blob: f08801190764d11ef2af96c4ab5fd466027ce7a6 [file] [log] [blame]
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <errno.h>
#include <sys/types.h>
#include <cpuinfo.h>
#include <cpuinfo/internal-api.h>
#include <cpuinfo/log.h>
#include "windows-arm-init.h"
#define MAX_NR_OF_CACHES (cpuinfo_cache_level_max - 1)
/* Call chain:
* cpu_info_init_by_logical_sys_info
* read_packages_for_processors
* read_cores_for_processors
* read_caches_for_processors
* read_all_logical_processor_info_of_relation
* parse_relation_processor_info
* store_package_info_per_processor
* store_core_info_per_processor
* parse_relation_cache_info
* store_cache_info_per_processor
*/
static uint32_t count_logical_processors(
const uint32_t max_group_count,
uint32_t* global_proc_index_per_group);
static uint32_t read_packages_for_processors(
struct cpuinfo_processor* processors,
const uint32_t number_of_processors,
const uint32_t* global_proc_index_per_group,
const struct woa_chip_info *chip_info);
static uint32_t read_cores_for_processors(
struct cpuinfo_processor* processors,
const uint32_t number_of_processors,
const uint32_t* global_proc_index_per_group,
struct cpuinfo_core* cores,
const struct woa_chip_info *chip_info);
static uint32_t read_caches_for_processors(
struct cpuinfo_processor *processors,
const uint32_t number_of_processors,
struct cpuinfo_cache *caches,
uint32_t* numbers_of_caches,
const uint32_t* global_proc_index_per_group,
const struct woa_chip_info *chip_info);
static uint32_t read_all_logical_processor_info_of_relation(
LOGICAL_PROCESSOR_RELATIONSHIP info_type,
struct cpuinfo_processor* processors,
const uint32_t number_of_processors,
struct cpuinfo_cache* caches,
uint32_t* numbers_of_caches,
struct cpuinfo_core* cores,
const uint32_t* global_proc_index_per_group,
const struct woa_chip_info *chip_info);
static bool parse_relation_processor_info(
struct cpuinfo_processor* processors,
uint32_t nr_of_processors,
const uint32_t* global_proc_index_per_group,
PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info,
const uint32_t info_id,
struct cpuinfo_core* cores,
const struct woa_chip_info *chip_info);
static bool parse_relation_cache_info(
struct cpuinfo_processor* processors,
struct cpuinfo_cache* caches,
uint32_t* numbers_of_caches,
const uint32_t* global_proc_index_per_group,
PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info);
static void store_package_info_per_processor(
struct cpuinfo_processor* processors,
const uint32_t processor_global_index,
const uint32_t package_id,
const uint32_t group_id,
const uint32_t processor_id_in_group);
static void store_core_info_per_processor(
struct cpuinfo_processor* processors,
const uint32_t processor_global_index,
const uint32_t core_id,
PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX core_info,
struct cpuinfo_core* cores,
const struct woa_chip_info *chip_info);
static void store_cache_info_per_processor(
struct cpuinfo_processor* processors,
const uint32_t processor_global_index,
PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info,
struct cpuinfo_cache* current_cache);
static bool connect_packages_cores_clusters_by_processors(
struct cpuinfo_processor* processors,
const uint32_t nr_of_processors,
struct cpuinfo_package* packages,
const uint32_t nr_of_packages,
struct cpuinfo_cluster* clusters,
struct cpuinfo_core* cores,
const uint32_t nr_of_cores,
const struct woa_chip_info* chip_info,
enum cpuinfo_vendor vendor);
static inline uint32_t low_index_from_kaffinity(KAFFINITY kaffinity);
bool cpu_info_init_by_logical_sys_info(
const struct woa_chip_info *chip_info,
const enum cpuinfo_vendor vendor)
{
struct cpuinfo_processor* processors = NULL;
struct cpuinfo_package* packages = NULL;
struct cpuinfo_cluster* clusters = NULL;
struct cpuinfo_core* cores = NULL;
struct cpuinfo_cache* caches = NULL;
struct cpuinfo_uarch_info* uarchs = NULL;
uint32_t nr_of_packages = 0;
uint32_t nr_of_cores = 0;
uint32_t nr_of_all_caches = 0;
uint32_t numbers_of_caches[MAX_NR_OF_CACHES] = {0};
uint32_t nr_of_uarchs = 0;
bool result = false;
HANDLE heap = GetProcessHeap();
/* 1. Count available logical processor groups and processors */
const uint32_t max_group_count = (uint32_t) GetMaximumProcessorGroupCount();
cpuinfo_log_debug("detected %"PRIu32" processor group(s)", max_group_count);
/* We need to store the absolute processor ID offsets for every groups, because
* 1. We can't assume every processor groups include the same number of
* logical processors.
* 2. Every processor groups know its group number and processor IDs within
* the group, but not the global processor IDs.
* 3. We need to list every logical processors by global IDs.
*/
uint32_t* global_proc_index_per_group =
(uint32_t*) HeapAlloc(heap, 0, max_group_count * sizeof(uint32_t));
if (global_proc_index_per_group == NULL) {
cpuinfo_log_error(
"failed to allocate %zu bytes for descriptions of %"PRIu32" processor groups",
max_group_count * sizeof(struct cpuinfo_processor), max_group_count);
goto clean_up;
}
uint32_t nr_of_processors =
count_logical_processors(max_group_count, global_proc_index_per_group);
processors = HeapAlloc(heap, HEAP_ZERO_MEMORY, nr_of_processors * sizeof(struct cpuinfo_processor));
if (processors == NULL) {
cpuinfo_log_error(
"failed to allocate %zu bytes for descriptions of %"PRIu32" logical processors",
nr_of_processors * sizeof(struct cpuinfo_processor), nr_of_processors);
goto clean_up;
}
/* 2. Read topology information via MSDN API: packages, cores and caches*/
nr_of_packages = read_packages_for_processors(
processors, nr_of_processors,
global_proc_index_per_group,
chip_info);
if (!nr_of_packages) {
cpuinfo_log_error("error in reading package information");
goto clean_up;
}
cpuinfo_log_debug("detected %"PRIu32" processor package(s)", nr_of_packages);
/* We need the EfficiencyClass to parse uarch from the core information,
* but we need to iterate first to count cores and allocate memory then
* we will iterate again to read and store data to cpuinfo_core structures.
*/
nr_of_cores = read_cores_for_processors(
processors, nr_of_processors,
global_proc_index_per_group, NULL,
chip_info);
if (!nr_of_cores) {
cpuinfo_log_error("error in reading core information");
goto clean_up;
}
cpuinfo_log_debug("detected %"PRIu32" processor core(s)", nr_of_cores);
/* There is no API to read number of caches, so we need to iterate twice on caches:
1. Count all type of caches -> allocate memory
2. Read out cache data and store to allocated memory
*/
nr_of_all_caches = read_caches_for_processors(
processors, nr_of_processors,
caches, numbers_of_caches,
global_proc_index_per_group, chip_info);
if (!nr_of_all_caches) {
cpuinfo_log_error("error in reading cache information");
goto clean_up;
}
cpuinfo_log_debug("detected %"PRIu32" processor cache(s)", nr_of_all_caches);
/* 3. Allocate memory for package, cluster, core and cache structures */
packages = HeapAlloc(heap, HEAP_ZERO_MEMORY, nr_of_packages * sizeof(struct cpuinfo_package));
if (packages == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" physical packages",
nr_of_packages * sizeof(struct cpuinfo_package), nr_of_packages);
goto clean_up;
}
/* We don't have cluster information so we explicitly set clusters to equal to cores. */
clusters = HeapAlloc(heap, HEAP_ZERO_MEMORY, nr_of_cores * sizeof(struct cpuinfo_cluster));
if (clusters == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" core clusters",
nr_of_cores * sizeof(struct cpuinfo_cluster), nr_of_cores);
goto clean_up;
}
cores = HeapAlloc(heap, HEAP_ZERO_MEMORY, nr_of_cores * sizeof(struct cpuinfo_core));
if (cores == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" cores",
nr_of_cores * sizeof(struct cpuinfo_core), nr_of_cores);
goto clean_up;
}
/* We allocate one contiguous cache array for all caches, then use offsets per cache type. */
caches = HeapAlloc(heap, HEAP_ZERO_MEMORY, nr_of_all_caches * sizeof(struct cpuinfo_cache));
if (caches == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" caches",
nr_of_all_caches * sizeof(struct cpuinfo_cache), nr_of_all_caches);
goto clean_up;
}
/* 4.Read missing topology information that can't be saved without counted
* allocate structures in the first round.
*/
nr_of_all_caches = read_caches_for_processors(
processors, nr_of_processors,
caches, numbers_of_caches, global_proc_index_per_group, chip_info);
if (!nr_of_all_caches) {
cpuinfo_log_error("error in reading cache information");
goto clean_up;
}
nr_of_cores = read_cores_for_processors(
processors, nr_of_processors,
global_proc_index_per_group, cores,
chip_info);
if (!nr_of_cores) {
cpuinfo_log_error("error in reading core information");
goto clean_up;
}
/* 5. Now that we read out everything from the system we can, fill the package, cluster
* and core structures respectively.
*/
result = connect_packages_cores_clusters_by_processors(
processors, nr_of_processors,
packages, nr_of_packages,
clusters,
cores, nr_of_cores,
chip_info,
vendor);
if(!result) {
cpuinfo_log_error("error in connecting information");
goto clean_up;
}
/* 6. Count and store uarchs of cores, assuming same uarchs are neighbors */
enum cpuinfo_uarch prev_uarch = cpuinfo_uarch_unknown;
for (uint32_t i = 0; i < nr_of_cores; i++) {
if (prev_uarch != cores[i].uarch) {
nr_of_uarchs++;
prev_uarch = cores[i].uarch;
}
}
uarchs = HeapAlloc(heap, HEAP_ZERO_MEMORY, nr_of_uarchs * sizeof(struct cpuinfo_uarch_info));
if (uarchs == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" uarchs",
nr_of_uarchs * sizeof(struct cpuinfo_uarch_info), nr_of_uarchs);
goto clean_up;
}
prev_uarch = cpuinfo_uarch_unknown;
for (uint32_t i = 0, uarch_counter = 0; i < nr_of_cores; i++) {
if (prev_uarch != cores[i].uarch) {
prev_uarch = cores[i].uarch;
uarchs[uarch_counter].uarch = cores[i].uarch;
uarchs[uarch_counter].core_count = 1;
uarchs[uarch_counter].processor_count = cores[i].processor_count;
uarch_counter++;
} else if (prev_uarch != cpuinfo_uarch_unknown) {
uarchs[uarch_counter].core_count++;
uarchs[uarch_counter].processor_count += cores[i].processor_count;
}
}
/* 7. Commit changes */
cpuinfo_processors = processors;
cpuinfo_packages = packages;
cpuinfo_clusters = clusters;
cpuinfo_cores = cores;
cpuinfo_uarchs = uarchs;
cpuinfo_processors_count = nr_of_processors;
cpuinfo_packages_count = nr_of_packages;
cpuinfo_clusters_count = nr_of_cores;
cpuinfo_cores_count = nr_of_cores;
cpuinfo_uarchs_count = nr_of_uarchs;
for (uint32_t i = 0; i < MAX_NR_OF_CACHES; i++) {
cpuinfo_cache_count[i] = numbers_of_caches[i];
}
cpuinfo_cache[cpuinfo_cache_level_1i] = caches;
cpuinfo_cache[cpuinfo_cache_level_1d] = cpuinfo_cache[cpuinfo_cache_level_1i] + cpuinfo_cache_count[cpuinfo_cache_level_1i];
cpuinfo_cache[cpuinfo_cache_level_2] = cpuinfo_cache[cpuinfo_cache_level_1d] + cpuinfo_cache_count[cpuinfo_cache_level_1d];
cpuinfo_cache[cpuinfo_cache_level_3] = cpuinfo_cache[cpuinfo_cache_level_2] + cpuinfo_cache_count[cpuinfo_cache_level_2];
cpuinfo_cache[cpuinfo_cache_level_4] = cpuinfo_cache[cpuinfo_cache_level_3] + cpuinfo_cache_count[cpuinfo_cache_level_3];
cpuinfo_max_cache_size = cpuinfo_compute_max_cache_size(&processors[0]);
result = true;
MemoryBarrier();
processors = NULL;
packages = NULL;
clusters = NULL;
cores = NULL;
caches = NULL;
uarchs = NULL;
clean_up:
/* The propagated pointers, shouldn't be freed, only in case of error
* and unfinished init.
*/
if (processors != NULL) {
HeapFree(heap, 0, processors);
}
if (packages != NULL) {
HeapFree(heap, 0, packages);
}
if (clusters != NULL) {
HeapFree(heap, 0, clusters);
}
if (cores != NULL) {
HeapFree(heap, 0, cores);
}
if (caches != NULL) {
HeapFree(heap, 0, caches);
}
if (uarchs != NULL) {
HeapFree(heap, 0, uarchs);
}
/* Free the locally used temporary pointers */
HeapFree(heap, 0, global_proc_index_per_group);
global_proc_index_per_group = NULL;
return result;
}
static uint32_t count_logical_processors(
const uint32_t max_group_count,
uint32_t* global_proc_index_per_group)
{
uint32_t nr_of_processors = 0;
for (uint32_t i = 0; i < max_group_count; i++) {
uint32_t nr_of_processors_per_group = GetMaximumProcessorCount((WORD) i);
cpuinfo_log_debug("detected %"PRIu32" processor(s) in group %"PRIu32"",
nr_of_processors_per_group, i);
global_proc_index_per_group[i] = nr_of_processors;
nr_of_processors += nr_of_processors_per_group;
}
return nr_of_processors;
}
static uint32_t read_packages_for_processors(
struct cpuinfo_processor* processors,
const uint32_t number_of_processors,
const uint32_t* global_proc_index_per_group,
const struct woa_chip_info *chip_info)
{
return read_all_logical_processor_info_of_relation(
RelationProcessorPackage,
processors,
number_of_processors,
NULL,
NULL,
NULL,
global_proc_index_per_group,
chip_info);
}
uint32_t read_cores_for_processors(
struct cpuinfo_processor* processors,
const uint32_t number_of_processors,
const uint32_t* global_proc_index_per_group,
struct cpuinfo_core* cores,
const struct woa_chip_info *chip_info)
{
return read_all_logical_processor_info_of_relation(
RelationProcessorCore,
processors,
number_of_processors,
NULL,
NULL,
cores,
global_proc_index_per_group,
chip_info);
}
static uint32_t read_caches_for_processors(
struct cpuinfo_processor* processors,
const uint32_t number_of_processors,
struct cpuinfo_cache* caches,
uint32_t* numbers_of_caches,
const uint32_t* global_proc_index_per_group,
const struct woa_chip_info *chip_info)
{
/* Reset processor start indexes */
if (caches) {
uint32_t cache_offset = 0;
for (uint32_t i = 0; i < MAX_NR_OF_CACHES; i++) {
for (uint32_t j = 0; j < numbers_of_caches[i]; j++) {
caches[cache_offset + j].processor_start = UINT32_MAX;
}
cache_offset += numbers_of_caches[i];
}
}
return read_all_logical_processor_info_of_relation(
RelationCache,
processors,
number_of_processors,
caches,
numbers_of_caches,
NULL,
global_proc_index_per_group,
chip_info);
}
static uint32_t read_all_logical_processor_info_of_relation(
LOGICAL_PROCESSOR_RELATIONSHIP info_type,
struct cpuinfo_processor* processors,
const uint32_t number_of_processors,
struct cpuinfo_cache* caches,
uint32_t* numbers_of_caches,
struct cpuinfo_core* cores,
const uint32_t* global_proc_index_per_group,
const struct woa_chip_info* chip_info)
{
PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX infos = NULL;
uint32_t nr_of_structs = 0;
DWORD info_size = 0;
bool result = false;
HANDLE heap = GetProcessHeap();
/* 1. Query the size of the information structure first */
if (GetLogicalProcessorInformationEx(info_type, NULL, &info_size) == FALSE) {
const DWORD last_error = GetLastError();
if (last_error != ERROR_INSUFFICIENT_BUFFER) {
cpuinfo_log_error(
"failed to query size of processor %"PRIu32" information information: error %"PRIu32"",
(uint32_t)info_type, (uint32_t) last_error);
goto clean_up;
}
}
/* 2. Allocate memory for the information structure */
infos = HeapAlloc(heap, 0, info_size);
if (infos == NULL) {
cpuinfo_log_error("failed to allocate %"PRIu32" bytes for logical processor information",
(uint32_t) info_size);
goto clean_up;
}
/* 3. Read the information structure */
if (GetLogicalProcessorInformationEx(info_type, infos, &info_size) == FALSE) {
cpuinfo_log_error("failed to query processor %"PRIu32" information: error %"PRIu32"",
(uint32_t)info_type, (uint32_t) GetLastError());
goto clean_up;
}
/* 4. Parse the structure and store relevant data */
PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info_end =
(PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX) ((uintptr_t) infos + info_size);
for (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info = infos;
info < info_end;
info = (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX) ((uintptr_t) info + info->Size))
{
if (info->Relationship != info_type) {
cpuinfo_log_warning(
"unexpected processor info type (%"PRIu32") for processor information",
(uint32_t) info->Relationship);
continue;
}
const uint32_t info_id = nr_of_structs++;
switch(info_type) {
case RelationProcessorPackage:
result = parse_relation_processor_info(
processors,
number_of_processors,
global_proc_index_per_group,
info,
info_id,
cores,
chip_info);
break;
case RelationProcessorCore:
result = parse_relation_processor_info(
processors,
number_of_processors,
global_proc_index_per_group,
info,
info_id,
cores,
chip_info);
break;
case RelationCache:
result = parse_relation_cache_info(
processors,
caches,
numbers_of_caches,
global_proc_index_per_group,
info);
break;
default:
cpuinfo_log_error(
"unexpected processor info type (%"PRIu32") for processor information",
(uint32_t) info->Relationship);
result = false;
break;
}
if (!result) {
nr_of_structs = 0;
goto clean_up;
}
}
clean_up:
/* 5. Release dynamically allocated info structure. */
HeapFree(heap, 0, infos);
infos = NULL;
return nr_of_structs;
}
static bool parse_relation_processor_info(
struct cpuinfo_processor* processors,
uint32_t nr_of_processors,
const uint32_t* global_proc_index_per_group,
PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info,
const uint32_t info_id,
struct cpuinfo_core* cores,
const struct woa_chip_info *chip_info)
{
for (uint32_t i = 0; i < info->Processor.GroupCount; i++) {
const uint32_t group_id = info->Processor.GroupMask[i].Group;
/* Bitmask representing processors in this group belonging to this package */
KAFFINITY group_processors_mask = info->Processor.GroupMask[i].Mask;
while (group_processors_mask != 0) {
const uint32_t processor_id_in_group =
low_index_from_kaffinity(group_processors_mask);
const uint32_t processor_global_index =
global_proc_index_per_group[group_id] + processor_id_in_group;
if(processor_global_index >= nr_of_processors) {
cpuinfo_log_error("unexpected processor index %"PRIu32"",
processor_global_index);
return false;
}
switch(info->Relationship) {
case RelationProcessorPackage:
store_package_info_per_processor(
processors, processor_global_index, info_id,
group_id, processor_id_in_group);
break;
case RelationProcessorCore:
store_core_info_per_processor(
processors, processor_global_index,
info_id, info,
cores, chip_info);
break;
default:
cpuinfo_log_error(
"unexpected processor info type (%"PRIu32") for processor information",
(uint32_t) info->Relationship);
break;
}
/* Clear the bits in affinity mask, lower the least set bit. */
group_processors_mask &= (group_processors_mask - 1);
}
}
return true;
}
static bool parse_relation_cache_info(
struct cpuinfo_processor* processors,
struct cpuinfo_cache* caches,
uint32_t* numbers_of_caches,
const uint32_t* global_proc_index_per_group,
PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info)
{
static uint32_t l1i_counter = 0;
static uint32_t l1d_counter = 0;
static uint32_t l2_counter = 0;
static uint32_t l3_counter = 0;
/* Count cache types for allocation at first. */
if (caches == NULL) {
switch(info->Cache.Level) {
case 1:
switch (info->Cache.Type) {
case CacheInstruction:
numbers_of_caches[cpuinfo_cache_level_1i]++;
break;
case CacheData:
numbers_of_caches[cpuinfo_cache_level_1d]++;
break;
case CacheUnified:
break;
case CacheTrace:
break;
default:
break;
}
break;
case 2:
numbers_of_caches[cpuinfo_cache_level_2]++;
break;
case 3:
numbers_of_caches[cpuinfo_cache_level_3]++;
break;
}
return true;
}
struct cpuinfo_cache* l1i_base = caches;
struct cpuinfo_cache* l1d_base = l1i_base + numbers_of_caches[cpuinfo_cache_level_1i];
struct cpuinfo_cache* l2_base = l1d_base + numbers_of_caches[cpuinfo_cache_level_1d];
struct cpuinfo_cache* l3_base = l2_base + numbers_of_caches[cpuinfo_cache_level_2];
cpuinfo_log_debug(
"info->Cache.GroupCount:%"PRIu32", info->Cache.GroupMask:%"PRIu32","
"info->Cache.Level:%"PRIu32", info->Cache.Associativity:%"PRIu32","
"info->Cache.LineSize:%"PRIu32","
"info->Cache.CacheSize:%"PRIu32", info->Cache.Type:%"PRIu32"",
info->Cache.GroupCount, (unsigned int)info->Cache.GroupMask.Mask,
info->Cache.Level, info->Cache.Associativity, info->Cache.LineSize,
info->Cache.CacheSize, info->Cache.Type);
struct cpuinfo_cache* current_cache = NULL;
switch (info->Cache.Level) {
case 1:
switch (info->Cache.Type) {
case CacheInstruction:
current_cache = l1i_base + l1i_counter;
l1i_counter++;
break;
case CacheData:
current_cache = l1d_base + l1d_counter;
l1d_counter++;
break;
case CacheUnified:
break;
case CacheTrace:
break;
default:
break;
}
break;
case 2:
current_cache = l2_base + l2_counter;
l2_counter++;
break;
case 3:
current_cache = l3_base + l3_counter;
l3_counter++;
break;
}
current_cache->size = info->Cache.CacheSize;
current_cache->line_size = info->Cache.LineSize;
current_cache->associativity = info->Cache.Associativity;
/* We don't have partition and set information of caches on Windows,
* so we set partitions to 1 and calculate the expected sets.
*/
current_cache->partitions = 1;
current_cache->sets =
current_cache->size / current_cache->line_size / current_cache->associativity;
if (info->Cache.Type == CacheUnified) {
current_cache->flags = CPUINFO_CACHE_UNIFIED;
}
for (uint32_t i = 0; i <= info->Cache.GroupCount; i++) {
/* Zero GroupCount is valid, GroupMask still can store bits set. */
const uint32_t group_id = info->Cache.GroupMasks[i].Group;
/* Bitmask representing processors in this group belonging to this package */
KAFFINITY group_processors_mask = info->Cache.GroupMasks[i].Mask;
while (group_processors_mask != 0) {
const uint32_t processor_id_in_group =
low_index_from_kaffinity(group_processors_mask);
const uint32_t processor_global_index =
global_proc_index_per_group[group_id] + processor_id_in_group;
store_cache_info_per_processor(
processors, processor_global_index,
info, current_cache);
/* Clear the bits in affinity mask, lower the least set bit. */
group_processors_mask &= (group_processors_mask - 1);
}
}
return true;
}
static void store_package_info_per_processor(
struct cpuinfo_processor* processors,
const uint32_t processor_global_index,
const uint32_t package_id,
const uint32_t group_id,
const uint32_t processor_id_in_group)
{
processors[processor_global_index].windows_group_id =
(uint16_t) group_id;
processors[processor_global_index].windows_processor_id =
(uint16_t) processor_id_in_group;
/* As we're counting the number of packages now, we haven't allocated memory for
* cpuinfo_packages yet, so we only set the package pointer's offset now.
*/
processors[processor_global_index].package =
(const struct cpuinfo_package*) NULL + package_id;
}
void store_core_info_per_processor(
struct cpuinfo_processor* processors,
const uint32_t processor_global_index,
const uint32_t core_id,
PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX core_info,
struct cpuinfo_core* cores,
const struct woa_chip_info *chip_info)
{
if (cores) {
processors[processor_global_index].core = cores + core_id;
cores[core_id].core_id = core_id;
get_core_uarch_for_efficiency(
chip_info->chip_name, core_info->Processor.EfficiencyClass,
&(cores[core_id].uarch), &(cores[core_id].frequency));
/* We don't have cluster information, so we handle it as
* fixed 1 to (cluster / cores).
* Set the cluster offset ID now, as soon as we have the
* cluster base address, we'll set the absolute address.
*/
processors[processor_global_index].cluster =
(const struct cpuinfo_cluster*) NULL + core_id;
}
}
static void store_cache_info_per_processor(
struct cpuinfo_processor* processors,
const uint32_t processor_global_index,
PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info,
struct cpuinfo_cache* current_cache)
{
if (current_cache->processor_start > processor_global_index) {
current_cache->processor_start = processor_global_index;
}
current_cache->processor_count++;
switch(info->Cache.Level) {
case 1:
switch (info->Cache.Type) {
case CacheInstruction:
processors[processor_global_index].cache.l1i = current_cache;
break;
case CacheData:
processors[processor_global_index].cache.l1d = current_cache;
break;
case CacheUnified:
break;
case CacheTrace:
break;
default:
break;
}
break;
case 2:
processors[processor_global_index].cache.l2 = current_cache;
break;
case 3:
processors[processor_global_index].cache.l3 = current_cache;
break;
}
}
static bool connect_packages_cores_clusters_by_processors(
struct cpuinfo_processor* processors,
const uint32_t nr_of_processors,
struct cpuinfo_package* packages,
const uint32_t nr_of_packages,
struct cpuinfo_cluster* clusters,
struct cpuinfo_core* cores,
const uint32_t nr_of_cores,
const struct woa_chip_info* chip_info,
enum cpuinfo_vendor vendor)
{
/* Adjust core and package pointers for all logical processors. */
for (uint32_t i = nr_of_processors; i != 0; i--) {
const uint32_t processor_id = i - 1;
struct cpuinfo_processor* processor = processors + processor_id;
struct cpuinfo_core* core = (struct cpuinfo_core*)processor->core;
/* We stored the offset of pointers when we haven't allocated memory
* for packages and clusters, so now add offsets to base addresses.
*/
struct cpuinfo_package* package =
(struct cpuinfo_package*) ((uintptr_t) packages + (uintptr_t) processor->package);
if (package < packages ||
package >= (packages + nr_of_packages)) {
cpuinfo_log_error("invalid package indexing");
return false;
}
processor->package = package;
struct cpuinfo_cluster* cluster =
(struct cpuinfo_cluster*) ((uintptr_t) clusters + (uintptr_t) processor->cluster);
if (cluster < clusters ||
cluster >= (clusters + nr_of_cores)) {
cpuinfo_log_error("invalid cluster indexing");
return false;
}
processor->cluster = cluster;
if (chip_info) {
strncpy_s(package->name, CPUINFO_PACKAGE_NAME_MAX, chip_info->chip_name_string,
strnlen(chip_info->chip_name_string, CPUINFO_PACKAGE_NAME_MAX));
}
/* Set start indexes and counts per packages / clusters / cores - going backwards */
/* This can be overwritten by lower-index processors on the same package. */
package->processor_start = processor_id;
package->processor_count++;
/* This can be overwritten by lower-index processors on the same cluster. */
cluster->processor_start = processor_id;
cluster->processor_count++;
/* This can be overwritten by lower-index processors on the same core. */
core->processor_start = processor_id;
core->processor_count++;
}
/* Fill cores */
for (uint32_t i = nr_of_cores; i != 0; i--) {
const uint32_t global_core_id = i - 1;
struct cpuinfo_core* core = cores + global_core_id;
const struct cpuinfo_processor* processor = processors + core->processor_start;
struct cpuinfo_package* package = (struct cpuinfo_package*) processor->package;
struct cpuinfo_cluster* cluster = (struct cpuinfo_cluster*) processor->cluster;
core->package = package;
core->cluster = cluster;
core->vendor = vendor;
/* This can be overwritten by lower-index cores on the same cluster/package. */
cluster->core_start = global_core_id;
cluster->core_count++;
package->core_start = global_core_id;
package->core_count++;
package->cluster_start = global_core_id;
package->cluster_count = package->core_count;
cluster->package = package;
cluster->vendor = cores[cluster->core_start].vendor;
cluster->uarch = cores[cluster->core_start].uarch;
cluster->frequency = cores[cluster->core_start].frequency;
}
return true;
}
static inline uint32_t low_index_from_kaffinity(KAFFINITY kaffinity) {
unsigned long index;
_BitScanForward64(&index, (unsigned __int64) kaffinity);
return (uint32_t) index;
}