blob: 5e652004819717db39720d24a35f08bd58f94631 [file] [log] [blame]
"""Prepare for IR transform.
This needs to run after type checking and before generating IR.
For example, construct partially initialized FuncIR and ClassIR
objects for all functions and classes. This allows us to bind
references to functions and classes before we've generated full IR for
functions or classes. The actual IR transform will then populate all
the missing bits, such as function bodies (basic blocks).
Also build a mapping from mypy TypeInfos to ClassIR objects.
"""
from __future__ import annotations
from collections import defaultdict
from typing import Iterable, NamedTuple, Tuple
from mypy.build import Graph
from mypy.nodes import (
ARG_STAR,
ARG_STAR2,
CallExpr,
ClassDef,
Decorator,
Expression,
FuncDef,
MemberExpr,
MypyFile,
NameExpr,
OverloadedFuncDef,
RefExpr,
SymbolNode,
TypeInfo,
Var,
)
from mypy.semanal import refers_to_fullname
from mypy.traverser import TraverserVisitor
from mypy.types import Instance, Type, get_proper_type
from mypyc.common import PROPSET_PREFIX, get_id_from_name
from mypyc.crash import catch_errors
from mypyc.errors import Errors
from mypyc.ir.class_ir import ClassIR
from mypyc.ir.func_ir import (
FUNC_CLASSMETHOD,
FUNC_NORMAL,
FUNC_STATICMETHOD,
FuncDecl,
FuncSignature,
RuntimeArg,
)
from mypyc.ir.ops import DeserMaps
from mypyc.ir.rtypes import RInstance, RType, dict_rprimitive, none_rprimitive, tuple_rprimitive
from mypyc.irbuild.mapper import Mapper
from mypyc.irbuild.util import (
get_func_def,
get_mypyc_attrs,
is_dataclass,
is_extension_class,
is_trait,
)
from mypyc.options import CompilerOptions
from mypyc.sametype import is_same_type
def build_type_map(
mapper: Mapper,
modules: list[MypyFile],
graph: Graph,
types: dict[Expression, Type],
options: CompilerOptions,
errors: Errors,
) -> None:
# Collect all classes defined in everything we are compiling
classes = []
for module in modules:
module_classes = [node for node in module.defs if isinstance(node, ClassDef)]
classes.extend([(module, cdef) for cdef in module_classes])
# Collect all class mappings so that we can bind arbitrary class name
# references even if there are import cycles.
for module, cdef in classes:
class_ir = ClassIR(
cdef.name, module.fullname, is_trait(cdef), is_abstract=cdef.info.is_abstract
)
class_ir.is_ext_class = is_extension_class(cdef)
if class_ir.is_ext_class:
class_ir.deletable = cdef.info.deletable_attributes.copy()
# If global optimizations are disabled, turn of tracking of class children
if not options.global_opts:
class_ir.children = None
mapper.type_to_ir[cdef.info] = class_ir
# Populate structural information in class IR for extension classes.
for module, cdef in classes:
with catch_errors(module.path, cdef.line):
if mapper.type_to_ir[cdef.info].is_ext_class:
prepare_class_def(module.path, module.fullname, cdef, errors, mapper)
else:
prepare_non_ext_class_def(module.path, module.fullname, cdef, errors, mapper)
# Prepare implicit attribute accessors as needed if an attribute overrides a property.
for module, cdef in classes:
class_ir = mapper.type_to_ir[cdef.info]
if class_ir.is_ext_class:
prepare_implicit_property_accessors(cdef.info, class_ir, module.fullname, mapper)
# Collect all the functions also. We collect from the symbol table
# so that we can easily pick out the right copy of a function that
# is conditionally defined.
for module in modules:
for func in get_module_func_defs(module):
prepare_func_def(module.fullname, None, func, mapper)
# TODO: what else?
# Check for incompatible attribute definitions that were not
# flagged by mypy but can't be supported when compiling.
for module, cdef in classes:
class_ir = mapper.type_to_ir[cdef.info]
for attr in class_ir.attributes:
for base_ir in class_ir.mro[1:]:
if attr in base_ir.attributes:
if not is_same_type(class_ir.attributes[attr], base_ir.attributes[attr]):
node = cdef.info.names[attr].node
assert node is not None
kind = "trait" if base_ir.is_trait else "class"
errors.error(
f'Type of "{attr}" is incompatible with '
f'definition in {kind} "{base_ir.name}"',
module.path,
node.line,
)
def is_from_module(node: SymbolNode, module: MypyFile) -> bool:
return node.fullname == module.fullname + "." + node.name
def load_type_map(mapper: Mapper, modules: list[MypyFile], deser_ctx: DeserMaps) -> None:
"""Populate a Mapper with deserialized IR from a list of modules."""
for module in modules:
for name, node in module.names.items():
if isinstance(node.node, TypeInfo) and is_from_module(node.node, module):
ir = deser_ctx.classes[node.node.fullname]
mapper.type_to_ir[node.node] = ir
mapper.func_to_decl[node.node] = ir.ctor
for module in modules:
for func in get_module_func_defs(module):
func_id = get_id_from_name(func.name, func.fullname, func.line)
mapper.func_to_decl[func] = deser_ctx.functions[func_id].decl
def get_module_func_defs(module: MypyFile) -> Iterable[FuncDef]:
"""Collect all of the (non-method) functions declared in a module."""
for name, node in module.names.items():
# We need to filter out functions that are imported or
# aliases. The best way to do this seems to be by
# checking that the fullname matches.
if isinstance(node.node, (FuncDef, Decorator, OverloadedFuncDef)) and is_from_module(
node.node, module
):
yield get_func_def(node.node)
def prepare_func_def(
module_name: str, class_name: str | None, fdef: FuncDef, mapper: Mapper
) -> FuncDecl:
kind = (
FUNC_STATICMETHOD
if fdef.is_static
else (FUNC_CLASSMETHOD if fdef.is_class else FUNC_NORMAL)
)
decl = FuncDecl(fdef.name, class_name, module_name, mapper.fdef_to_sig(fdef), kind)
mapper.func_to_decl[fdef] = decl
return decl
def prepare_method_def(
ir: ClassIR, module_name: str, cdef: ClassDef, mapper: Mapper, node: FuncDef | Decorator
) -> None:
if isinstance(node, FuncDef):
ir.method_decls[node.name] = prepare_func_def(module_name, cdef.name, node, mapper)
elif isinstance(node, Decorator):
# TODO: do something about abstract methods here. Currently, they are handled just like
# normal methods.
decl = prepare_func_def(module_name, cdef.name, node.func, mapper)
if not node.decorators:
ir.method_decls[node.name] = decl
elif isinstance(node.decorators[0], MemberExpr) and node.decorators[0].name == "setter":
# Make property setter name different than getter name so there are no
# name clashes when generating C code, and property lookup at the IR level
# works correctly.
decl.name = PROPSET_PREFIX + decl.name
decl.is_prop_setter = True
# Making the argument implicitly positional-only avoids unnecessary glue methods
decl.sig.args[1].pos_only = True
ir.method_decls[PROPSET_PREFIX + node.name] = decl
if node.func.is_property:
assert node.func.type, f"Expected return type annotation for property '{node.name}'"
decl.is_prop_getter = True
ir.property_types[node.name] = decl.sig.ret_type
def is_valid_multipart_property_def(prop: OverloadedFuncDef) -> bool:
# Checks to ensure supported property decorator semantics
if len(prop.items) != 2:
return False
getter = prop.items[0]
setter = prop.items[1]
return (
isinstance(getter, Decorator)
and isinstance(setter, Decorator)
and getter.func.is_property
and len(setter.decorators) == 1
and isinstance(setter.decorators[0], MemberExpr)
and setter.decorators[0].name == "setter"
)
def can_subclass_builtin(builtin_base: str) -> bool:
# BaseException and dict are special cased.
return builtin_base in (
(
"builtins.Exception",
"builtins.LookupError",
"builtins.IndexError",
"builtins.Warning",
"builtins.UserWarning",
"builtins.ValueError",
"builtins.object",
)
)
def prepare_class_def(
path: str, module_name: str, cdef: ClassDef, errors: Errors, mapper: Mapper
) -> None:
"""Populate the interface-level information in a class IR.
This includes attribute and method declarations, and the MRO, among other things, but
method bodies are generated in a later pass.
"""
ir = mapper.type_to_ir[cdef.info]
info = cdef.info
attrs = get_mypyc_attrs(cdef)
if attrs.get("allow_interpreted_subclasses") is True:
ir.allow_interpreted_subclasses = True
if attrs.get("serializable") is True:
# Supports copy.copy and pickle (including subclasses)
ir._serializable = True
# Check for subclassing from builtin types
for cls in info.mro:
# Special case exceptions and dicts
# XXX: How do we handle *other* things??
if cls.fullname == "builtins.BaseException":
ir.builtin_base = "PyBaseExceptionObject"
elif cls.fullname == "builtins.dict":
ir.builtin_base = "PyDictObject"
elif cls.fullname.startswith("builtins."):
if not can_subclass_builtin(cls.fullname):
# Note that if we try to subclass a C extension class that
# isn't in builtins, bad things will happen and we won't
# catch it here! But this should catch a lot of the most
# common pitfalls.
errors.error(
"Inheriting from most builtin types is unimplemented", path, cdef.line
)
# Set up the parent class
bases = [mapper.type_to_ir[base.type] for base in info.bases if base.type in mapper.type_to_ir]
if len(bases) > 1 and any(not c.is_trait for c in bases) and bases[0].is_trait:
# If the first base is a non-trait, don't ever error here. While it is correct
# to error if a trait comes before the next non-trait base (e.g. non-trait, trait,
# non-trait), it's pointless, confusing noise from the bigger issue: multiple
# inheritance is *not* supported.
errors.error("Non-trait base must appear first in parent list", path, cdef.line)
ir.traits = [c for c in bases if c.is_trait]
mro = [] # All mypyc base classes
base_mro = [] # Non-trait mypyc base classes
for cls in info.mro:
if cls not in mapper.type_to_ir:
if cls.fullname != "builtins.object":
ir.inherits_python = True
continue
base_ir = mapper.type_to_ir[cls]
if not base_ir.is_trait:
base_mro.append(base_ir)
mro.append(base_ir)
if cls.defn.removed_base_type_exprs or not base_ir.is_ext_class:
ir.inherits_python = True
base_idx = 1 if not ir.is_trait else 0
if len(base_mro) > base_idx:
ir.base = base_mro[base_idx]
ir.mro = mro
ir.base_mro = base_mro
prepare_methods_and_attributes(cdef, ir, path, module_name, errors, mapper)
prepare_init_method(cdef, ir, module_name, mapper)
for base in bases:
if base.children is not None:
base.children.append(ir)
if is_dataclass(cdef):
ir.is_augmented = True
def prepare_methods_and_attributes(
cdef: ClassDef, ir: ClassIR, path: str, module_name: str, errors: Errors, mapper: Mapper
) -> None:
"""Populate attribute and method declarations."""
info = cdef.info
for name, node in info.names.items():
# Currently all plugin generated methods are dummies and not included.
if node.plugin_generated:
continue
if isinstance(node.node, Var):
assert node.node.type, "Class member %s missing type" % name
if not node.node.is_classvar and name not in ("__slots__", "__deletable__"):
attr_rtype = mapper.type_to_rtype(node.node.type)
if ir.is_trait and attr_rtype.error_overlap:
# Traits don't have attribute definedness bitmaps, so use
# property accessor methods to access attributes that need them.
# We will generate accessor implementations that use the class bitmap
# for any concrete subclasses.
add_getter_declaration(ir, name, attr_rtype, module_name)
add_setter_declaration(ir, name, attr_rtype, module_name)
ir.attributes[name] = attr_rtype
elif isinstance(node.node, (FuncDef, Decorator)):
prepare_method_def(ir, module_name, cdef, mapper, node.node)
elif isinstance(node.node, OverloadedFuncDef):
# Handle case for property with both a getter and a setter
if node.node.is_property:
if is_valid_multipart_property_def(node.node):
for item in node.node.items:
prepare_method_def(ir, module_name, cdef, mapper, item)
else:
errors.error("Unsupported property decorator semantics", path, cdef.line)
# Handle case for regular function overload
else:
assert node.node.impl
prepare_method_def(ir, module_name, cdef, mapper, node.node.impl)
if ir.builtin_base:
ir.attributes.clear()
def prepare_implicit_property_accessors(
info: TypeInfo, ir: ClassIR, module_name: str, mapper: Mapper
) -> None:
concrete_attributes = set()
for base in ir.base_mro:
for name, attr_rtype in base.attributes.items():
concrete_attributes.add(name)
add_property_methods_for_attribute_if_needed(
info, ir, name, attr_rtype, module_name, mapper
)
for base in ir.mro[1:]:
if base.is_trait:
for name, attr_rtype in base.attributes.items():
if name not in concrete_attributes:
add_property_methods_for_attribute_if_needed(
info, ir, name, attr_rtype, module_name, mapper
)
def add_property_methods_for_attribute_if_needed(
info: TypeInfo,
ir: ClassIR,
attr_name: str,
attr_rtype: RType,
module_name: str,
mapper: Mapper,
) -> None:
"""Add getter and/or setter for attribute if defined as property in a base class.
Only add declarations. The body IR will be synthesized later during irbuild.
"""
for base in info.mro[1:]:
if base in mapper.type_to_ir:
base_ir = mapper.type_to_ir[base]
n = base.names.get(attr_name)
if n is None:
continue
node = n.node
if isinstance(node, Decorator) and node.name not in ir.method_decls:
# Defined as a read-only property in base class/trait
add_getter_declaration(ir, attr_name, attr_rtype, module_name)
elif isinstance(node, OverloadedFuncDef) and is_valid_multipart_property_def(node):
# Defined as a read-write property in base class/trait
add_getter_declaration(ir, attr_name, attr_rtype, module_name)
add_setter_declaration(ir, attr_name, attr_rtype, module_name)
elif base_ir.is_trait and attr_rtype.error_overlap:
add_getter_declaration(ir, attr_name, attr_rtype, module_name)
add_setter_declaration(ir, attr_name, attr_rtype, module_name)
def add_getter_declaration(
ir: ClassIR, attr_name: str, attr_rtype: RType, module_name: str
) -> None:
self_arg = RuntimeArg("self", RInstance(ir), pos_only=True)
sig = FuncSignature([self_arg], attr_rtype)
decl = FuncDecl(attr_name, ir.name, module_name, sig, FUNC_NORMAL)
decl.is_prop_getter = True
decl.implicit = True # Triggers synthesization
ir.method_decls[attr_name] = decl
ir.property_types[attr_name] = attr_rtype # TODO: Needed??
def add_setter_declaration(
ir: ClassIR, attr_name: str, attr_rtype: RType, module_name: str
) -> None:
self_arg = RuntimeArg("self", RInstance(ir), pos_only=True)
value_arg = RuntimeArg("value", attr_rtype, pos_only=True)
sig = FuncSignature([self_arg, value_arg], none_rprimitive)
setter_name = PROPSET_PREFIX + attr_name
decl = FuncDecl(setter_name, ir.name, module_name, sig, FUNC_NORMAL)
decl.is_prop_setter = True
decl.implicit = True # Triggers synthesization
ir.method_decls[setter_name] = decl
def prepare_init_method(cdef: ClassDef, ir: ClassIR, module_name: str, mapper: Mapper) -> None:
# Set up a constructor decl
init_node = cdef.info["__init__"].node
if not ir.is_trait and not ir.builtin_base and isinstance(init_node, FuncDef):
init_sig = mapper.fdef_to_sig(init_node)
defining_ir = mapper.type_to_ir.get(init_node.info)
# If there is a nontrivial __init__ that wasn't defined in an
# extension class, we need to make the constructor take *args,
# **kwargs so it can call tp_init.
if (
defining_ir is None
or not defining_ir.is_ext_class
or cdef.info["__init__"].plugin_generated
) and init_node.info.fullname != "builtins.object":
init_sig = FuncSignature(
[
init_sig.args[0],
RuntimeArg("args", tuple_rprimitive, ARG_STAR),
RuntimeArg("kwargs", dict_rprimitive, ARG_STAR2),
],
init_sig.ret_type,
)
last_arg = len(init_sig.args) - init_sig.num_bitmap_args
ctor_sig = FuncSignature(init_sig.args[1:last_arg], RInstance(ir))
ir.ctor = FuncDecl(cdef.name, None, module_name, ctor_sig)
mapper.func_to_decl[cdef.info] = ir.ctor
def prepare_non_ext_class_def(
path: str, module_name: str, cdef: ClassDef, errors: Errors, mapper: Mapper
) -> None:
ir = mapper.type_to_ir[cdef.info]
info = cdef.info
for name, node in info.names.items():
if isinstance(node.node, (FuncDef, Decorator)):
prepare_method_def(ir, module_name, cdef, mapper, node.node)
elif isinstance(node.node, OverloadedFuncDef):
# Handle case for property with both a getter and a setter
if node.node.is_property:
if not is_valid_multipart_property_def(node.node):
errors.error("Unsupported property decorator semantics", path, cdef.line)
for item in node.node.items:
prepare_method_def(ir, module_name, cdef, mapper, item)
# Handle case for regular function overload
else:
prepare_method_def(ir, module_name, cdef, mapper, get_func_def(node.node))
if any(cls in mapper.type_to_ir and mapper.type_to_ir[cls].is_ext_class for cls in info.mro):
errors.error(
"Non-extension classes may not inherit from extension classes", path, cdef.line
)
RegisterImplInfo = Tuple[TypeInfo, FuncDef]
class SingledispatchInfo(NamedTuple):
singledispatch_impls: dict[FuncDef, list[RegisterImplInfo]]
decorators_to_remove: dict[FuncDef, list[int]]
def find_singledispatch_register_impls(
modules: list[MypyFile], errors: Errors
) -> SingledispatchInfo:
visitor = SingledispatchVisitor(errors)
for module in modules:
visitor.current_path = module.path
module.accept(visitor)
return SingledispatchInfo(visitor.singledispatch_impls, visitor.decorators_to_remove)
class SingledispatchVisitor(TraverserVisitor):
current_path: str
def __init__(self, errors: Errors) -> None:
super().__init__()
# Map of main singledispatch function to list of registered implementations
self.singledispatch_impls: defaultdict[FuncDef, list[RegisterImplInfo]] = defaultdict(list)
# Map of decorated function to the indices of any decorators to remove
self.decorators_to_remove: dict[FuncDef, list[int]] = {}
self.errors: Errors = errors
def visit_decorator(self, dec: Decorator) -> None:
if dec.decorators:
decorators_to_store = dec.decorators.copy()
decorators_to_remove: list[int] = []
# the index of the last non-register decorator before finding a register decorator
# when going through decorators from top to bottom
last_non_register: int | None = None
for i, d in enumerate(decorators_to_store):
impl = get_singledispatch_register_call_info(d, dec.func)
if impl is not None:
self.singledispatch_impls[impl.singledispatch_func].append(
(impl.dispatch_type, dec.func)
)
decorators_to_remove.append(i)
if last_non_register is not None:
# found a register decorator after a non-register decorator, which we
# don't support because we'd have to make a copy of the function before
# calling the decorator so that we can call it later, which complicates
# the implementation for something that is probably not commonly used
self.errors.error(
"Calling decorator after registering function not supported",
self.current_path,
decorators_to_store[last_non_register].line,
)
else:
if refers_to_fullname(d, "functools.singledispatch"):
decorators_to_remove.append(i)
# make sure that we still treat the function as a singledispatch function
# even if we don't find any registered implementations (which might happen
# if all registered implementations are registered dynamically)
self.singledispatch_impls.setdefault(dec.func, [])
last_non_register = i
if decorators_to_remove:
# calling register on a function that tries to dispatch based on type annotations
# raises a TypeError because compiled functions don't have an __annotations__
# attribute
self.decorators_to_remove[dec.func] = decorators_to_remove
super().visit_decorator(dec)
class RegisteredImpl(NamedTuple):
singledispatch_func: FuncDef
dispatch_type: TypeInfo
def get_singledispatch_register_call_info(
decorator: Expression, func: FuncDef
) -> RegisteredImpl | None:
# @fun.register(complex)
# def g(arg): ...
if (
isinstance(decorator, CallExpr)
and len(decorator.args) == 1
and isinstance(decorator.args[0], RefExpr)
):
callee = decorator.callee
dispatch_type = decorator.args[0].node
if not isinstance(dispatch_type, TypeInfo):
return None
if isinstance(callee, MemberExpr):
return registered_impl_from_possible_register_call(callee, dispatch_type)
# @fun.register
# def g(arg: int): ...
elif isinstance(decorator, MemberExpr):
# we don't know if this is a register call yet, so we can't be sure that the function
# actually has arguments
if not func.arguments:
return None
arg_type = get_proper_type(func.arguments[0].variable.type)
if not isinstance(arg_type, Instance):
return None
info = arg_type.type
return registered_impl_from_possible_register_call(decorator, info)
return None
def registered_impl_from_possible_register_call(
expr: MemberExpr, dispatch_type: TypeInfo
) -> RegisteredImpl | None:
if expr.name == "register" and isinstance(expr.expr, NameExpr):
node = expr.expr.node
if isinstance(node, Decorator):
return RegisteredImpl(node.func, dispatch_type)
return None