err_ty(),
},
Expr::Range { lhs, rhs, range_type } => {
let lhs_ty = lhs.map(|e| self.infer_expr_inner(e, &Expectation::none()));
let rhs_expect = lhs_ty
.as_ref()
.map_or_else(Expectation::none, |ty| Expectation::has_type(ty.clone()));
let rhs_ty = rhs.map(|e| self.infer_expr(e, &rhs_expect));
match (range_type, lhs_ty, rhs_ty) {
(RangeOp::Exclusive, None, None) => match self.resolve_range_full() {
Some(adt) => TyBuilder::adt(self.db, adt).build(),
None => self.err_ty(),
},
(RangeOp::Exclusive, None, Some(ty)) => match self.resolve_range_to() {
Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
None => self.err_ty(),
},
(RangeOp::Inclusive, None, Some(ty)) => {
match self.resolve_range_to_inclusive() {
Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
None => self.err_ty(),
}
}
(RangeOp::Exclusive, Some(_), Some(ty)) => match self.resolve_range() {
Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
None => self.err_ty(),
},
(RangeOp::Inclusive, Some(_), Some(ty)) => {
match self.resolve_range_inclusive() {
Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
None => self.err_ty(),
}
}
(RangeOp::Exclusive, Some(ty), None) => match self.resolve_range_from() {
Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
None => self.err_ty(),
},
(RangeOp::Inclusive, _, None) => self.err_ty(),
}
}
Expr::Index { base, index } => {
let base_ty = self.infer_expr_inner(*base, &Expectation::none());
let index_ty = self.infer_expr(*index, &Expectation::none());
if let (Some(index_trait), Some(krate)) =
(self.resolve_ops_index(), self.resolver.krate())
{
let canonicalized = self.canonicalize(base_ty);
let self_ty = method_resolution::resolve_indexing_op(
self.db,
&canonicalized.value,
self.trait_env.clone(),
krate,
index_trait,
);
let self_ty =
self_ty.map_or(self.err_ty(), |t| canonicalized.decanonicalize_ty(t.value));
self.resolve_associated_type_with_params(
self_ty,
self.resolve_ops_index_output(),
&[index_ty],
)
} else {
self.err_ty()
}
}
Expr::Tuple { exprs } => {
let mut tys = match expected
.only_has_type(&mut self.table)
.as_ref()
.map(|t| t.kind(&Interner))
{
Some(TyKind::Tuple(_, substs)) => substs
.iter(&Interner)
.map(|a| a.assert_ty_ref(&Interner).clone())
.chain(repeat_with(|| self.table.new_type_var()))
.take(exprs.len())
.collect::<Vec<_>>(),
_ => (0..exprs.len()).map(|_| self.table.new_type_var()).collect(),
};
for (expr, ty) in exprs.iter().zip(tys.iter_mut()) {
self.infer_expr_coerce(*expr, &Expectation::has_type(ty.clone()));
}
TyKind::Tuple(tys.len(), Substitution::from_iter(&Interner, tys)).intern(&Interner)
}
Expr::Array(array) => {
let elem_ty =
match expected.to_option(&mut self.table).as_ref().map(|t| t.kind(&Interner)) {
Some(TyKind::Array(st, _) | TyKind::Slice(st)) => st.clone(),
_ => self.table.new_type_var(),
};
let mut coerce = CoerceMany::new(elem_ty.clone());
let expected = Expectation::has_type(elem_ty.clone());
let len = match array {
Array::ElementList(items) => {
for &expr in items.iter() {
let cur_elem_ty = self.infer_expr_inner(expr, &expected);
coerce.coerce(self, Some(expr), &cur_elem_ty);
}
Some(items.len() as u64)
}
&Array::Repeat { initializer, repeat } => {
self.infer_expr_coerce(initializer, &Expectation::has_type(elem_ty));
self.infer_expr(
repeat,
&Expectation::has_type(
TyKind::Scalar(Scalar::Uint(UintTy::Usize)).intern(&Interner),
),
);
let repeat_expr = &self.body.exprs[repeat];
consteval::eval_usize(repeat_expr)
}
};
TyKind::Array(coerce.complete(), consteval::usize_const(len)).intern(&Interner)
}
Expr::Literal(lit) => match lit {
Literal::Bool(..) => TyKind::Scalar(Scalar::Bool).intern(&Interner),
Literal::String(..) => {
TyKind::Ref(Mutability::Not, static_lifetime(), TyKind::Str.intern(&Interner))
.intern(&Interner)
}
Literal::ByteString(bs) => {
let byte_type = TyKind::Scalar(Scalar::Uint(UintTy::U8)).intern(&Interner);
let len = consteval::usize_const(Some(bs.len() as u64));
let array_type = TyKind::Array(byte_type, len).intern(&Interner);
TyKind::Ref(Mutability::Not, static_lifetime(), array_type).intern(&Interner)
}
Literal::Char(..) => TyKind::Scalar(Scalar::Char).intern(&Interner),
Literal::Int(_v, ty) => match ty {
Some(int_ty) => {
TyKind::Scalar(Scalar::Int(primitive::int_ty_from_builtin(*int_ty)))
.intern(&Interner)
}
None => self.table.new_integer_var(),
},
Literal::Uint(_v, ty) => match ty {
Some(int_ty) => {
TyKind::Scalar(Scalar::Uint(primitive::uint_ty_from_builtin(*int_ty)))
.intern(&Interner)
}
None => self.table.new_integer_var(),
},
Literal::Float(_v, ty) => match ty {
Some(float_ty) => {
TyKind::Scalar(Scalar::Float(primitive::float_ty_from_builtin(*float_ty)))
.intern(&Interner)
}
None => self.table.new_float_var(),
},
},
Expr::MacroStmts { tail } => self.infer_expr_inner(*tail, expected),
};
// use a new type variable if we got unknown here
let ty = self.insert_type_vars_shallow(ty);
self.write_expr_ty(tgt_expr, ty.clone());
ty
}
fn infer_overloadable_binop(
&mut self,
lhs: ExprId,
op: BinaryOp,
rhs: ExprId,
tgt_expr: ExprId,
) -> Ty {
let lhs_expectation = Expectation::none();
let lhs_ty = self.infer_expr(lhs, &lhs_expectation);
let rhs_ty = self.table.new_type_var();
let func = self.resolve_binop_method(op);
let func = match func {
Some(func) => func,
None => {
let rhs_ty = self.builtin_binary_op_rhs_expectation(op, lhs_ty.clone());
let rhs_ty = self.infer_expr_coerce(rhs, &Expectation::from_option(rhs_ty));
return self
.builtin_binary_op_return_ty(op, lhs_ty, rhs_ty)
.unwrap_or_else(|| self.err_ty());
}
};
let subst = TyBuilder::subst_for_def(self.db, func)
.push(lhs_ty.clone())
.push(rhs_ty.clone())
.build();
self.write_method_resolution(tgt_expr, func, subst.clone());
let method_ty = self.db.value_ty(func.into()).substitute(&Interner, &subst);
self.register_obligations_for_call(&method_ty);
self.infer_expr_coerce(rhs, &Expectation::has_type(rhs_ty.clone()));
let ret_ty = match method_ty.callable_sig(self.db) {
Some(sig) => sig.ret().clone(),
None => self.err_ty(),
};
let ret_ty = self.normalize_associated_types_in(ret_ty);
// FIXME: record autoref adjustments
// use knowledge of built-in binary ops, which can sometimes help inference
if let Some(builtin_rhs) = self.builtin_binary_op_rhs_expectation(op, lhs_ty.clone()) {
self.unify(&builtin_rhs, &rhs_ty);
}
if let Some(builtin_ret) =
self.builtin_binary_op_return_ty(op, lhs_ty.clone(), rhs_ty.clone())
{
self.unify(&builtin_ret, &ret_ty);
}
ret_ty
}
fn infer_block(
&mut self,
expr: ExprId,
statements: &[Statement],
tail: Option<ExprId>,
expected: &Expectation,
) -> Ty {
for stmt in statements {
match stmt {
Statement::Let { pat, type_ref, initializer } => {
let decl_ty = type_ref
.as_ref()
.map(|tr| self.make_ty(tr))
.unwrap_or_else(|| self.err_ty());
// Always use the declared type when specified
let mut ty = decl_ty.clone();
if let Some(expr) = initializer {
let actual_ty =
self.infer_expr_coerce(*expr, &Expectation::has_type(decl_ty.clone()));
if decl_ty.is_unknown() {
ty = actual_ty;
}
}
self.infer_pat(*pat, &ty, BindingMode::default());
}
Statement::Expr { expr, .. } => {
self.infer_expr(*expr, &Expectation::none());
}
}
}
let ty = if let Some(expr) = tail {
self.infer_expr_coerce(expr, expected)
} else {
// Citing rustc: if there is no explicit tail expression,
// that is typically equivalent to a tail expression
// of `()` -- except if the block diverges. In that
// case, there is no value supplied from the tail
// expression (assuming there are no other breaks,
// this implies that the type of the block will be
// `!`).
if self.diverges.is_always() {
// we don't even make an attempt at coercion
self.table.new_maybe_never_var()
} else {
if let Some(t) = expected.only_has_type(&mut self.table) {
let _ = self.coerce(Some(expr), &TyBuilder::unit(), &t);
}
TyBuilder::unit()
}
};
ty
}
fn infer_method_call(
&mut self,
tgt_expr: ExprId,
receiver: ExprId,
args: &[ExprId],
method_name: &Name,
generic_args: Option<&GenericArgs>,
expected: &Expectation,
) -> Ty {
let receiver_ty = self.infer_expr(receiver, &Expectation::none());
let canonicalized_receiver = self.canonicalize(receiver_ty.clone());
let traits_in_scope = self.resolver.traits_in_scope(self.db.upcast());
let resolved = self.resolver.krate().and_then(|krate| {
method_resolution::lookup_method(
&canonicalized_receiver.value,
self.db,
self.trait_env.clone(),
krate,
&traits_in_scope,
self.resolver.module(),
method_name,
)
});
let (receiver_ty, method_ty, substs) = match resolved {
Some((ty, func)) => {
let ty = canonicalized_receiver.decanonicalize_ty(ty);
let generics = generics(self.db.upcast(), func.into());
let substs = self.substs_for_method_call(generics, generic_args, &ty);
self.write_method_resolution(tgt_expr, func, substs.clone());
(ty, self.db.value_ty(func.into()), substs)
}
None => (
receiver_ty,
Binders::empty(&Interner, self.err_ty()),
Substitution::empty(&Interner),
),
};
let method_ty = method_ty.substitute(&Interner, &substs);
self.register_obligations_for_call(&method_ty);
let (formal_receiver_ty, param_tys, ret_ty) = match method_ty.callable_sig(self.db) {
Some(sig) => {
if !sig.params().is_empty() {
(sig.params()[0].clone(), sig.params()[1..].to_vec(), sig.ret().clone())
} else {
(self.err_ty(), Vec::new(), sig.ret().clone())
}
}
None => (self.err_ty(), Vec::new(), self.err_ty()),
};
self.unify(&formal_receiver_ty, &receiver_ty);
let expected_inputs =
self.expected_inputs_for_expected_output(expected, ret_ty.clone(), param_tys.clone());
self.check_call_arguments(args, &expected_inputs, &param_tys);
self.normalize_associated_types_in(ret_ty)
}
fn expected_inputs_for_expected_output(
&mut self,
expected_output: &Expectation,
output: Ty,
inputs: Vec<Ty>,
) -> Vec<Ty> {
if let Some(expected_ty) = expected_output.to_option(&mut self.table) {
let result = self.table.fudge_inference(|table| {
if table.try_unify(&expected_ty, &output).is_ok() {
table.resolve_with_fallback(inputs, |var, kind, _, _| match kind {
chalk_ir::VariableKind::Ty(tk) => var.to_ty(&Interner, tk).cast(&Interner),
chalk_ir::VariableKind::Lifetime => {
var.to_lifetime(&Interner).cast(&Interner)
}
chalk_ir::VariableKind::Const(ty) => {
var.to_const(&Interner, ty).cast(&Interner)
}
})
} else {
Vec::new()
}
});
result
} else {
Vec::new()
}
}
fn check_call_arguments(&mut self, args: &[ExprId], expected_inputs: &[Ty], param_tys: &[Ty]) {
// Quoting https://github.com/rust-lang/rust/blob/6ef275e6c3cb1384ec78128eceeb4963ff788dca/src/librustc_typeck/check/mod.rs#L3325 --
// We do this in a pretty awful way: first we type-check any arguments
// that are not closures, then we type-check the closures. This is so
// that we have more information about the types of arguments when we
// type-check the functions. This isn't really the right way to do this.
for &check_closures in &[false, true] {
let param_iter = param_tys.iter().cloned().chain(repeat(self.err_ty()));
let expected_iter = expected_inputs
.iter()
.cloned()
.chain(param_iter.clone().skip(expected_inputs.len()));
for ((&arg, param_ty), expected_ty) in args.iter().zip(param_iter).zip(expected_iter) {
let is_closure = matches!(&self.body[arg], Expr::Lambda { .. });
if is_closure != check_closures {
continue;
}
// the difference between param_ty and expected here is that
// expected is the parameter when the expected *return* type is
// taken into account. So in `let _: &[i32] = identity(&[1, 2])`
// the expected type is already `&[i32]`, whereas param_ty is
// still an unbound type variable. We don't always want to force
// the parameter to coerce to the expected type (for example in
// `coerce_unsize_expected_type_4`).
let param_ty = self.normalize_associated_types_in(param_ty);
let expected = Expectation::rvalue_hint(&mut self.table, expected_ty);
// infer with the expected type we have...
let ty = self.infer_expr_inner(arg, &expected);
// then coerce to either the expected type or just the formal parameter type
let coercion_target = if let Some(ty) = expected.only_has_type(&mut self.table) {
// if we are coercing to the expectation, unify with the
// formal parameter type to connect everything
self.unify(&ty, &param_ty);
ty
} else {
param_ty
};
if !coercion_target.is_unknown() {
if self.coerce(Some(arg), &ty, &coercion_target).is_err() {
self.result.type_mismatches.insert(
arg.into(),
TypeMismatch { expected: coercion_target, actual: ty.clone() },
);
}
}
}
}
}
fn substs_for_method_call(
&mut self,
def_generics: Generics,
generic_args: Option<&GenericArgs>,
receiver_ty: &Ty,
) -> Substitution {
let (parent_params, self_params, type_params, impl_trait_params) =
def_generics.provenance_split();
assert_eq!(self_params, 0); // method shouldn't have another Self param
let total_len = parent_params + type_params + impl_trait_params;
let mut substs = Vec::with_capacity(total_len);
// Parent arguments are unknown, except for the receiver type
for (_id, param) in def_generics.iter_parent() {
if param.provenance == hir_def::generics::TypeParamProvenance::TraitSelf {
substs.push(receiver_ty.clone());
} else {
substs.push(self.table.new_type_var());
}
}
// handle provided type arguments
if let Some(generic_args) = generic_args {
// if args are provided, it should be all of them, but we can't rely on that
for arg in generic_args
.args
.iter()
.filter(|arg| matches!(arg, GenericArg::Type(_)))
.take(type_params)
{
match arg {
GenericArg::Type(type_ref) => {
let ty = self.make_ty(type_ref);
substs.push(ty);
}
GenericArg::Lifetime(_) => {}
}
}
};
let supplied_params = substs.len();
for _ in supplied_params..total_len {
substs.push(self.table.new_type_var());
}
assert_eq!(substs.len(), total_len);
Substitution::from_iter(&Interner, substs)
}
fn register_obligations_for_call(&mut self, callable_ty: &Ty) {
let callable_ty = self.resolve_ty_shallow(callable_ty);
if let TyKind::FnDef(fn_def, parameters) = callable_ty.kind(&Interner) {
let def: CallableDefId = from_chalk(self.db, *fn_def);
let generic_predicates = self.db.generic_predicates(def.into());
for predicate in generic_predicates.iter() {
let (predicate, binders) = predicate
.clone()
.substitute(&Interner, parameters)
.into_value_and_skipped_binders();
always!(binders.len(&Interner) == 0); // quantified where clauses not yet handled
self.push_obligation(predicate.cast(&Interner));
}
// add obligation for trait implementation, if this is a trait method
match def {
CallableDefId::FunctionId(f) => {
if let AssocContainerId::TraitId(trait_) = f.lookup(self.db.upcast()).container
{
// construct a TraitRef
let substs = crate::subst_prefix(
&*parameters,
generics(self.db.upcast(), trait_.into()).len(),
);
self.push_obligation(
TraitRef { trait_id: to_chalk_trait_id(trait_), substitution: substs }
.cast(&Interner),
);
}
}
CallableDefId::StructId(_) | CallableDefId::EnumVariantId(_) => {}
}
}
}
fn builtin_binary_op_return_ty(&mut self, op: BinaryOp, lhs_ty: Ty, rhs_ty: Ty) -> Option<Ty> {
let lhs_ty = self.resolve_ty_shallow(&lhs_ty);
let rhs_ty = self.resolve_ty_shallow(&rhs_ty);
match op {
BinaryOp::LogicOp(_) | BinaryOp::CmpOp(_) => {
Some(TyKind::Scalar(Scalar::Bool).intern(&Interner))
}
BinaryOp::Assignment { .. } => Some(TyBuilder::unit()),
BinaryOp::ArithOp(ArithOp::Shl | ArithOp::Shr) => {
// all integer combinations are valid here
if matches!(
lhs_ty.kind(&Interner),
TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_))
| TyKind::InferenceVar(_, TyVariableKind::Integer)
) && matches!(
rhs_ty.kind(&Interner),
TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_))
| TyKind::InferenceVar(_, TyVariableKind::Integer)
) {
Some(lhs_ty)
} else {
None
}
}
BinaryOp::ArithOp(_) => match (lhs_ty.kind(&Interner), rhs_ty.kind(&Interner)) {
// (int, int) | (uint, uint) | (float, float)
(TyKind::Scalar(Scalar::Int(_)), TyKind::Scalar(Scalar::Int(_)))
| (TyKind::Scalar(Scalar::Uint(_)), TyKind::Scalar(Scalar::Uint(_)))
| (TyKind::Scalar(Scalar::Float(_)), TyKind::Scalar(Scalar::Float(_))) => {
Some(rhs_ty)
}
// ({int}, int) | ({int}, uint)
(
TyKind::InferenceVar(_, TyVariableKind::Integer),
TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_)),
) => Some(rhs_ty),
// (int, {int}) | (uint, {int})
(
TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_)),
TyKind::InferenceVar(_, TyVariableKind::Integer),
) => Some(lhs_ty),
// ({float} | float)
(
TyKind::InferenceVar(_, TyVariableKind::Float),
TyKind::Scalar(Scalar::Float(_)),
) => Some(rhs_ty),
// (float, {float})
(
TyKind::Scalar(Scalar::Float(_)),
TyKind::InferenceVar(_, TyVariableKind::Float),
) => Some(lhs_ty),
// ({int}, {int}) | ({float}, {float})
(
TyKind::InferenceVar(_, TyVariableKind::Integer),
TyKind::InferenceVar(_, TyVariableKind::Integer),
)
| (
TyKind::InferenceVar(_, TyVariableKind::Float),
TyKind::InferenceVar(_, TyVariableKind::Float),
) => Some(rhs_ty),
_ => None,
},
}
}
fn builtin_binary_op_rhs_expectation(&mut self, op: BinaryOp, lhs_ty: Ty) -> Option<Ty> {
Some(match op {
BinaryOp::LogicOp(..) => TyKind::Scalar(Scalar::Bool).intern(&Interner),
BinaryOp::Assignment { op: None } => lhs_ty,
BinaryOp::CmpOp(CmpOp::Eq { .. }) => match self
.resolve_ty_shallow(&lhs_ty)
.kind(&Interner)
{
TyKind::Scalar(_) | TyKind::Str => lhs_ty,
TyKind::InferenceVar(_, TyVariableKind::Integer | TyVariableKind::Float) => lhs_ty,
_ => return None,
},
BinaryOp::ArithOp(ArithOp::Shl | ArithOp::Shr) => return None,
BinaryOp::CmpOp(CmpOp::Ord { .. })
| BinaryOp::Assignment { op: Some(_) }
| BinaryOp::ArithOp(_) => match self.resolve_ty_shallow(&lhs_ty).kind(&Interner) {
TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_) | Scalar::Float(_)) => lhs_ty,
TyKind::InferenceVar(_, TyVariableKind::Integer | TyVariableKind::Float) => lhs_ty,
_ => return None,
},
})
}
fn resolve_binop_method(&self, op: BinaryOp) -> Option<FunctionId> {
let (name, lang_item) = match op {
BinaryOp::LogicOp(_) => return None,
BinaryOp::ArithOp(aop) => match aop {
ArithOp::Add => (name!(add), "add"),
ArithOp::Mul => (name!(mul), "mul"),
ArithOp::Sub => (name!(sub), "sub"),
ArithOp::Div => (name!(div), "div"),
ArithOp::Rem => (name!(rem), "rem"),
ArithOp::Shl => (name!(shl), "shl"),
ArithOp::Shr => (name!(shr), "shr"),
ArithOp::BitXor => (name!(bitxor), "bitxor"),
ArithOp::BitOr => (name!(bitor), "bitor"),
ArithOp::BitAnd => (name!(bitand), "bitand"),
},
BinaryOp::Assignment { op: Some(aop) } => match aop {
ArithOp::Add => (name!(add_assign), "add_assign"),
ArithOp::Mul => (name!(mul_assign), "mul_assign"),
ArithOp::Sub => (name!(sub_assign), "sub_assign"),
ArithOp::Div => (name!(div_assign), "div_assign"),
ArithOp::Rem => (name!(rem_assign), "rem_assign"),
ArithOp::Shl => (name!(shl_assign), "shl_assign"),
ArithOp::Shr => (name!(shr_assign), "shr_assign"),
ArithOp::BitXor => (name!(bitxor_assign), "bitxor_assign"),
ArithOp::BitOr => (name!(bitor_assign), "bitor_assign"),
ArithOp::BitAnd => (name!(bitand_assign), "bitand_assign"),
},
BinaryOp::CmpOp(cop) => match cop {
CmpOp::Eq { negated: false } => (name!(eq), "eq"),
CmpOp::Eq { negated: true } => (name!(ne), "eq"),
CmpOp::Ord { ordering: Ordering::Less, strict: false } => {
(name!(le), "partial_ord")
}
CmpOp::Ord { ordering: Ordering::Less, strict: true } => (name!(lt), "partial_ord"),
CmpOp::Ord { ordering: Ordering::Greater, strict: false } => {
(name!(ge), "partial_ord")
}
CmpOp::Ord { ordering: Ordering::Greater, strict: true } => {
(name!(gt), "partial_ord")
}
},
BinaryOp::Assignment { op: None } => return None,
};
let trait_ = self.resolve_lang_item(lang_item)?.as_trait()?;
self.db.trait_data(trait_).method_by_name(&name)
}
}