blob: 984b6a4deec0f8b62fe7bdd0e64e4fd9a74a4bc5 [file] [log] [blame]
"""A "low-level" IR builder class.
LowLevelIRBuilder provides core abstractions we use for constructing
IR as well as a number of higher-level ones (accessing attributes,
calling functions and methods, and coercing between types, for
example). The core principle of the low-level IR builder is that all
of its facilities operate solely on the IR level and not the AST
level---it has *no knowledge* of mypy types or expressions.
"""
from __future__ import annotations
from typing import Callable, Final, Optional, Sequence, Tuple
from mypy.argmap import map_actuals_to_formals
from mypy.nodes import ARG_POS, ARG_STAR, ARG_STAR2, ArgKind
from mypy.operators import op_methods
from mypy.types import AnyType, TypeOfAny
from mypyc.common import (
BITMAP_BITS,
FAST_ISINSTANCE_MAX_SUBCLASSES,
MAX_LITERAL_SHORT_INT,
MAX_SHORT_INT,
MIN_LITERAL_SHORT_INT,
MIN_SHORT_INT,
PLATFORM_SIZE,
use_method_vectorcall,
use_vectorcall,
)
from mypyc.errors import Errors
from mypyc.ir.class_ir import ClassIR, all_concrete_classes
from mypyc.ir.func_ir import FuncDecl, FuncSignature
from mypyc.ir.ops import (
ERR_FALSE,
ERR_NEVER,
NAMESPACE_MODULE,
NAMESPACE_STATIC,
NAMESPACE_TYPE,
Assign,
AssignMulti,
BasicBlock,
Box,
Branch,
Call,
CallC,
Cast,
ComparisonOp,
Extend,
Float,
FloatComparisonOp,
FloatNeg,
FloatOp,
GetAttr,
GetElementPtr,
Goto,
Integer,
IntOp,
KeepAlive,
LoadAddress,
LoadErrorValue,
LoadLiteral,
LoadMem,
LoadStatic,
MethodCall,
Op,
RaiseStandardError,
Register,
SetMem,
Truncate,
TupleGet,
TupleSet,
Unbox,
Unreachable,
Value,
float_comparison_op_to_id,
float_op_to_id,
int_op_to_id,
)
from mypyc.ir.rtypes import (
PyListObject,
PyObject,
PySetObject,
PyVarObject,
RArray,
RInstance,
RPrimitive,
RTuple,
RType,
RUnion,
bit_rprimitive,
bitmap_rprimitive,
bool_rprimitive,
bytes_rprimitive,
c_int_rprimitive,
c_pointer_rprimitive,
c_pyssize_t_rprimitive,
c_size_t_rprimitive,
check_native_int_range,
dict_rprimitive,
float_rprimitive,
int_rprimitive,
is_bit_rprimitive,
is_bool_rprimitive,
is_bytes_rprimitive,
is_dict_rprimitive,
is_fixed_width_rtype,
is_float_rprimitive,
is_int16_rprimitive,
is_int32_rprimitive,
is_int64_rprimitive,
is_int_rprimitive,
is_list_rprimitive,
is_none_rprimitive,
is_set_rprimitive,
is_short_int_rprimitive,
is_str_rprimitive,
is_tagged,
is_tuple_rprimitive,
is_uint8_rprimitive,
list_rprimitive,
none_rprimitive,
object_pointer_rprimitive,
object_rprimitive,
optional_value_type,
pointer_rprimitive,
short_int_rprimitive,
str_rprimitive,
)
from mypyc.irbuild.mapper import Mapper
from mypyc.irbuild.util import concrete_arg_kind
from mypyc.options import CompilerOptions
from mypyc.primitives.bytes_ops import bytes_compare
from mypyc.primitives.dict_ops import (
dict_build_op,
dict_new_op,
dict_ssize_t_size_op,
dict_update_in_display_op,
)
from mypyc.primitives.exc_ops import err_occurred_op, keep_propagating_op
from mypyc.primitives.float_ops import copysign_op, int_to_float_op
from mypyc.primitives.generic_ops import (
generic_len_op,
generic_ssize_t_len_op,
py_call_op,
py_call_with_kwargs_op,
py_getattr_op,
py_method_call_op,
py_vectorcall_method_op,
py_vectorcall_op,
)
from mypyc.primitives.int_ops import (
int16_divide_op,
int16_mod_op,
int16_overflow,
int32_divide_op,
int32_mod_op,
int32_overflow,
int64_divide_op,
int64_mod_op,
int64_to_int_op,
int_comparison_op_mapping,
int_to_int32_op,
int_to_int64_op,
ssize_t_to_int_op,
uint8_overflow,
)
from mypyc.primitives.list_ops import list_build_op, list_extend_op, new_list_op
from mypyc.primitives.misc_ops import bool_op, fast_isinstance_op, none_object_op
from mypyc.primitives.registry import (
ERR_NEG_INT,
CFunctionDescription,
binary_ops,
method_call_ops,
unary_ops,
)
from mypyc.primitives.set_ops import new_set_op
from mypyc.primitives.str_ops import str_check_if_true, str_ssize_t_size_op, unicode_compare
from mypyc.primitives.tuple_ops import list_tuple_op, new_tuple_op, new_tuple_with_length_op
from mypyc.rt_subtype import is_runtime_subtype
from mypyc.sametype import is_same_type
from mypyc.subtype import is_subtype
DictEntry = Tuple[Optional[Value], Value]
# If the number of items is less than the threshold when initializing
# a list, we would inline the generate IR using SetMem and expanded
# for-loop. Otherwise, we would call `list_build_op` for larger lists.
# TODO: The threshold is a randomly chosen number which needs further
# study on real-world projects for a better balance.
LIST_BUILDING_EXPANSION_THRESHOLD = 10
# From CPython
PY_VECTORCALL_ARGUMENTS_OFFSET: Final = 1 << (PLATFORM_SIZE * 8 - 1)
FIXED_WIDTH_INT_BINARY_OPS: Final = {
"+",
"-",
"*",
"//",
"%",
"&",
"|",
"^",
"<<",
">>",
"+=",
"-=",
"*=",
"//=",
"%=",
"&=",
"|=",
"^=",
"<<=",
">>=",
}
# Binary operations on bools that are specialized and don't just promote operands to int
BOOL_BINARY_OPS: Final = {"&", "&=", "|", "|=", "^", "^=", "==", "!=", "<", "<=", ">", ">="}
class LowLevelIRBuilder:
def __init__(
self, current_module: str, errors: Errors, mapper: Mapper, options: CompilerOptions
) -> None:
self.current_module = current_module
self.errors = errors
self.mapper = mapper
self.options = options
self.args: list[Register] = []
self.blocks: list[BasicBlock] = []
# Stack of except handler entry blocks
self.error_handlers: list[BasicBlock | None] = [None]
# Values that we need to keep alive as long as we have borrowed
# temporaries. Use flush_keep_alives() to mark the end of the live range.
self.keep_alives: list[Value] = []
def set_module(self, module_name: str, module_path: str) -> None:
"""Set the name and path of the current module."""
self.module_name = module_name
self.module_path = module_path
# Basic operations
def add(self, op: Op) -> Value:
"""Add an op."""
assert not self.blocks[-1].terminated, "Can't add to finished block"
self.blocks[-1].ops.append(op)
return op
def goto(self, target: BasicBlock) -> None:
"""Add goto to a basic block."""
if not self.blocks[-1].terminated:
self.add(Goto(target))
def activate_block(self, block: BasicBlock) -> None:
"""Add a basic block and make it the active one (target of adds)."""
if self.blocks:
assert self.blocks[-1].terminated
block.error_handler = self.error_handlers[-1]
self.blocks.append(block)
def goto_and_activate(self, block: BasicBlock) -> None:
"""Add goto a block and make it the active block."""
self.goto(block)
self.activate_block(block)
def push_error_handler(self, handler: BasicBlock | None) -> None:
self.error_handlers.append(handler)
def pop_error_handler(self) -> BasicBlock | None:
return self.error_handlers.pop()
def self(self) -> Register:
"""Return reference to the 'self' argument.
This only works in a method.
"""
return self.args[0]
def flush_keep_alives(self) -> None:
if self.keep_alives:
self.add(KeepAlive(self.keep_alives.copy()))
self.keep_alives = []
# Type conversions
def box(self, src: Value) -> Value:
if src.type.is_unboxed:
if isinstance(src, Integer) and is_tagged(src.type):
return self.add(LoadLiteral(src.value >> 1, rtype=object_rprimitive))
return self.add(Box(src))
else:
return src
def unbox_or_cast(
self, src: Value, target_type: RType, line: int, *, can_borrow: bool = False
) -> Value:
if target_type.is_unboxed:
return self.add(Unbox(src, target_type, line))
else:
if can_borrow:
self.keep_alives.append(src)
return self.add(Cast(src, target_type, line, borrow=can_borrow))
def coerce(
self,
src: Value,
target_type: RType,
line: int,
force: bool = False,
*,
can_borrow: bool = False,
) -> Value:
"""Generate a coercion/cast from one type to other (only if needed).
For example, int -> object boxes the source int; int -> int emits nothing;
object -> int unboxes the object. All conversions preserve object value.
If force is true, always generate an op (even if it is just an assignment) so
that the result will have exactly target_type as the type.
Returns the register with the converted value (may be same as src).
"""
src_type = src.type
if src_type.is_unboxed and not target_type.is_unboxed:
# Unboxed -> boxed
return self.box(src)
if (src_type.is_unboxed and target_type.is_unboxed) and not is_runtime_subtype(
src_type, target_type
):
if (
isinstance(src, Integer)
and is_short_int_rprimitive(src_type)
and is_fixed_width_rtype(target_type)
):
value = src.numeric_value()
if not check_native_int_range(target_type, value):
self.error(f'Value {value} is out of range for "{target_type}"', line)
return Integer(src.value >> 1, target_type)
elif is_int_rprimitive(src_type) and is_fixed_width_rtype(target_type):
return self.coerce_int_to_fixed_width(src, target_type, line)
elif is_fixed_width_rtype(src_type) and is_int_rprimitive(target_type):
return self.coerce_fixed_width_to_int(src, line)
elif is_short_int_rprimitive(src_type) and is_fixed_width_rtype(target_type):
return self.coerce_short_int_to_fixed_width(src, target_type, line)
elif (
isinstance(src_type, RPrimitive)
and isinstance(target_type, RPrimitive)
and src_type.is_native_int
and target_type.is_native_int
and src_type.size == target_type.size
and src_type.is_signed == target_type.is_signed
):
# Equivalent types
return src
elif (is_bool_rprimitive(src_type) or is_bit_rprimitive(src_type)) and is_tagged(
target_type
):
shifted = self.int_op(
bool_rprimitive, src, Integer(1, bool_rprimitive), IntOp.LEFT_SHIFT
)
return self.add(Extend(shifted, target_type, signed=False))
elif (
is_bool_rprimitive(src_type) or is_bit_rprimitive(src_type)
) and is_fixed_width_rtype(target_type):
return self.add(Extend(src, target_type, signed=False))
elif isinstance(src, Integer) and is_float_rprimitive(target_type):
if is_tagged(src_type):
return Float(float(src.value // 2))
return Float(float(src.value))
elif is_tagged(src_type) and is_float_rprimitive(target_type):
return self.int_to_float(src, line)
elif (
isinstance(src_type, RTuple)
and isinstance(target_type, RTuple)
and len(src_type.types) == len(target_type.types)
):
# Coerce between two tuple types by coercing each item separately
values = []
for i in range(len(src_type.types)):
v = None
if isinstance(src, TupleSet):
item = src.items[i]
# We can't reuse register values, since they can be modified.
if not isinstance(item, Register):
v = item
if v is None:
v = TupleGet(src, i)
self.add(v)
values.append(v)
return self.add(
TupleSet(
[self.coerce(v, t, line) for v, t in zip(values, target_type.types)], line
)
)
# To go between any other unboxed types, we go through a boxed
# in-between value, for simplicity.
tmp = self.box(src)
return self.unbox_or_cast(tmp, target_type, line)
if (not src_type.is_unboxed and target_type.is_unboxed) or not is_subtype(
src_type, target_type
):
return self.unbox_or_cast(src, target_type, line, can_borrow=can_borrow)
elif force:
tmp = Register(target_type)
self.add(Assign(tmp, src))
return tmp
return src
def coerce_int_to_fixed_width(self, src: Value, target_type: RType, line: int) -> Value:
assert is_fixed_width_rtype(target_type), target_type
assert isinstance(target_type, RPrimitive)
res = Register(target_type)
fast, slow, end = BasicBlock(), BasicBlock(), BasicBlock()
check = self.check_tagged_short_int(src, line)
self.add(Branch(check, fast, slow, Branch.BOOL))
self.activate_block(fast)
size = target_type.size
if size < int_rprimitive.size:
# Add a range check when the target type is smaller than the source tyoe
fast2, fast3 = BasicBlock(), BasicBlock()
upper_bound = 1 << (size * 8 - 1)
if not target_type.is_signed:
upper_bound *= 2
check2 = self.add(ComparisonOp(src, Integer(upper_bound, src.type), ComparisonOp.SLT))
self.add(Branch(check2, fast2, slow, Branch.BOOL))
self.activate_block(fast2)
if target_type.is_signed:
lower_bound = -upper_bound
else:
lower_bound = 0
check3 = self.add(ComparisonOp(src, Integer(lower_bound, src.type), ComparisonOp.SGE))
self.add(Branch(check3, fast3, slow, Branch.BOOL))
self.activate_block(fast3)
tmp = self.int_op(
c_pyssize_t_rprimitive,
src,
Integer(1, c_pyssize_t_rprimitive),
IntOp.RIGHT_SHIFT,
line,
)
tmp = self.add(Truncate(tmp, target_type))
else:
if size > int_rprimitive.size:
tmp = self.add(Extend(src, target_type, signed=True))
else:
tmp = src
tmp = self.int_op(target_type, tmp, Integer(1, target_type), IntOp.RIGHT_SHIFT, line)
self.add(Assign(res, tmp))
self.goto(end)
self.activate_block(slow)
if is_int64_rprimitive(target_type) or (
is_int32_rprimitive(target_type) and size == int_rprimitive.size
):
# Slow path calls a library function that handles more complex logic
ptr = self.int_op(
pointer_rprimitive, src, Integer(1, pointer_rprimitive), IntOp.XOR, line
)
ptr2 = Register(c_pointer_rprimitive)
self.add(Assign(ptr2, ptr))
if is_int64_rprimitive(target_type):
conv_op = int_to_int64_op
else:
conv_op = int_to_int32_op
tmp = self.call_c(conv_op, [ptr2], line)
self.add(Assign(res, tmp))
self.add(KeepAlive([src]))
self.goto(end)
elif is_int32_rprimitive(target_type):
# Slow path just always generates an OverflowError
self.call_c(int32_overflow, [], line)
self.add(Unreachable())
elif is_int16_rprimitive(target_type):
# Slow path just always generates an OverflowError
self.call_c(int16_overflow, [], line)
self.add(Unreachable())
elif is_uint8_rprimitive(target_type):
# Slow path just always generates an OverflowError
self.call_c(uint8_overflow, [], line)
self.add(Unreachable())
else:
assert False, target_type
self.activate_block(end)
return res
def coerce_short_int_to_fixed_width(self, src: Value, target_type: RType, line: int) -> Value:
if is_int64_rprimitive(target_type):
return self.int_op(target_type, src, Integer(1, target_type), IntOp.RIGHT_SHIFT, line)
# TODO: i32
assert False, (src.type, target_type)
def coerce_fixed_width_to_int(self, src: Value, line: int) -> Value:
if (
(is_int32_rprimitive(src.type) and PLATFORM_SIZE == 8)
or is_int16_rprimitive(src.type)
or is_uint8_rprimitive(src.type)
):
# Simple case -- just sign extend and shift.
extended = self.add(Extend(src, c_pyssize_t_rprimitive, signed=src.type.is_signed))
return self.int_op(
int_rprimitive,
extended,
Integer(1, c_pyssize_t_rprimitive),
IntOp.LEFT_SHIFT,
line,
)
assert is_fixed_width_rtype(src.type)
assert isinstance(src.type, RPrimitive)
src_type = src.type
res = Register(int_rprimitive)
fast, fast2, slow, end = BasicBlock(), BasicBlock(), BasicBlock(), BasicBlock()
c1 = self.add(ComparisonOp(src, Integer(MAX_SHORT_INT, src_type), ComparisonOp.SLE))
self.add(Branch(c1, fast, slow, Branch.BOOL))
self.activate_block(fast)
c2 = self.add(ComparisonOp(src, Integer(MIN_SHORT_INT, src_type), ComparisonOp.SGE))
self.add(Branch(c2, fast2, slow, Branch.BOOL))
self.activate_block(slow)
if is_int64_rprimitive(src_type):
conv_op = int64_to_int_op
elif is_int32_rprimitive(src_type):
assert PLATFORM_SIZE == 4
conv_op = ssize_t_to_int_op
else:
assert False, src_type
x = self.call_c(conv_op, [src], line)
self.add(Assign(res, x))
self.goto(end)
self.activate_block(fast2)
if int_rprimitive.size < src_type.size:
tmp = self.add(Truncate(src, c_pyssize_t_rprimitive))
else:
tmp = src
s = self.int_op(int_rprimitive, tmp, Integer(1, tmp.type), IntOp.LEFT_SHIFT, line)
self.add(Assign(res, s))
self.goto(end)
self.activate_block(end)
return res
def coerce_nullable(self, src: Value, target_type: RType, line: int) -> Value:
"""Generate a coercion from a potentially null value."""
if src.type.is_unboxed == target_type.is_unboxed and (
(target_type.is_unboxed and is_runtime_subtype(src.type, target_type))
or (not target_type.is_unboxed and is_subtype(src.type, target_type))
):
return src
target = Register(target_type)
valid, invalid, out = BasicBlock(), BasicBlock(), BasicBlock()
self.add(Branch(src, invalid, valid, Branch.IS_ERROR))
self.activate_block(valid)
coerced = self.coerce(src, target_type, line)
self.add(Assign(target, coerced, line))
self.goto(out)
self.activate_block(invalid)
error = self.add(LoadErrorValue(target_type))
self.add(Assign(target, error, line))
self.goto_and_activate(out)
return target
# Attribute access
def get_attr(
self, obj: Value, attr: str, result_type: RType, line: int, *, borrow: bool = False
) -> Value:
"""Get a native or Python attribute of an object."""
if (
isinstance(obj.type, RInstance)
and obj.type.class_ir.is_ext_class
and obj.type.class_ir.has_attr(attr)
):
op = GetAttr(obj, attr, line, borrow=borrow)
# For non-refcounted attribute types, the borrow might be
# disabled even if requested, so don't check 'borrow'.
if op.is_borrowed:
self.keep_alives.append(obj)
return self.add(op)
elif isinstance(obj.type, RUnion):
return self.union_get_attr(obj, obj.type, attr, result_type, line)
else:
return self.py_get_attr(obj, attr, line)
def union_get_attr(
self, obj: Value, rtype: RUnion, attr: str, result_type: RType, line: int
) -> Value:
"""Get an attribute of an object with a union type."""
def get_item_attr(value: Value) -> Value:
return self.get_attr(value, attr, result_type, line)
return self.decompose_union_helper(obj, rtype, result_type, get_item_attr, line)
def py_get_attr(self, obj: Value, attr: str, line: int) -> Value:
"""Get a Python attribute (slow).
Prefer get_attr() which generates optimized code for native classes.
"""
key = self.load_str(attr)
return self.call_c(py_getattr_op, [obj, key], line)
# isinstance() checks
def isinstance_helper(self, obj: Value, class_irs: list[ClassIR], line: int) -> Value:
"""Fast path for isinstance() that checks against a list of native classes."""
if not class_irs:
return self.false()
ret = self.isinstance_native(obj, class_irs[0], line)
for class_ir in class_irs[1:]:
def other() -> Value:
return self.isinstance_native(obj, class_ir, line)
ret = self.shortcircuit_helper("or", bool_rprimitive, lambda: ret, other, line)
return ret
def get_type_of_obj(self, obj: Value, line: int) -> Value:
ob_type_address = self.add(GetElementPtr(obj, PyObject, "ob_type", line))
ob_type = self.add(LoadMem(object_rprimitive, ob_type_address))
self.add(KeepAlive([obj]))
return ob_type
def type_is_op(self, obj: Value, type_obj: Value, line: int) -> Value:
typ = self.get_type_of_obj(obj, line)
return self.add(ComparisonOp(typ, type_obj, ComparisonOp.EQ, line))
def isinstance_native(self, obj: Value, class_ir: ClassIR, line: int) -> Value:
"""Fast isinstance() check for a native class.
If there are three or fewer concrete (non-trait) classes among the class
and all its children, use even faster type comparison checks `type(obj)
is typ`.
"""
concrete = all_concrete_classes(class_ir)
if concrete is None or len(concrete) > FAST_ISINSTANCE_MAX_SUBCLASSES + 1:
return self.call_c(fast_isinstance_op, [obj, self.get_native_type(class_ir)], line)
if not concrete:
# There can't be any concrete instance that matches this.
return self.false()
type_obj = self.get_native_type(concrete[0])
ret = self.type_is_op(obj, type_obj, line)
for c in concrete[1:]:
def other() -> Value:
return self.type_is_op(obj, self.get_native_type(c), line)
ret = self.shortcircuit_helper("or", bool_rprimitive, lambda: ret, other, line)
return ret
# Calls
def _construct_varargs(
self,
args: Sequence[tuple[Value, ArgKind, str | None]],
line: int,
*,
has_star: bool,
has_star2: bool,
) -> tuple[Value | None, Value | None]:
"""Construct *args and **kwargs from a collection of arguments
This is pretty complicated, and almost all of the complication here stems from
one of two things (but mostly the second):
* The handling of ARG_STAR/ARG_STAR2. We want to create as much of the args/kwargs
values in one go as we can, so we collect values until our hand is forced, and
then we emit creation of the list/tuple, and expand it from there if needed.
* Support potentially nullable argument values. This has very narrow applicability,
as this will never be done by our compiled Python code, but is critically used
by gen_glue_method when generating glue methods to mediate between the function
signature of a parent class and its subclasses.
For named-only arguments, this is quite simple: if it is
null, don't put it in the dict.
For positional-or-named arguments, things are much more complicated.
* First, anything that was passed as a positional arg
must be forwarded along as a positional arg. It *must
not* be converted to a named arg. This is because mypy
does not enforce that positional-or-named arguments
have the same name in subclasses, and it is not
uncommon for code to have different names in
subclasses (a bunch of mypy's visitors do this, for
example!). This is arguably a bug in both mypy and code doing
this, and they ought to be using positional-only arguments, but
positional-only arguments are new and ugly.
* On the flip side, we're willing to accept the
infelicity of sometimes turning an argument that was
passed by keyword into a positional argument. It's wrong,
but it's very marginal, and avoiding it would require passing
a bitmask of which arguments were named with every function call,
or something similar.
(See some discussion of this in testComplicatedArgs)
Thus, our strategy for positional-or-named arguments is to
always pass them as positional, except in the one
situation where we can not, and where we can be absolutely
sure they were passed by name: when an *earlier*
positional argument was missing its value.
This means that if we have a method `f(self, x: int=..., y: object=...)`:
* x and y present: args=(x, y), kwargs={}
* x present, y missing: args=(x,), kwargs={}
* x missing, y present: args=(), kwargs={'y': y}
To implement this, when we have multiple optional
positional arguments, we maintain a flag in a register
that tracks whether an argument has been missing, and for
each such optional argument (except the first), we check
the flag to determine whether to append the argument to
the *args list or add it to the **kwargs dict. What a
mess!
This is what really makes everything here such a tangle;
otherwise the *args and **kwargs code could be separated.
The arguments has_star and has_star2 indicate whether the target function
takes an ARG_STAR and ARG_STAR2 argument, respectively.
(These will always be true when making a pycall, and be based
on the actual target signature for a native call.)
"""
star_result: Value | None = None
star2_result: Value | None = None
# We aggregate values that need to go into *args and **kwargs
# in these lists. Once all arguments are processed (in the
# happiest case), or we encounter an ARG_STAR/ARG_STAR2 or a
# nullable arg, then we create the list and/or dict.
star_values: list[Value] = []
star2_keys: list[Value] = []
star2_values: list[Value] = []
seen_empty_reg: Register | None = None
for value, kind, name in args:
if kind == ARG_STAR:
if star_result is None:
star_result = self.new_list_op(star_values, line)
self.call_c(list_extend_op, [star_result, value], line)
elif kind == ARG_STAR2:
if star2_result is None:
star2_result = self._create_dict(star2_keys, star2_values, line)
self.call_c(dict_update_in_display_op, [star2_result, value], line=line)
else:
nullable = kind.is_optional()
maybe_pos = kind.is_positional() and has_star
maybe_named = kind.is_named() or (kind.is_optional() and name and has_star2)
# If the argument is nullable, we need to create the
# relevant args/kwargs objects so that we can
# conditionally modify them.
if nullable:
if maybe_pos and star_result is None:
star_result = self.new_list_op(star_values, line)
if maybe_named and star2_result is None:
star2_result = self._create_dict(star2_keys, star2_values, line)
# Easy cases: just collect the argument.
if maybe_pos and star_result is None:
star_values.append(value)
continue
if maybe_named and star2_result is None:
assert name is not None
key = self.load_str(name)
star2_keys.append(key)
star2_values.append(value)
continue
# OK, anything that is nullable or *after* a nullable arg needs to be here
# TODO: We could try harder to avoid creating basic blocks in the common case
new_seen_empty_reg = seen_empty_reg
out = BasicBlock()
if nullable:
# If this is the first nullable positional arg we've seen, create
# a register to track whether anything has been null.
# (We won't *check* the register until the next argument, though.)
if maybe_pos and not seen_empty_reg:
new_seen_empty_reg = Register(bool_rprimitive)
self.add(Assign(new_seen_empty_reg, self.false(), line))
skip = BasicBlock() if maybe_pos else out
keep = BasicBlock()
self.add(Branch(value, skip, keep, Branch.IS_ERROR))
self.activate_block(keep)
# If this could be positional or named and we /might/ have seen a missing
# positional arg, then we need to compile *both* a positional and named
# version! What a pain!
if maybe_pos and maybe_named and seen_empty_reg:
pos_block, named_block = BasicBlock(), BasicBlock()
self.add(Branch(seen_empty_reg, named_block, pos_block, Branch.BOOL))
else:
pos_block = named_block = BasicBlock()
self.goto(pos_block)
if maybe_pos:
self.activate_block(pos_block)
assert star_result
self.translate_special_method_call(
star_result, "append", [value], result_type=None, line=line
)
self.goto(out)
if maybe_named and (not maybe_pos or seen_empty_reg):
self.activate_block(named_block)
assert name is not None
key = self.load_str(name)
assert star2_result
self.translate_special_method_call(
star2_result, "__setitem__", [key, value], result_type=None, line=line
)
self.goto(out)
if nullable and maybe_pos and new_seen_empty_reg:
assert skip is not out
self.activate_block(skip)
self.add(Assign(new_seen_empty_reg, self.true(), line))
self.goto(out)
self.activate_block(out)
seen_empty_reg = new_seen_empty_reg
assert not (star_result or star_values) or has_star
assert not (star2_result or star2_values) or has_star2
if has_star:
# If we managed to make it this far without creating a
# *args list, then we can directly create a
# tuple. Otherwise create the tuple from the list.
if star_result is None:
star_result = self.new_tuple(star_values, line)
else:
star_result = self.call_c(list_tuple_op, [star_result], line)
if has_star2 and star2_result is None:
star2_result = self._create_dict(star2_keys, star2_values, line)
return star_result, star2_result
def py_call(
self,
function: Value,
arg_values: list[Value],
line: int,
arg_kinds: list[ArgKind] | None = None,
arg_names: Sequence[str | None] | None = None,
) -> Value:
"""Call a Python function (non-native and slow).
Use py_call_op or py_call_with_kwargs_op for Python function call.
"""
if use_vectorcall(self.options.capi_version):
# More recent Python versions support faster vectorcalls.
result = self._py_vector_call(function, arg_values, line, arg_kinds, arg_names)
if result is not None:
return result
# If all arguments are positional, we can use py_call_op.
if arg_kinds is None or all(kind == ARG_POS for kind in arg_kinds):
return self.call_c(py_call_op, [function] + arg_values, line)
# Otherwise fallback to py_call_with_kwargs_op.
assert arg_names is not None
pos_args_tuple, kw_args_dict = self._construct_varargs(
list(zip(arg_values, arg_kinds, arg_names)), line, has_star=True, has_star2=True
)
assert pos_args_tuple and kw_args_dict
return self.call_c(py_call_with_kwargs_op, [function, pos_args_tuple, kw_args_dict], line)
def _py_vector_call(
self,
function: Value,
arg_values: list[Value],
line: int,
arg_kinds: list[ArgKind] | None = None,
arg_names: Sequence[str | None] | None = None,
) -> Value | None:
"""Call function using the vectorcall API if possible.
Return the return value if successful. Return None if a non-vectorcall
API should be used instead.
"""
# We can do this if all args are positional or named (no *args or **kwargs, not optional).
if arg_kinds is None or all(
not kind.is_star() and not kind.is_optional() for kind in arg_kinds
):
if arg_values:
# Create a C array containing all arguments as boxed values.
coerced_args = [self.coerce(arg, object_rprimitive, line) for arg in arg_values]
arg_ptr = self.setup_rarray(object_rprimitive, coerced_args, object_ptr=True)
else:
arg_ptr = Integer(0, object_pointer_rprimitive)
num_pos = num_positional_args(arg_values, arg_kinds)
keywords = self._vectorcall_keywords(arg_names)
value = self.call_c(
py_vectorcall_op,
[function, arg_ptr, Integer(num_pos, c_size_t_rprimitive), keywords],
line,
)
if arg_values:
# Make sure arguments won't be freed until after the call.
# We need this because RArray doesn't support automatic
# memory management.
self.add(KeepAlive(coerced_args))
return value
return None
def _vectorcall_keywords(self, arg_names: Sequence[str | None] | None) -> Value:
"""Return a reference to a tuple literal with keyword argument names.
Return null pointer if there are no keyword arguments.
"""
if arg_names:
kw_list = [name for name in arg_names if name is not None]
if kw_list:
return self.add(LoadLiteral(tuple(kw_list), object_rprimitive))
return Integer(0, object_rprimitive)
def py_method_call(
self,
obj: Value,
method_name: str,
arg_values: list[Value],
line: int,
arg_kinds: list[ArgKind] | None,
arg_names: Sequence[str | None] | None,
) -> Value:
"""Call a Python method (non-native and slow)."""
if use_method_vectorcall(self.options.capi_version):
# More recent Python versions support faster vectorcalls.
result = self._py_vector_method_call(
obj, method_name, arg_values, line, arg_kinds, arg_names
)
if result is not None:
return result
if arg_kinds is None or all(kind == ARG_POS for kind in arg_kinds):
# Use legacy method call API
method_name_reg = self.load_str(method_name)
return self.call_c(py_method_call_op, [obj, method_name_reg] + arg_values, line)
else:
# Use py_call since it supports keyword arguments (and vectorcalls).
method = self.py_get_attr(obj, method_name, line)
return self.py_call(method, arg_values, line, arg_kinds=arg_kinds, arg_names=arg_names)
def _py_vector_method_call(
self,
obj: Value,
method_name: str,
arg_values: list[Value],
line: int,
arg_kinds: list[ArgKind] | None,
arg_names: Sequence[str | None] | None,
) -> Value | None:
"""Call method using the vectorcall API if possible.
Return the return value if successful. Return None if a non-vectorcall
API should be used instead.
"""
if arg_kinds is None or all(
not kind.is_star() and not kind.is_optional() for kind in arg_kinds
):
method_name_reg = self.load_str(method_name)
coerced_args = [
self.coerce(arg, object_rprimitive, line) for arg in [obj] + arg_values
]
arg_ptr = self.setup_rarray(object_rprimitive, coerced_args, object_ptr=True)
num_pos = num_positional_args(arg_values, arg_kinds)
keywords = self._vectorcall_keywords(arg_names)
value = self.call_c(
py_vectorcall_method_op,
[
method_name_reg,
arg_ptr,
Integer((num_pos + 1) | PY_VECTORCALL_ARGUMENTS_OFFSET, c_size_t_rprimitive),
keywords,
],
line,
)
# Make sure arguments won't be freed until after the call.
# We need this because RArray doesn't support automatic
# memory management.
self.add(KeepAlive(coerced_args))
return value
return None
def call(
self,
decl: FuncDecl,
args: Sequence[Value],
arg_kinds: list[ArgKind],
arg_names: Sequence[str | None],
line: int,
*,
bitmap_args: list[Register] | None = None,
) -> Value:
"""Call a native function.
If bitmap_args is given, they override the values of (some) of the bitmap
arguments used to track the presence of values for certain arguments. By
default, the values of the bitmap arguments are inferred from args.
"""
# Normalize args to positionals.
args = self.native_args_to_positional(
args, arg_kinds, arg_names, decl.sig, line, bitmap_args=bitmap_args
)
return self.add(Call(decl, args, line))
def native_args_to_positional(
self,
args: Sequence[Value],
arg_kinds: list[ArgKind],
arg_names: Sequence[str | None],
sig: FuncSignature,
line: int,
*,
bitmap_args: list[Register] | None = None,
) -> list[Value]:
"""Prepare arguments for a native call.
Given args/kinds/names and a target signature for a native call, map
keyword arguments to their appropriate place in the argument list,
fill in error values for unspecified default arguments,
package arguments that will go into *args/**kwargs into a tuple/dict,
and coerce arguments to the appropriate type.
"""
sig_args = sig.args
n = sig.num_bitmap_args
if n:
sig_args = sig_args[:-n]
sig_arg_kinds = [arg.kind for arg in sig_args]
sig_arg_names = [arg.name for arg in sig_args]
concrete_kinds = [concrete_arg_kind(arg_kind) for arg_kind in arg_kinds]
formal_to_actual = map_actuals_to_formals(
concrete_kinds,
arg_names,
sig_arg_kinds,
sig_arg_names,
lambda n: AnyType(TypeOfAny.special_form),
)
# First scan for */** and construct those
has_star = has_star2 = False
star_arg_entries = []
for lst, arg in zip(formal_to_actual, sig_args):
if arg.kind.is_star():
star_arg_entries.extend([(args[i], arg_kinds[i], arg_names[i]) for i in lst])
has_star = has_star or arg.kind == ARG_STAR
has_star2 = has_star2 or arg.kind == ARG_STAR2
star_arg, star2_arg = self._construct_varargs(
star_arg_entries, line, has_star=has_star, has_star2=has_star2
)
# Flatten out the arguments, loading error values for default
# arguments, constructing tuples/dicts for star args, and
# coercing everything to the expected type.
output_args: list[Value] = []
for lst, arg in zip(formal_to_actual, sig_args):
if arg.kind == ARG_STAR:
assert star_arg
output_arg = star_arg
elif arg.kind == ARG_STAR2:
assert star2_arg
output_arg = star2_arg
elif not lst:
if is_fixed_width_rtype(arg.type):
output_arg = Integer(0, arg.type)
elif is_float_rprimitive(arg.type):
output_arg = Float(0.0)
else:
output_arg = self.add(LoadErrorValue(arg.type, is_borrowed=True))
else:
base_arg = args[lst[0]]
if arg_kinds[lst[0]].is_optional():
output_arg = self.coerce_nullable(base_arg, arg.type, line)
else:
output_arg = self.coerce(base_arg, arg.type, line)
output_args.append(output_arg)
for i in reversed(range(n)):
if bitmap_args and i < len(bitmap_args):
# Use override provided by caller
output_args.append(bitmap_args[i])
continue
# Infer values of bitmap args
bitmap = 0
c = 0
for lst, arg in zip(formal_to_actual, sig_args):
if arg.kind.is_optional() and arg.type.error_overlap:
if i * BITMAP_BITS <= c < (i + 1) * BITMAP_BITS:
if lst:
bitmap |= 1 << (c & (BITMAP_BITS - 1))
c += 1
output_args.append(Integer(bitmap, bitmap_rprimitive))
return output_args
def gen_method_call(
self,
base: Value,
name: str,
arg_values: list[Value],
result_type: RType | None,
line: int,
arg_kinds: list[ArgKind] | None = None,
arg_names: list[str | None] | None = None,
can_borrow: bool = False,
) -> Value:
"""Generate either a native or Python method call."""
# If we have *args, then fallback to Python method call.
if arg_kinds is not None and any(kind.is_star() for kind in arg_kinds):
return self.py_method_call(base, name, arg_values, base.line, arg_kinds, arg_names)
# If the base type is one of ours, do a MethodCall
if (
isinstance(base.type, RInstance)
and base.type.class_ir.is_ext_class
and not base.type.class_ir.builtin_base
):
if base.type.class_ir.has_method(name):
decl = base.type.class_ir.method_decl(name)
if arg_kinds is None:
assert arg_names is None, "arg_kinds not present but arg_names is"
arg_kinds = [ARG_POS for _ in arg_values]
arg_names = [None for _ in arg_values]
else:
assert arg_names is not None, "arg_kinds present but arg_names is not"
# Normalize args to positionals.
assert decl.bound_sig
arg_values = self.native_args_to_positional(
arg_values, arg_kinds, arg_names, decl.bound_sig, line
)
return self.add(MethodCall(base, name, arg_values, line))
elif base.type.class_ir.has_attr(name):
function = self.add(GetAttr(base, name, line))
return self.py_call(
function, arg_values, line, arg_kinds=arg_kinds, arg_names=arg_names
)
elif isinstance(base.type, RUnion):
return self.union_method_call(
base, base.type, name, arg_values, result_type, line, arg_kinds, arg_names
)
# Try to do a special-cased method call
if not arg_kinds or arg_kinds == [ARG_POS] * len(arg_values):
target = self.translate_special_method_call(
base, name, arg_values, result_type, line, can_borrow=can_borrow
)
if target:
return target
# Fall back to Python method call
return self.py_method_call(base, name, arg_values, line, arg_kinds, arg_names)
def union_method_call(
self,
base: Value,
obj_type: RUnion,
name: str,
arg_values: list[Value],
return_rtype: RType | None,
line: int,
arg_kinds: list[ArgKind] | None,
arg_names: list[str | None] | None,
) -> Value:
"""Generate a method call with a union type for the object."""
# Union method call needs a return_rtype for the type of the output register.
# If we don't have one, use object_rprimitive.
return_rtype = return_rtype or object_rprimitive
def call_union_item(value: Value) -> Value:
return self.gen_method_call(
value, name, arg_values, return_rtype, line, arg_kinds, arg_names
)
return self.decompose_union_helper(base, obj_type, return_rtype, call_union_item, line)
# Loading various values
def none(self) -> Value:
"""Load unboxed None value (type: none_rprimitive)."""
return Integer(1, none_rprimitive)
def true(self) -> Value:
"""Load unboxed True value (type: bool_rprimitive)."""
return Integer(1, bool_rprimitive)
def false(self) -> Value:
"""Load unboxed False value (type: bool_rprimitive)."""
return Integer(0, bool_rprimitive)
def none_object(self) -> Value:
"""Load Python None value (type: object_rprimitive)."""
return self.add(LoadAddress(none_object_op.type, none_object_op.src, line=-1))
def load_int(self, value: int) -> Value:
"""Load a tagged (Python) integer literal value."""
if value > MAX_LITERAL_SHORT_INT or value < MIN_LITERAL_SHORT_INT:
return self.add(LoadLiteral(value, int_rprimitive))
else:
return Integer(value)
def load_float(self, value: float) -> Value:
"""Load a float literal value."""
return Float(value)
def load_str(self, value: str) -> Value:
"""Load a str literal value.
This is useful for more than just str literals; for example, method calls
also require a PyObject * form for the name of the method.
"""
return self.add(LoadLiteral(value, str_rprimitive))
def load_bytes(self, value: bytes) -> Value:
"""Load a bytes literal value."""
return self.add(LoadLiteral(value, bytes_rprimitive))
def load_complex(self, value: complex) -> Value:
"""Load a complex literal value."""
return self.add(LoadLiteral(value, object_rprimitive))
def load_static_checked(
self,
typ: RType,
identifier: str,
module_name: str | None = None,
namespace: str = NAMESPACE_STATIC,
line: int = -1,
error_msg: str | None = None,
) -> Value:
if error_msg is None:
error_msg = f'name "{identifier}" is not defined'
ok_block, error_block = BasicBlock(), BasicBlock()
value = self.add(LoadStatic(typ, identifier, module_name, namespace, line=line))
self.add(Branch(value, error_block, ok_block, Branch.IS_ERROR, rare=True))
self.activate_block(error_block)
self.add(RaiseStandardError(RaiseStandardError.NAME_ERROR, error_msg, line))
self.add(Unreachable())
self.activate_block(ok_block)
return value
def load_module(self, name: str) -> Value:
return self.add(LoadStatic(object_rprimitive, name, namespace=NAMESPACE_MODULE))
def get_native_type(self, cls: ClassIR) -> Value:
"""Load native type object."""
fullname = f"{cls.module_name}.{cls.name}"
return self.load_native_type_object(fullname)
def load_native_type_object(self, fullname: str) -> Value:
module, name = fullname.rsplit(".", 1)
return self.add(LoadStatic(object_rprimitive, name, module, NAMESPACE_TYPE))
# Other primitive operations
def binary_op(self, lreg: Value, rreg: Value, op: str, line: int) -> Value:
"""Perform a binary operation.
Generate specialized operations based on operand types, with a fallback
to generic operations.
"""
ltype = lreg.type
rtype = rreg.type
# Special case tuple comparison here so that nested tuples can be supported
if isinstance(ltype, RTuple) and isinstance(rtype, RTuple) and op in ("==", "!="):
return self.compare_tuples(lreg, rreg, op, line)
# Special case == and != when we can resolve the method call statically
if op in ("==", "!="):
value = self.translate_eq_cmp(lreg, rreg, op, line)
if value is not None:
return value
# Special case various ops
if op in ("is", "is not"):
return self.translate_is_op(lreg, rreg, op, line)
# TODO: modify 'str' to use same interface as 'compare_bytes' as it avoids
# call to PyErr_Occurred()
if is_str_rprimitive(ltype) and is_str_rprimitive(rtype) and op in ("==", "!="):
return self.compare_strings(lreg, rreg, op, line)
if is_bytes_rprimitive(ltype) and is_bytes_rprimitive(rtype) and op in ("==", "!="):
return self.compare_bytes(lreg, rreg, op, line)
if is_tagged(ltype) and is_tagged(rtype) and op in int_comparison_op_mapping:
return self.compare_tagged(lreg, rreg, op, line)
if is_bool_rprimitive(ltype) and is_bool_rprimitive(rtype) and op in BOOL_BINARY_OPS:
if op in ComparisonOp.signed_ops:
return self.bool_comparison_op(lreg, rreg, op, line)
else:
return self.bool_bitwise_op(lreg, rreg, op[0], line)
if isinstance(rtype, RInstance) and op in ("in", "not in"):
return self.translate_instance_contains(rreg, lreg, op, line)
if is_fixed_width_rtype(ltype):
if op in FIXED_WIDTH_INT_BINARY_OPS:
if op.endswith("="):
op = op[:-1]
if op != "//":
op_id = int_op_to_id[op]
else:
op_id = IntOp.DIV
if is_bool_rprimitive(rtype) or is_bit_rprimitive(rtype):
rreg = self.coerce(rreg, ltype, line)
rtype = ltype
if is_fixed_width_rtype(rtype) or is_tagged(rtype):
return self.fixed_width_int_op(ltype, lreg, rreg, op_id, line)
if isinstance(rreg, Integer):
return self.fixed_width_int_op(
ltype, lreg, self.coerce(rreg, ltype, line), op_id, line
)
elif op in ComparisonOp.signed_ops:
if is_int_rprimitive(rtype):
rreg = self.coerce_int_to_fixed_width(rreg, ltype, line)
elif is_bool_rprimitive(rtype) or is_bit_rprimitive(rtype):
rreg = self.coerce(rreg, ltype, line)
op_id = ComparisonOp.signed_ops[op]
if is_fixed_width_rtype(rreg.type):
return self.comparison_op(lreg, rreg, op_id, line)
if isinstance(rreg, Integer):
return self.comparison_op(lreg, self.coerce(rreg, ltype, line), op_id, line)
elif is_fixed_width_rtype(rtype):
if op in FIXED_WIDTH_INT_BINARY_OPS:
if op.endswith("="):
op = op[:-1]
if op != "//":
op_id = int_op_to_id[op]
else:
op_id = IntOp.DIV
if isinstance(lreg, Integer):
return self.fixed_width_int_op(
rtype, self.coerce(lreg, rtype, line), rreg, op_id, line
)
if is_tagged(ltype):
return self.fixed_width_int_op(rtype, lreg, rreg, op_id, line)
if is_bool_rprimitive(ltype) or is_bit_rprimitive(ltype):
lreg = self.coerce(lreg, rtype, line)
return self.fixed_width_int_op(rtype, lreg, rreg, op_id, line)
elif op in ComparisonOp.signed_ops:
if is_int_rprimitive(ltype):
lreg = self.coerce_int_to_fixed_width(lreg, rtype, line)
elif is_bool_rprimitive(ltype) or is_bit_rprimitive(ltype):
lreg = self.coerce(lreg, rtype, line)
op_id = ComparisonOp.signed_ops[op]
if isinstance(lreg, Integer):
return self.comparison_op(self.coerce(lreg, rtype, line), rreg, op_id, line)
if is_fixed_width_rtype(lreg.type):
return self.comparison_op(lreg, rreg, op_id, line)
# Mixed int comparisons
if op in ("==", "!="):
op_id = ComparisonOp.signed_ops[op]
if is_tagged(ltype) and is_subtype(rtype, ltype):
rreg = self.coerce(rreg, int_rprimitive, line)
return self.comparison_op(lreg, rreg, op_id, line)
if is_tagged(rtype) and is_subtype(ltype, rtype):
lreg = self.coerce(lreg, int_rprimitive, line)
return self.comparison_op(lreg, rreg, op_id, line)
elif op in op in int_comparison_op_mapping:
if is_tagged(ltype) and is_subtype(rtype, ltype):
rreg = self.coerce(rreg, short_int_rprimitive, line)
return self.compare_tagged(lreg, rreg, op, line)
if is_tagged(rtype) and is_subtype(ltype, rtype):
lreg = self.coerce(lreg, short_int_rprimitive, line)
return self.compare_tagged(lreg, rreg, op, line)
if is_float_rprimitive(ltype) or is_float_rprimitive(rtype):
if isinstance(lreg, Integer):
lreg = Float(float(lreg.numeric_value()))
elif isinstance(rreg, Integer):
rreg = Float(float(rreg.numeric_value()))
elif is_int_rprimitive(lreg.type):
lreg = self.int_to_float(lreg, line)
elif is_int_rprimitive(rreg.type):
rreg = self.int_to_float(rreg, line)
if is_float_rprimitive(lreg.type) and is_float_rprimitive(rreg.type):
if op in float_comparison_op_to_id:
return self.compare_floats(lreg, rreg, float_comparison_op_to_id[op], line)
if op.endswith("="):
base_op = op[:-1]
else:
base_op = op
if base_op in float_op_to_id:
return self.float_op(lreg, rreg, base_op, line)
call_c_ops_candidates = binary_ops.get(op, [])
target = self.matching_call_c(call_c_ops_candidates, [lreg, rreg], line)
assert target, "Unsupported binary operation: %s" % op
return target
def check_tagged_short_int(self, val: Value, line: int, negated: bool = False) -> Value:
"""Check if a tagged integer is a short integer.
Return the result of the check (value of type 'bit').
"""
int_tag = Integer(1, c_pyssize_t_rprimitive, line)
bitwise_and = self.int_op(c_pyssize_t_rprimitive, val, int_tag, IntOp.AND, line)
zero = Integer(0, c_pyssize_t_rprimitive, line)
op = ComparisonOp.NEQ if negated else ComparisonOp.EQ
check = self.comparison_op(bitwise_and, zero, op, line)
return check
def compare_tagged(self, lhs: Value, rhs: Value, op: str, line: int) -> Value:
"""Compare two tagged integers using given operator (value context)."""
# generate fast binary logic ops on short ints
if is_short_int_rprimitive(lhs.type) and is_short_int_rprimitive(rhs.type):
return self.comparison_op(lhs, rhs, int_comparison_op_mapping[op][0], line)
op_type, c_func_desc, negate_result, swap_op = int_comparison_op_mapping[op]
result = Register(bool_rprimitive)
short_int_block, int_block, out = BasicBlock(), BasicBlock(), BasicBlock()
check_lhs = self.check_tagged_short_int(lhs, line)
if op in ("==", "!="):
check = check_lhs
else:
# for non-equality logical ops (less/greater than, etc.), need to check both sides
check_rhs = self.check_tagged_short_int(rhs, line)
check = self.int_op(bit_rprimitive, check_lhs, check_rhs, IntOp.AND, line)
self.add(Branch(check, short_int_block, int_block, Branch.BOOL))
self.activate_block(short_int_block)
eq = self.comparison_op(lhs, rhs, op_type, line)
self.add(Assign(result, eq, line))
self.goto(out)
self.activate_block(int_block)
if swap_op:
args = [rhs, lhs]
else:
args = [lhs, rhs]
call = self.call_c(c_func_desc, args, line)
if negate_result:
# TODO: introduce UnaryIntOp?
call_result = self.unary_op(call, "not", line)
else:
call_result = call
self.add(Assign(result, call_result, line))
self.goto_and_activate(out)
return result
def compare_tagged_condition(
self, lhs: Value, rhs: Value, op: str, true: BasicBlock, false: BasicBlock, line: int
) -> None:
"""Compare two tagged integers using given operator (conditional context).
Assume lhs and rhs are tagged integers.
Args:
lhs: Left operand
rhs: Right operand
op: Operation, one of '==', '!=', '<', '<=', '>', '<='
true: Branch target if comparison is true
false: Branch target if comparison is false
"""
is_eq = op in ("==", "!=")
if (is_short_int_rprimitive(lhs.type) and is_short_int_rprimitive(rhs.type)) or (
is_eq and (is_short_int_rprimitive(lhs.type) or is_short_int_rprimitive(rhs.type))
):
# We can skip the tag check
check = self.comparison_op(lhs, rhs, int_comparison_op_mapping[op][0], line)
self.flush_keep_alives()
self.add(Branch(check, true, false, Branch.BOOL))
return
op_type, c_func_desc, negate_result, swap_op = int_comparison_op_mapping[op]
int_block, short_int_block = BasicBlock(), BasicBlock()
check_lhs = self.check_tagged_short_int(lhs, line, negated=True)
if is_eq or is_short_int_rprimitive(rhs.type):
self.flush_keep_alives()
self.add(Branch(check_lhs, int_block, short_int_block, Branch.BOOL))
else:
# For non-equality logical ops (less/greater than, etc.), need to check both sides
rhs_block = BasicBlock()
self.add(Branch(check_lhs, int_block, rhs_block, Branch.BOOL))
self.activate_block(rhs_block)
check_rhs = self.check_tagged_short_int(rhs, line, negated=True)
self.flush_keep_alives()
self.add(Branch(check_rhs, int_block, short_int_block, Branch.BOOL))
# Arbitrary integers (slow path)
self.activate_block(int_block)
if swap_op:
args = [rhs, lhs]
else:
args = [lhs, rhs]
call = self.call_c(c_func_desc, args, line)
if negate_result:
self.add(Branch(call, false, true, Branch.BOOL))
else:
self.flush_keep_alives()
self.add(Branch(call, true, false, Branch.BOOL))
# Short integers (fast path)
self.activate_block(short_int_block)
eq = self.comparison_op(lhs, rhs, op_type, line)
self.add(Branch(eq, true, false, Branch.BOOL))
def compare_strings(self, lhs: Value, rhs: Value, op: str, line: int) -> Value:
"""Compare two strings"""
compare_result = self.call_c(unicode_compare, [lhs, rhs], line)
error_constant = Integer(-1, c_int_rprimitive, line)
compare_error_check = self.add(
ComparisonOp(compare_result, error_constant, ComparisonOp.EQ, line)
)
exception_check, propagate, final_compare = BasicBlock(), BasicBlock(), BasicBlock()
branch = Branch(compare_error_check, exception_check, final_compare, Branch.BOOL)
branch.negated = False
self.add(branch)
self.activate_block(exception_check)
check_error_result = self.call_c(err_occurred_op, [], line)
null = Integer(0, pointer_rprimitive, line)
compare_error_check = self.add(
ComparisonOp(check_error_result, null, ComparisonOp.NEQ, line)
)
branch = Branch(compare_error_check, propagate, final_compare, Branch.BOOL)
branch.negated = False
self.add(branch)
self.activate_block(propagate)
self.call_c(keep_propagating_op, [], line)
self.goto(final_compare)
self.activate_block(final_compare)
op_type = ComparisonOp.EQ if op == "==" else ComparisonOp.NEQ
return self.add(ComparisonOp(compare_result, Integer(0, c_int_rprimitive), op_type, line))
def compare_bytes(self, lhs: Value, rhs: Value, op: str, line: int) -> Value:
compare_result = self.call_c(bytes_compare, [lhs, rhs], line)
op_type = ComparisonOp.EQ if op == "==" else ComparisonOp.NEQ
return self.add(ComparisonOp(compare_result, Integer(1, c_int_rprimitive), op_type, line))
def compare_tuples(self, lhs: Value, rhs: Value, op: str, line: int = -1) -> Value:
"""Compare two tuples item by item"""
# type cast to pass mypy check
assert isinstance(lhs.type, RTuple) and isinstance(rhs.type, RTuple)
equal = True if op == "==" else False
result = Register(bool_rprimitive)
# empty tuples
if len(lhs.type.types) == 0 and len(rhs.type.types) == 0:
self.add(Assign(result, self.true() if equal else self.false(), line))
return result
length = len(lhs.type.types)
false_assign, true_assign, out = BasicBlock(), BasicBlock(), BasicBlock()
check_blocks = [BasicBlock() for _ in range(length)]
lhs_items = [self.add(TupleGet(lhs, i, line)) for i in range(length)]
rhs_items = [self.add(TupleGet(rhs, i, line)) for i in range(length)]
if equal:
early_stop, final = false_assign, true_assign
else:
early_stop, final = true_assign, false_assign
for i in range(len(lhs.type.types)):
if i != 0:
self.activate_block(check_blocks[i])
lhs_item = lhs_items[i]
rhs_item = rhs_items[i]
compare = self.binary_op(lhs_item, rhs_item, op, line)
# Cast to bool if necessary since most types uses comparison returning a object type
# See generic_ops.py for more information
if not is_bool_rprimitive(compare.type):
compare = self.call_c(bool_op, [compare], line)
if i < len(lhs.type.types) - 1:
branch = Branch(compare, early_stop, check_blocks[i + 1], Branch.BOOL)
else:
branch = Branch(compare, early_stop, final, Branch.BOOL)
# if op is ==, we branch on false, else branch on true
branch.negated = equal
self.add(branch)
self.activate_block(false_assign)
self.add(Assign(result, self.false(), line))
self.goto(out)
self.activate_block(true_assign)
self.add(Assign(result, self.true(), line))
self.goto_and_activate(out)
return result
def translate_instance_contains(self, inst: Value, item: Value, op: str, line: int) -> Value:
res = self.gen_method_call(inst, "__contains__", [item], None, line)
if not is_bool_rprimitive(res.type):
res = self.call_c(bool_op, [res], line)
if op == "not in":
res = self.bool_bitwise_op(res, Integer(1, rtype=bool_rprimitive), "^", line)
return res
def bool_bitwise_op(self, lreg: Value, rreg: Value, op: str, line: int) -> Value:
if op == "&":
code = IntOp.AND
elif op == "|":
code = IntOp.OR
elif op == "^":
code = IntOp.XOR
else:
assert False, op
return self.add(IntOp(bool_rprimitive, lreg, rreg, code, line))
def bool_comparison_op(self, lreg: Value, rreg: Value, op: str, line: int) -> Value:
op_id = ComparisonOp.signed_ops[op]
return self.comparison_op(lreg, rreg, op_id, line)
def unary_not(self, value: Value, line: int) -> Value:
mask = Integer(1, value.type, line)
return self.int_op(value.type, value, mask, IntOp.XOR, line)
def unary_op(self, value: Value, expr_op: str, line: int) -> Value:
typ = value.type
if is_bool_rprimitive(typ) or is_bit_rprimitive(typ):
if expr_op == "not":
return self.unary_not(value, line)
if expr_op == "+":
return value
if is_fixed_width_rtype(typ):
if expr_op == "-":
# Translate to '0 - x'
return self.int_op(typ, Integer(0, typ), value, IntOp.SUB, line)
elif expr_op == "~":
if typ.is_signed:
# Translate to 'x ^ -1'
return self.int_op(typ, value, Integer(-1, typ), IntOp.XOR, line)
else:
# Translate to 'x ^ 0xff...'
mask = (1 << (typ.size * 8)) - 1
return self.int_op(typ, value, Integer(mask, typ), IntOp.XOR, line)
elif expr_op == "+":
return value
if is_float_rprimitive(typ):
if expr_op == "-":
return self.add(FloatNeg(value, line))
elif expr_op == "+":
return value
if isinstance(value, Integer):
# TODO: Overflow? Unsigned?
num = value.value
if is_short_int_rprimitive(typ):
num >>= 1
return Integer(-num, typ, value.line)
if is_tagged(typ) and expr_op == "+":
return value
if isinstance(value, Float):
return Float(-value.value, value.line)
if isinstance(typ, RInstance):
if expr_op == "-":
method = "__neg__"
elif expr_op == "+":
method = "__pos__"
elif expr_op == "~":
method = "__invert__"
else:
method = ""
if method and typ.class_ir.has_method(method):
return self.gen_method_call(value, method, [], None, line)
call_c_ops_candidates = unary_ops.get(expr_op, [])
target = self.matching_call_c(call_c_ops_candidates, [value], line)
assert target, "Unsupported unary operation: %s" % expr_op
return target
def make_dict(self, key_value_pairs: Sequence[DictEntry], line: int) -> Value:
result: Value | None = None
keys: list[Value] = []
values: list[Value] = []
for key, value in key_value_pairs:
if key is not None:
# key:value
if result is None:
keys.append(key)
values.append(value)
continue
self.translate_special_method_call(
result, "__setitem__", [key, value], result_type=None, line=line
)
else:
# **value
if result is None:
result = self._create_dict(keys, values, line)
self.call_c(dict_update_in_display_op, [result, value], line=line)
if result is None:
result = self._create_dict(keys, values, line)
return result
def new_list_op_with_length(self, length: Value, line: int) -> Value:
"""This function returns an uninitialized list.
If the length is non-zero, the caller must initialize the list, before
it can be made visible to user code -- otherwise the list object is broken.
You might need further initialization with `new_list_set_item_op` op.
Args:
length: desired length of the new list. The rtype should be
c_pyssize_t_rprimitive
line: line number
"""
return self.call_c(new_list_op, [length], line)
def new_list_op(self, values: list[Value], line: int) -> Value:
length: list[Value] = [Integer(len(values), c_pyssize_t_rprimitive, line)]
if len(values) >= LIST_BUILDING_EXPANSION_THRESHOLD:
return self.call_c(list_build_op, length + values, line)
# If the length of the list is less than the threshold,
# LIST_BUILDING_EXPANSION_THRESHOLD, we directly expand the
# for-loop and inline the SetMem operation, which is faster
# than list_build_op, however generates more code.
result_list = self.call_c(new_list_op, length, line)
if not values:
return result_list
args = [self.coerce(item, object_rprimitive, line) for item in values]
ob_item_ptr = self.add(GetElementPtr(result_list, PyListObject, "ob_item", line))
ob_item_base = self.add(LoadMem(pointer_rprimitive, ob_item_ptr, line))
for i in range(len(values)):
if i == 0:
item_address = ob_item_base
else:
offset = Integer(PLATFORM_SIZE * i, c_pyssize_t_rprimitive, line)
item_address = self.add(
IntOp(pointer_rprimitive, ob_item_base, offset, IntOp.ADD, line)
)
self.add(SetMem(object_rprimitive, item_address, args[i], line))
self.add(KeepAlive([result_list]))
return result_list
def new_set_op(self, values: list[Value], line: int) -> Value:
return self.call_c(new_set_op, values, line)
def setup_rarray(
self, item_type: RType, values: Sequence[Value], *, object_ptr: bool = False
) -> Value:
"""Declare and initialize a new RArray, returning its address."""
array = Register(RArray(item_type, len(values)))
self.add(AssignMulti(array, list(values)))
return self.add(
LoadAddress(object_pointer_rprimitive if object_ptr else c_pointer_rprimitive, array)
)
def shortcircuit_helper(
self,
op: str,
expr_type: RType,
left: Callable[[], Value],
right: Callable[[], Value],
line: int,
) -> Value:
# Having actual Phi nodes would be really nice here!
target = Register(expr_type)
# left_body takes the value of the left side, right_body the right
left_body, right_body, next_block = BasicBlock(), BasicBlock(), BasicBlock()
# true_body is taken if the left is true, false_body if it is false.
# For 'and' the value is the right side if the left is true, and for 'or'
# it is the right side if the left is false.
true_body, false_body = (right_body, left_body) if op == "and" else (left_body, right_body)
left_value = left()
self.add_bool_branch(left_value, true_body, false_body)
self.activate_block(left_body)
left_coerced = self.coerce(left_value, expr_type, line)
self.add(Assign(target, left_coerced))
self.goto(next_block)
self.activate_block(right_body)
right_value = right()
right_coerced = self.coerce(right_value, expr_type, line)
self.add(Assign(target, right_coerced))
self.goto(next_block)
self.activate_block(next_block)
return target
def bool_value(self, value: Value) -> Value:
"""Return bool(value).
The result type can be bit_rprimitive or bool_rprimitive.
"""
if is_bool_rprimitive(value.type) or is_bit_rprimitive(value.type):
result = value
elif is_runtime_subtype(value.type, int_rprimitive):
zero = Integer(0, short_int_rprimitive)
result = self.comparison_op(value, zero, ComparisonOp.NEQ, value.line)
elif is_fixed_width_rtype(value.type):
zero = Integer(0, value.type)
result = self.add(ComparisonOp(value, zero, ComparisonOp.NEQ))
elif is_same_type(value.type, str_rprimitive):
result = self.call_c(str_check_if_true, [value], value.line)
elif is_same_type(value.type, list_rprimitive) or is_same_type(
value.type, dict_rprimitive
):
length = self.builtin_len(value, value.line)
zero = Integer(0)
result = self.binary_op(length, zero, "!=", value.line)
elif (
isinstance(value.type, RInstance)
and value.type.class_ir.is_ext_class
and value.type.class_ir.has_method("__bool__")
):
# Directly call the __bool__ method on classes that have it.
result = self.gen_method_call(value, "__bool__", [], bool_rprimitive, value.line)
elif is_float_rprimitive(value.type):
result = self.compare_floats(value, Float(0.0), FloatComparisonOp.NEQ, value.line)
else:
value_type = optional_value_type(value.type)
if value_type is not None:
not_none = self.translate_is_op(value, self.none_object(), "is not", value.line)
always_truthy = False
if isinstance(value_type, RInstance):
# check whether X.__bool__ is always just the default (object.__bool__)
if not value_type.class_ir.has_method(
"__bool__"
) and value_type.class_ir.is_method_final("__bool__"):
always_truthy = True
if always_truthy:
result = not_none
else:
# "X | None" where X may be falsey and requires a check
result = Register(bit_rprimitive)
true, false, end = BasicBlock(), BasicBlock(), BasicBlock()
branch = Branch(not_none, true, false, Branch.BOOL)
self.add(branch)
self.activate_block(true)
# unbox_or_cast instead of coerce because we want the
# type to change even if it is a subtype.
remaining = self.unbox_or_cast(value, value_type, value.line)
as_bool = self.bool_value(remaining)
self.add(Assign(result, as_bool))
self.goto(end)
self.activate_block(false)
self.add(Assign(result, Integer(0, bit_rprimitive)))
self.goto(end)
self.activate_block(end)
else:
result = self.call_c(bool_op, [value], value.line)
return result
def add_bool_branch(self, value: Value, true: BasicBlock, false: BasicBlock) -> None:
opt_value_type = optional_value_type(value.type)
if opt_value_type is None:
bool_value = self.bool_value(value)
self.add(Branch(bool_value, true, false, Branch.BOOL))
else:
# Special-case optional types
is_none = self.translate_is_op(value, self.none_object(), "is not", value.line)
branch = Branch(is_none, true, false, Branch.BOOL)
self.add(branch)
always_truthy = False
if isinstance(opt_value_type, RInstance):
# check whether X.__bool__ is always just the default (object.__bool__)
if not opt_value_type.class_ir.has_method(
"__bool__"
) and opt_value_type.class_ir.is_method_final("__bool__"):
always_truthy = True
if not always_truthy:
# Optional[X] where X may be falsey and requires a check
branch.true = BasicBlock()
self.activate_block(branch.true)
# unbox_or_cast instead of coerce because we want the
# type to change even if it is a subtype.
remaining = self.unbox_or_cast(value, opt_value_type, value.line)
self.add_bool_branch(remaining, true, false)
def call_c(
self,
desc: CFunctionDescription,
args: list[Value],
line: int,
result_type: RType | None = None,
) -> Value:
"""Call function using C/native calling convention (not a Python callable)."""
# Handle void function via singleton RVoid instance
coerced = []
# Coerce fixed number arguments
for i in range(min(len(args), len(desc.arg_types))):
formal_type = desc.arg_types[i]
arg = args[i]
arg = self.coerce(arg, formal_type, line)
coerced.append(arg)
# Reorder args if necessary
if desc.ordering is not None:
assert desc.var_arg_type is None
coerced = [coerced[i] for i in desc.ordering]
# Coerce any var_arg
var_arg_idx = -1
if desc.var_arg_type is not None:
var_arg_idx = len(desc.arg_types)
for i in range(len(desc.arg_types), len(args)):
arg = args[i]
arg = self.coerce(arg, desc.var_arg_type, line)
coerced.append(arg)
# Add extra integer constant if any
for item in desc.extra_int_constants:
val, typ = item
extra_int_constant = Integer(val, typ, line)
coerced.append(extra_int_constant)
error_kind = desc.error_kind
if error_kind == ERR_NEG_INT:
# Handled with an explicit comparison
error_kind = ERR_NEVER
target = self.add(
CallC(
desc.c_function_name,
coerced,
desc.return_type,
desc.steals,
desc.is_borrowed,
error_kind,
line,
var_arg_idx,
)
)
if desc.is_borrowed:
# If the result is borrowed, force the arguments to be
# kept alive afterwards, as otherwise the result might be
# immediately freed, at the risk of a dangling pointer.
for arg in coerced:
if not isinstance(arg, (Integer, LoadLiteral)):
self.keep_alives.append(arg)
if desc.error_kind == ERR_NEG_INT:
comp = ComparisonOp(target, Integer(0, desc.return_type, line), ComparisonOp.SGE, line)
comp.error_kind = ERR_FALSE
self.add(comp)
if desc.truncated_type is None:
result = target
else:
truncate = self.add(Truncate(target, desc.truncated_type))
result = truncate
if result_type and not is_runtime_subtype(result.type, result_type):
if is_none_rprimitive(result_type):
# Special case None return. The actual result may actually be a bool
# and so we can't just coerce it.
result = self.none()
else:
result = self.coerce(target, result_type, line, can_borrow=desc.is_borrowed)
return result
def matching_call_c(
self,
candidates: list[CFunctionDescription],
args: list[Value],
line: int,
result_type: RType | None = None,
can_borrow: bool = False,
) -> Value | None:
matching: CFunctionDescription | None = None
for desc in candidates:
if len(desc.arg_types) != len(args):
continue
if all(
is_subtype(actual.type, formal) for actual, formal in zip(args, desc.arg_types)
) and (not desc.is_borrowed or can_borrow):
if matching:
assert matching.priority != desc.priority, "Ambiguous:\n1) {}\n2) {}".format(
matching, desc
)
if desc.priority > matching.priority:
matching = desc
else:
matching = desc
if matching:
target = self.call_c(matching, args, line, result_type)
return target
return None
def int_op(self, type: RType, lhs: Value, rhs: Value, op: int, line: int = -1) -> Value:
"""Generate a native integer binary op.
Use native/C semantics, which sometimes differ from Python
semantics.
Args:
type: Either int64_rprimitive or int32_rprimitive
op: IntOp.* constant (e.g. IntOp.ADD)
"""
return self.add(IntOp(type, lhs, rhs, op, line))
def float_op(self, lhs: Value, rhs: Value, op: str, line: int) -> Value:
"""Generate a native float binary arithmetic operation.
This follows Python semantics (e.g. raise exception on division by zero).
Add a FloatOp directly if you want low-level semantics.
Args:
op: Binary operator (e.g. '+' or '*')
"""
op_id = float_op_to_id[op]
if op_id in (FloatOp.DIV, FloatOp.MOD):
if not (isinstance(rhs, Float) and rhs.value != 0.0):
c = self.compare_floats(rhs, Float(0.0), FloatComparisonOp.EQ, line)
err, ok = BasicBlock(), BasicBlock()
self.add(Branch(c, err, ok, Branch.BOOL, rare=True))
self.activate_block(err)
if op_id == FloatOp.DIV:
msg = "float division by zero"
else:
msg = "float modulo"
self.add(RaiseStandardError(RaiseStandardError.ZERO_DIVISION_ERROR, msg, line))
self.add(Unreachable())
self.activate_block(ok)
if op_id == FloatOp.MOD:
# Adjust the result to match Python semantics (FloatOp follows C semantics).
return self.float_mod(lhs, rhs, line)
else:
return self.add(FloatOp(lhs, rhs, op_id, line))
def float_mod(self, lhs: Value, rhs: Value, line: int) -> Value:
"""Perform x % y on floats using Python semantics."""
mod = self.add(FloatOp(lhs, rhs, FloatOp.MOD, line))
res = Register(float_rprimitive)
self.add(Assign(res, mod))
tricky, adjust, copysign, done = BasicBlock(), BasicBlock(), BasicBlock(), BasicBlock()
is_zero = self.add(FloatComparisonOp(res, Float(0.0), FloatComparisonOp.EQ, line))
self.add(Branch(is_zero, copysign, tricky, Branch.BOOL))
self.activate_block(tricky)
same_signs = self.is_same_float_signs(lhs, rhs, line)
self.add(Branch(same_signs, done, adjust, Branch.BOOL))
self.activate_block(adjust)
adj = self.float_op(res, rhs, "+", line)
self.add(Assign(res, adj))
self.add(Goto(done))
self.activate_block(copysign)
# If the remainder is zero, CPython ensures the result has the
# same sign as the denominator.
adj = self.call_c(copysign_op, [Float(0.0), rhs], line)
self.add(Assign(res, adj))
self.add(Goto(done))
self.activate_block(done)
return res
def compare_floats(self, lhs: Value, rhs: Value, op: int, line: int) -> Value:
return self.add(FloatComparisonOp(lhs, rhs, op, line))
def fixed_width_int_op(
self, type: RPrimitive, lhs: Value, rhs: Value, op: int, line: int
) -> Value:
"""Generate a binary op using Python fixed-width integer semantics.
These may differ in overflow/rounding behavior from native/C ops.
Args:
type: Either int64_rprimitive or int32_rprimitive
op: IntOp.* constant (e.g. IntOp.ADD)
"""
lhs = self.coerce(lhs, type, line)
rhs = self.coerce(rhs, type, line)
if op == IntOp.DIV:
if isinstance(rhs, Integer) and rhs.value not in (-1, 0):
if not type.is_signed:
return self.int_op(type, lhs, rhs, IntOp.DIV, line)
else:
# Inline simple division by a constant, so that C
# compilers can optimize more
return self.inline_fixed_width_divide(type, lhs, rhs, line)
if is_int64_rprimitive(type):
prim = int64_divide_op
elif is_int32_rprimitive(type):
prim = int32_divide_op
elif is_int16_rprimitive(type):
prim = int16_divide_op
elif is_uint8_rprimitive(type):
self.check_for_zero_division(rhs, type, line)
return self.int_op(type, lhs, rhs, op, line)
else:
assert False, type
return self.call_c(prim, [lhs, rhs], line)
if op == IntOp.MOD:
if isinstance(rhs, Integer) and rhs.value not in (-1, 0):
if not type.is_signed:
return self.int_op(type, lhs, rhs, IntOp.MOD, line)
else:
# Inline simple % by a constant, so that C
# compilers can optimize more
return self.inline_fixed_width_mod(type, lhs, rhs, line)
if is_int64_rprimitive(type):
prim = int64_mod_op
elif is_int32_rprimitive(type):
prim = int32_mod_op
elif is_int16_rprimitive(type):
prim = int16_mod_op
elif is_uint8_rprimitive(type):
self.check_for_zero_division(rhs, type, line)
return self.int_op(type, lhs, rhs, op, line)
else:
assert False, type
return self.call_c(prim, [lhs, rhs], line)
return self.int_op(type, lhs, rhs, op, line)
def check_for_zero_division(self, rhs: Value, type: RType, line: int) -> None:
err, ok = BasicBlock(), BasicBlock()
is_zero = self.binary_op(rhs, Integer(0, type), "==", line)
self.add(Branch(is_zero, err, ok, Branch.BOOL))
self.activate_block(err)
self.add(
RaiseStandardError(
RaiseStandardError.ZERO_DIVISION_ERROR, "integer division or modulo by zero", line
)
)
self.add(Unreachable())
self.activate_block(ok)
def inline_fixed_width_divide(self, type: RType, lhs: Value, rhs: Value, line: int) -> Value:
# Perform floor division (native division truncates)
res = Register(type)
div = self.int_op(type, lhs, rhs, IntOp.DIV, line)
self.add(Assign(res, div))
same_signs = self.is_same_native_int_signs(type, lhs, rhs, line)
tricky, adjust, done = BasicBlock(), BasicBlock(), BasicBlock()
self.add(Branch(same_signs, done, tricky, Branch.BOOL))
self.activate_block(tricky)
mul = self.int_op(type, res, rhs, IntOp.MUL, line)
mul_eq = self.add(ComparisonOp(mul, lhs, ComparisonOp.EQ, line))
self.add(Branch(mul_eq, done, adjust, Branch.BOOL))
self.activate_block(adjust)
adj = self.int_op(type, res, Integer(1, type), IntOp.SUB, line)
self.add(Assign(res, adj))
self.add(Goto(done))
self.activate_block(done)
return res
def inline_fixed_width_mod(self, type: RType, lhs: Value, rhs: Value, line: int) -> Value:
# Perform floor modulus
res = Register(type)
mod = self.int_op(type, lhs, rhs, IntOp.MOD, line)
self.add(Assign(res, mod))
same_signs = self.is_same_native_int_signs(type, lhs, rhs, line)
tricky, adjust, done = BasicBlock(), BasicBlock(), BasicBlock()
self.add(Branch(same_signs, done, tricky, Branch.BOOL))
self.activate_block(tricky)
is_zero = self.add(ComparisonOp(res, Integer(0, type), ComparisonOp.EQ, line))
self.add(Branch(is_zero, done, adjust, Branch.BOOL))
self.activate_block(adjust)
adj = self.int_op(type, res, rhs, IntOp.ADD, line)
self.add(Assign(res, adj))
self.add(Goto(done))
self.activate_block(done)
return res
def is_same_native_int_signs(self, type: RType, a: Value, b: Value, line: int) -> Value:
neg1 = self.add(ComparisonOp(a, Integer(0, type), ComparisonOp.SLT, line))
neg2 = self.add(ComparisonOp(b, Integer(0, type), ComparisonOp.SLT, line))
return self.add(ComparisonOp(neg1, neg2, ComparisonOp.EQ, line))
def is_same_float_signs(self, a: Value, b: Value, line: int) -> Value:
neg1 = self.add(FloatComparisonOp(a, Float(0.0), FloatComparisonOp.LT, line))
neg2 = self.add(FloatComparisonOp(b, Float(0.0), FloatComparisonOp.LT, line))
return self.add(ComparisonOp(neg1, neg2, ComparisonOp.EQ, line))
def comparison_op(self, lhs: Value, rhs: Value, op: int, line: int) -> Value:
return self.add(ComparisonOp(lhs, rhs, op, line))
def builtin_len(self, val: Value, line: int, use_pyssize_t: bool = False) -> Value:
"""Generate len(val).
Return short_int_rprimitive by default.
Return c_pyssize_t if use_pyssize_t is true (unshifted).
"""
typ = val.type
size_value = None
if is_list_rprimitive(typ) or is_tuple_rprimitive(typ) or is_bytes_rprimitive(typ):
elem_address = self.add(GetElementPtr(val, PyVarObject, "ob_size"))
size_value = self.add(LoadMem(c_pyssize_t_rprimitive, elem_address))
self.add(KeepAlive([val]))
elif is_set_rprimitive(typ):
elem_address = self.add(GetElementPtr(val, PySetObject, "used"))
size_value = self.add(LoadMem(c_pyssize_t_rprimitive, elem_address))
self.add(KeepAlive([val]))
elif is_dict_rprimitive(typ):
size_value = self.call_c(dict_ssize_t_size_op, [val], line)
elif is_str_rprimitive(typ):
size_value = self.call_c(str_ssize_t_size_op, [val], line)
if size_value is not None:
if use_pyssize_t:
return size_value
offset = Integer(1, c_pyssize_t_rprimitive, line)
return self.int_op(short_int_rprimitive, size_value, offset, IntOp.LEFT_SHIFT, line)
if isinstance(typ, RInstance):
# TODO: Support use_pyssize_t
assert not use_pyssize_t
length = self.gen_method_call(val, "__len__", [], int_rprimitive, line)
length = self.coerce(length, int_rprimitive, line)
ok, fail = BasicBlock(), BasicBlock()
self.compare_tagged_condition(length, Integer(0), ">=", ok, fail, line)
self.activate_block(fail)
self.add(
RaiseStandardError(
RaiseStandardError.VALUE_ERROR, "__len__() should return >= 0", line
)
)
self.add(Unreachable())
self.activate_block(ok)
return length
# generic case
if use_pyssize_t:
return self.call_c(generic_ssize_t_len_op, [val], line)
else:
return self.call_c(generic_len_op, [val], line)
def new_tuple(self, items: list[Value], line: int) -> Value:
size: Value = Integer(len(items), c_pyssize_t_rprimitive)
return self.call_c(new_tuple_op, [size] + items, line)
def new_tuple_with_length(self, length: Value, line: int) -> Value:
"""This function returns an uninitialized tuple.
If the length is non-zero, the caller must initialize the tuple, before
it can be made visible to user code -- otherwise the tuple object is broken.
You might need further initialization with `new_tuple_set_item_op` op.
Args:
length: desired length of the new tuple. The rtype should be
c_pyssize_t_rprimitive
line: line number
"""
return self.call_c(new_tuple_with_length_op, [length], line)
def int_to_float(self, n: Value, line: int) -> Value:
return self.call_c(int_to_float_op, [n], line)
# Internal helpers
def decompose_union_helper(
self,
obj: Value,
rtype: RUnion,
result_type: RType,
process_item: Callable[[Value], Value],
line: int,
) -> Value:
"""Generate isinstance() + specialized operations for union items.
Say, for Union[A, B] generate ops resembling this (pseudocode):
if isinstance(obj, A):
result = <result of process_item(cast(A, obj)>
else:
result = <result of process_item(cast(B, obj)>
Args:
obj: value with a union type
rtype: the union type
result_type: result of the operation
process_item: callback to generate op for a single union item (arg is coerced
to union item type)
line: line number
"""
# TODO: Optimize cases where a single operation can handle multiple union items
# (say a method is implemented in a common base class)
fast_items = []
rest_items = []
for item in rtype.items:
if isinstance(item, RInstance):
fast_items.append(item)
else:
# For everything but RInstance we fall back to C API
rest_items.append(item)
exit_block = BasicBlock()
result = Register(result_type)
for i, item in enumerate(fast_items):
more_types = i < len(fast_items) - 1 or rest_items
if more_types:
# We are not at the final item so we need one more branch
op = self.isinstance_native(obj, item.class_ir, line)
true_block, false_block = BasicBlock(), BasicBlock()
self.add_bool_branch(op, true_block, false_block)
self.activate_block(true_block)
coerced = self.coerce(obj, item, line)
temp = process_item(coerced)
temp2 = self.coerce(temp, result_type, line)
self.add(Assign(result, temp2))
self.goto(exit_block)
if more_types:
self.activate_block(false_block)
if rest_items:
# For everything else we use generic operation. Use force=True to drop the
# union type.
coerced = self.coerce(obj, object_rprimitive, line, force=True)
temp = process_item(coerced)
temp2 = self.coerce(temp, result_type, line)
self.add(Assign(result, temp2))
self.goto(exit_block)
self.activate_block(exit_block)
return result
def translate_special_method_call(
self,
base_reg: Value,
name: str,
args: list[Value],
result_type: RType | None,
line: int,
can_borrow: bool = False,
) -> Value | None:
"""Translate a method call which is handled nongenerically.
These are special in the sense that we have code generated specifically for them.
They tend to be method calls which have equivalents in C that are more direct
than calling with the PyObject api.
Return None if no translation found; otherwise return the target register.
"""
call_c_ops_candidates = method_call_ops.get(name, [])
call_c_op = self.matching_call_c(
call_c_ops_candidates, [base_reg] + args, line, result_type, can_borrow=can_borrow
)
return call_c_op
def translate_eq_cmp(self, lreg: Value, rreg: Value, expr_op: str, line: int) -> Value | None:
"""Add a equality comparison operation.
Args:
expr_op: either '==' or '!='
"""
ltype = lreg.type
rtype = rreg.type
if not (isinstance(ltype, RInstance) and ltype == rtype):
return None
class_ir = ltype.class_ir
# Check whether any subclasses of the operand redefines __eq__
# or it might be redefined in a Python parent class or by
# dataclasses
cmp_varies_at_runtime = (
not class_ir.is_method_final("__eq__")
or not class_ir.is_method_final("__ne__")
or class_ir.inherits_python
or class_ir.is_augmented
)
if cmp_varies_at_runtime:
# We might need to call left.__eq__(right) or right.__eq__(left)
# depending on which is the more specific type.
return None
if not class_ir.has_method("__eq__"):
# There's no __eq__ defined, so just use object identity.
identity_ref_op = "is" if expr_op == "==" else "is not"
return self.translate_is_op(lreg, rreg, identity_ref_op, line)
return self.gen_method_call(lreg, op_methods[expr_op], [rreg], ltype, line)
def translate_is_op(self, lreg: Value, rreg: Value, expr_op: str, line: int) -> Value:
"""Create equality comparison operation between object identities
Args:
expr_op: either 'is' or 'is not'
"""
op = ComparisonOp.EQ if expr_op == "is" else ComparisonOp.NEQ
lhs = self.coerce(lreg, object_rprimitive, line)
rhs = self.coerce(rreg, object_rprimitive, line)
return self.add(ComparisonOp(lhs, rhs, op, line))
def _create_dict(self, keys: list[Value], values: list[Value], line: int) -> Value:
"""Create a dictionary(possibly empty) using keys and values"""
# keys and values should have the same number of items
size = len(keys)
if size > 0:
size_value: Value = Integer(size, c_pyssize_t_rprimitive)
# merge keys and values
items = [i for t in list(zip(keys, values)) for i in t]
return self.call_c(dict_build_op, [size_value] + items, line)
else:
return self.call_c(dict_new_op, [], line)
def error(self, msg: str, line: int) -> None:
self.errors.error(msg, self.module_path, line)
def num_positional_args(arg_values: list[Value], arg_kinds: list[ArgKind] | None) -> int:
if arg_kinds is None:
return len(arg_values)
num_pos = 0
for kind in arg_kinds:
if kind == ARG_POS:
num_pos += 1
return num_pos