blob: ddc450d86337ab757f66a48eb9dd028c78909b04 [file] [log] [blame] [edit]
"""Utilities for emitting C code."""
from collections import OrderedDict
from typing import List, Set, Dict, Optional, Callable, Union
from mypyc.common import (
REG_PREFIX, ATTR_PREFIX, STATIC_PREFIX, TYPE_PREFIX, NATIVE_PREFIX,
FAST_ISINSTANCE_MAX_SUBCLASSES
)
from mypyc.ops import (
Environment, BasicBlock, Value, RType, RTuple, RInstance,
RUnion, RPrimitive,
is_float_rprimitive, is_bool_rprimitive, is_int_rprimitive, is_short_int_rprimitive,
is_list_rprimitive, is_dict_rprimitive, is_set_rprimitive, is_tuple_rprimitive,
is_none_rprimitive, is_object_rprimitive, object_rprimitive, is_str_rprimitive, ClassIR,
FuncDecl, int_rprimitive, is_optional_type, optional_value_type, all_concrete_classes
)
from mypyc.namegen import NameGenerator
from mypyc.sametype import is_same_type
class HeaderDeclaration:
def __init__(self,
dependencies: Set[str], decl: List[str], defn: Optional[List[str]],
needs_extern: bool = False) -> None:
self.dependencies = dependencies
self.decl = decl
self.defn = defn
self.needs_extern = needs_extern
class EmitterContext:
"""Shared emitter state for an entire compilation unit."""
def __init__(self, module_names: List[str]) -> None:
self.temp_counter = 0
self.names = NameGenerator(module_names)
# The map below is used for generating declarations and
# definitions at the top of the C file. The main idea is that they can
# be generated at any time during the emit phase.
# A map of a C identifier to whatever the C identifier declares. Currently this is
# used for declaring structs and the key corresponds to the name of the struct.
# The declaration contains the body of the struct.
self.declarations = OrderedDict() # type: Dict[str, HeaderDeclaration]
class Emitter:
"""Helper for C code generation."""
def __init__(self, context: EmitterContext, env: Optional[Environment] = None) -> None:
self.context = context
self.names = context.names
self.env = env or Environment()
self.fragments = [] # type: List[str]
self._indent = 0
# Low-level operations
def indent(self) -> None:
self._indent += 4
def dedent(self) -> None:
self._indent -= 4
assert self._indent >= 0
def label(self, label: BasicBlock) -> str:
return 'CPyL%s' % label.label
def reg(self, reg: Value) -> str:
return REG_PREFIX + reg.name
def attr(self, name: str) -> str:
return ATTR_PREFIX + name
def emit_line(self, line: str = '') -> None:
if line.startswith('}'):
self.dedent()
self.fragments.append(self._indent * ' ' + line + '\n')
if line.endswith('{'):
self.indent()
def emit_lines(self, *lines: str) -> None:
for line in lines:
self.emit_line(line)
def emit_label(self, label: Union[BasicBlock, str]) -> None:
if isinstance(label, str):
text = label
else:
text = self.label(label)
# Extra semicolon prevents an error when the next line declares a tempvar
self.fragments.append('{}: ;\n'.format(text))
def emit_from_emitter(self, emitter: 'Emitter') -> None:
self.fragments.extend(emitter.fragments)
def emit_printf(self, fmt: str, *args: str) -> None:
fmt = fmt.replace('\n', '\\n')
self.emit_line('printf(%s);' % ', '.join(['"%s"' % fmt] + list(args)))
self.emit_line('fflush(stdout);')
def temp_name(self) -> str:
self.context.temp_counter += 1
return '__tmp%d' % self.context.temp_counter
def new_label(self) -> str:
self.context.temp_counter += 1
return '__LL%d' % self.context.temp_counter
def static_name(self, id: str, module: Optional[str], prefix: str = STATIC_PREFIX) -> str:
"""Create name of a C static variable.
These are used for literals and imported modules, among other
things.
The caller should ensure that the (id, module) pair cannot
overlap with other calls to this method within a compilation
unit.
"""
suffix = self.names.private_name(module or '', id)
return '{}{}'.format(prefix, suffix)
def type_struct_name(self, cl: ClassIR) -> str:
return self.static_name(cl.name, cl.module_name, prefix=TYPE_PREFIX)
def ctype(self, rtype: RType) -> str:
return rtype._ctype
def ctype_spaced(self, rtype: RType) -> str:
"""Adds a space after ctype for non-pointers."""
ctype = self.ctype(rtype)
if ctype[-1] == '*':
return ctype
else:
return ctype + ' '
def c_undefined_value(self, rtype: RType) -> str:
if not rtype.is_unboxed:
return 'NULL'
elif isinstance(rtype, RPrimitive):
return rtype.c_undefined
elif isinstance(rtype, RTuple):
return self.tuple_undefined_value(rtype)
assert False, rtype
def c_error_value(self, rtype: RType) -> str:
return self.c_undefined_value(rtype)
def native_function_name(self, fn: FuncDecl) -> str:
return '{}{}'.format(NATIVE_PREFIX, fn.cname(self.names))
def tuple_c_declaration(self, rtuple: RTuple) -> List[str]:
result = ['struct {} {{'.format(rtuple.struct_name)]
if len(rtuple.types) == 0: # empty tuple
# Empty tuples contain a flag so that they can still indicate
# error values.
result.append('int empty_struct_error_flag;')
else:
i = 0
for typ in rtuple.types:
result.append('{}f{};'.format(self.ctype_spaced(typ), i))
i += 1
result.append('};')
result.append('')
return result
def tuple_undefined_check_cond(
self, rtuple: RTuple, tuple_expr_in_c: str,
c_type_compare_val: Callable[[RType], str], compare: str) -> str:
if len(rtuple.types) == 0:
# empty tuple
return '{}.empty_struct_error_flag {} {}'.format(
tuple_expr_in_c, compare, c_type_compare_val(int_rprimitive))
item_type = rtuple.types[0]
if isinstance(item_type, RTuple):
return self.tuple_undefined_check_cond(
item_type, tuple_expr_in_c + '.f0', c_type_compare_val, compare)
else:
return '{}.f0 {} {}'.format(
tuple_expr_in_c, compare, c_type_compare_val(item_type))
def tuple_undefined_value(self, rtuple: RTuple) -> str:
context = self.context
id = rtuple.unique_id
name = 'tuple_undefined_' + id
if name not in context.declarations:
values = self.tuple_undefined_value_helper(rtuple)
var = 'struct {} {}'.format(rtuple.struct_name, name)
decl = '{};'.format(var)
init = '{} = {{ {} }};'.format(var, ''.join(values))
context.declarations[name] = HeaderDeclaration(
set([rtuple.struct_name]), [decl], [init])
return name
def tuple_undefined_value_helper(self, rtuple: RTuple) -> List[str]:
res = []
# see tuple_c_declaration()
if len(rtuple.types) == 0:
return [self.c_undefined_value(int_rprimitive)]
for item in rtuple.types:
if not isinstance(item, RTuple):
res.append(self.c_undefined_value(item))
else:
sub_list = self.tuple_undefined_value_helper(item)
res.append('{ ')
res.extend(sub_list)
res.append(' }')
res.append(', ')
return res[:-1]
# Higher-level operations
def declare_tuple_struct(self, tuple_type: RTuple) -> None:
if tuple_type.struct_name not in self.context.declarations:
dependencies = set()
for typ in tuple_type.types:
# XXX other types might eventually need similar behavior
if isinstance(typ, RTuple):
dependencies.add(typ.struct_name)
self.context.declarations[tuple_type.struct_name] = HeaderDeclaration(
dependencies,
self.tuple_c_declaration(tuple_type),
None,
)
def emit_inc_ref(self, dest: str, rtype: RType) -> None:
"""Increment reference count of C expression `dest`.
For composite unboxed structures (e.g. tuples) recursively
increment reference counts for each component.
"""
if is_int_rprimitive(rtype):
self.emit_line('CPyTagged_IncRef(%s);' % dest)
elif isinstance(rtype, RTuple):
for i, item_type in enumerate(rtype.types):
self.emit_inc_ref('{}.f{}'.format(dest, i), item_type)
elif not rtype.is_unboxed:
self.emit_line('CPy_INCREF(%s);' % dest)
# Otherwise assume it's an unboxed, pointerless value and do nothing.
def emit_dec_ref(self, dest: str, rtype: RType, is_xdec: bool = False) -> None:
"""Decrement reference count of C expression `dest`.
For composite unboxed structures (e.g. tuples) recursively
decrement reference counts for each component.
"""
x = 'X' if is_xdec else ''
if is_int_rprimitive(rtype):
self.emit_line('CPyTagged_%sDecRef(%s);' % (x, dest))
elif isinstance(rtype, RTuple):
for i, item_type in enumerate(rtype.types):
self.emit_dec_ref('{}.f{}'.format(dest, i), item_type, is_xdec)
elif not rtype.is_unboxed:
self.emit_line('CPy_%sDecRef(%s);' % (x, dest))
# Otherwise assume it's an unboxed, pointerless value and do nothing.
def pretty_name(self, typ: RType) -> str:
value_type = optional_value_type(typ)
if value_type is not None:
return '%s or None' % self.pretty_name(value_type)
return str(typ)
def emit_cast(self, src: str, dest: str, typ: RType, declare_dest: bool = False,
custom_message: Optional[str] = None, optional: bool = False,
src_type: Optional[RType] = None,
likely: bool = True) -> None:
"""Emit code for casting a value of given type.
Somewhat strangely, this supports unboxed types but only
operates on boxed versions. This is necessary to properly
handle types such as Optional[int] in compatability glue.
Assign NULL (error value) to dest if the value has an incompatible type.
Always copy/steal the reference in src.
Args:
src: Name of source C variable
dest: Name of target C variable
typ: Type of value
declare_dest: If True, also declare the variable 'dest'
likely: If the cast is likely to succeed (can be False for unions)
"""
if custom_message is not None:
err = custom_message
else:
err = 'CPy_TypeError("{}", {});'.format(self.pretty_name(typ), src)
# Special case casting *from* optional
if src_type and is_optional_type(src_type) and not is_object_rprimitive(typ):
value_type = optional_value_type(src_type)
assert value_type is not None
if is_same_type(value_type, typ):
if declare_dest:
self.emit_line('PyObject *{};'.format(dest))
check = '({} != Py_None)'
if likely:
check = '(likely{})'.format(check)
self.emit_arg_check(src, dest, typ, check.format(src), optional)
self.emit_lines(
' {} = {};'.format(dest, src),
'else {',
err,
'{} = NULL;'.format(dest),
'}')
return
# TODO: Verify refcount handling.
if (is_list_rprimitive(typ) or is_dict_rprimitive(typ) or is_set_rprimitive(typ)
or is_float_rprimitive(typ) or is_str_rprimitive(typ) or is_int_rprimitive(typ)
or is_bool_rprimitive(typ)):
if declare_dest:
self.emit_line('PyObject *{};'.format(dest))
if is_list_rprimitive(typ):
prefix = 'PyList'
elif is_dict_rprimitive(typ):
prefix = 'PyDict'
elif is_set_rprimitive(typ):
prefix = 'PySet'
elif is_float_rprimitive(typ):
prefix = 'CPyFloat'
elif is_str_rprimitive(typ):
prefix = 'PyUnicode'
elif is_int_rprimitive(typ):
prefix = 'PyLong'
elif is_bool_rprimitive(typ):
prefix = 'PyBool'
else:
assert False, 'unexpected primitive type'
check = '({}_Check({}))'
if likely:
check = '(likely{})'.format(check)
self.emit_arg_check(src, dest, typ, check.format(prefix, src), optional)
self.emit_lines(
' {} = {};'.format(dest, src),
'else {',
err,
'{} = NULL;'.format(dest),
'}')
elif is_tuple_rprimitive(typ):
if declare_dest:
self.emit_line('{} {};'.format(self.ctype(typ), dest))
check = '(PyTuple_Check({}))'
if likely:
check = '(likely{})'.format(check)
self.emit_arg_check(src, dest, typ,
check.format(src), optional)
self.emit_lines(
' {} = {};'.format(dest, src),
'else {',
err,
'{} = NULL;'.format(dest),
'}')
elif isinstance(typ, RInstance):
if declare_dest:
self.emit_line('PyObject *{};'.format(dest))
concrete = all_concrete_classes(typ.class_ir)
n_types = len(concrete)
# If there are too many concrete subclasses or we can't find any
# (meaning the code ought to be dead), fall back to a normal typecheck.
# Otherwise check all the subclasses.
if n_types == 0 or n_types > FAST_ISINSTANCE_MAX_SUBCLASSES + 1:
check = '(PyObject_TypeCheck({}, {}))'.format(
src, self.type_struct_name(typ.class_ir))
else:
full_str = '(Py_TYPE({src}) == {targets[0]})'
for i in range(1, n_types):
full_str += ' || (Py_TYPE({src}) == {targets[%d]})' % i
if n_types > 1:
full_str = '(%s)' % full_str
check = full_str.format(
src=src, targets=[self.type_struct_name(ir) for ir in concrete])
if likely:
check = '(likely{})'.format(check)
self.emit_arg_check(src, dest, typ, check, optional)
self.emit_lines(
' {} = {};'.format(dest, src),
'else {',
err,
'{} = NULL;'.format(dest),
'}')
elif is_none_rprimitive(typ):
if declare_dest:
self.emit_line('PyObject *{};'.format(dest))
check = '({} == Py_None)'
if likely:
check = '(likely{})'.format(check)
self.emit_arg_check(src, dest, typ,
check.format(src), optional)
self.emit_lines(
' {} = {};'.format(dest, src),
'else {',
err,
'{} = NULL;'.format(dest),
'}')
elif is_object_rprimitive(typ):
if declare_dest:
self.emit_line('PyObject *{};'.format(dest))
self.emit_arg_check(src, dest, typ, '', optional)
self.emit_line('{} = {};'.format(dest, src))
if optional:
self.emit_line('}')
elif isinstance(typ, RUnion):
self.emit_union_cast(src, dest, typ, declare_dest, err, optional, src_type)
elif isinstance(typ, RTuple):
assert not optional
self.emit_tuple_cast(src, dest, typ, declare_dest, err, src_type)
else:
assert False, 'Cast not implemented: %s' % typ
def emit_union_cast(self, src: str, dest: str, typ: RUnion, declare_dest: bool,
err: str, optional: bool, src_type: Optional[RType]) -> None:
"""Emit cast to a union type.
The arguments are similar to emit_cast.
"""
if declare_dest:
self.emit_line('PyObject *{};'.format(dest))
good_label = self.new_label()
if optional:
self.emit_line('if ({} == NULL) {{'.format(src))
self.emit_line('{} = {};'.format(dest, self.c_error_value(typ)))
self.emit_line('goto {};'.format(good_label))
self.emit_line('}')
for item in typ.items:
self.emit_cast(src,
dest,
item,
declare_dest=False,
custom_message='',
optional=False,
likely=False)
self.emit_line('if ({} != NULL) goto {};'.format(dest, good_label))
# Handle cast failure.
self.emit_line(err)
self.emit_label(good_label)
def emit_tuple_cast(self, src: str, dest: str, typ: RTuple, declare_dest: bool,
err: str, src_type: Optional[RType]) -> None:
"""Emit cast to a tuple type.
The arguments are similar to emit_cast.
"""
if declare_dest:
self.emit_line('PyObject *{};'.format(dest))
# This reuse of the variable is super dodgy. We don't even
# care about the values except to check whether they are
# invalid.
out_label = self.new_label()
self.emit_lines(
'if (unlikely(!(PyTuple_Check({r}) && PyTuple_GET_SIZE({r}) == {size}))) {{'.format(
r=src, size=len(typ.types)),
'{} = NULL;'.format(dest),
'goto {};'.format(out_label),
'}')
for i, item in enumerate(typ.types):
# Since we did the checks above this should never fail
self.emit_cast('PyTuple_GET_ITEM({}, {})'.format(src, i),
dest,
item,
declare_dest=False,
custom_message='',
optional=False)
self.emit_line('if ({} == NULL) goto {};'.format(dest, out_label))
self.emit_line('{} = {};'.format(dest, src))
self.emit_label(out_label)
def emit_arg_check(self, src: str, dest: str, typ: RType, check: str, optional: bool) -> None:
if optional:
self.emit_line('if ({} == NULL) {{'.format(src))
self.emit_line('{} = {};'.format(dest, self.c_error_value(typ)))
if check != '':
self.emit_line('{}if {}'.format('} else ' if optional else '', check))
elif optional:
self.emit_line('else {')
def emit_unbox(self, src: str, dest: str, typ: RType, custom_failure: Optional[str] = None,
declare_dest: bool = False, borrow: bool = False,
optional: bool = False) -> None:
"""Emit code for unboxing a value of given type (from PyObject *).
Evaluate C code in 'failure' if the value has an incompatible type.
Always generate a new reference.
Args:
src: Name of source C variable
dest: Name of target C variable
typ: Type of value
failure: What happens on error
declare_dest: If True, also declare the variable 'dest'
borrow: If True, create a borrowed reference
"""
# TODO: Verify refcount handling.
raise_exc = 'CPy_TypeError("{}", {});'.format(self.pretty_name(typ), src)
if custom_failure is not None:
failure = [raise_exc,
custom_failure]
else:
failure = [raise_exc,
'%s = %s;' % (dest, self.c_error_value(typ))]
if is_int_rprimitive(typ) or is_short_int_rprimitive(typ):
if declare_dest:
self.emit_line('CPyTagged {};'.format(dest))
self.emit_arg_check(src, dest, typ, '(likely(PyLong_Check({})))'.format(src),
optional)
if borrow:
self.emit_line(' {} = CPyTagged_BorrowFromObject({});'.format(dest, src))
else:
self.emit_line(' {} = CPyTagged_FromObject({});'.format(dest, src))
self.emit_line('else {')
self.emit_lines(*failure)
self.emit_line('}')
elif is_bool_rprimitive(typ):
# Whether we are borrowing or not makes no difference.
if declare_dest:
self.emit_line('char {};'.format(dest))
self.emit_arg_check(src, dest, typ, '(unlikely(!PyBool_Check({}))) {{'.format(src),
optional)
self.emit_lines(*failure)
self.emit_line('} else')
conversion = '{} == Py_True'.format(src)
self.emit_line(' {} = {};'.format(dest, conversion))
elif is_none_rprimitive(typ):
# Whether we are borrowing or not makes no difference.
if declare_dest:
self.emit_line('char {};'.format(dest))
self.emit_arg_check(src, dest, typ, '(unlikely({} != Py_None)) {{'.format(src),
optional)
self.emit_lines(*failure)
self.emit_line('} else')
self.emit_line(' {} = 1;'.format(dest))
elif isinstance(typ, RTuple):
self.declare_tuple_struct(typ)
if declare_dest:
self.emit_line('{} {};'.format(self.ctype(typ), dest))
# HACK: The error handling for unboxing tuples is busted
# and instead of fixing it I am just wrapping it in the
# cast code which I think is right. This is not good.
if optional:
self.emit_line('if ({} == NULL) {{'.format(src))
self.emit_line('{} = {};'.format(dest, self.c_error_value(typ)))
self.emit_line('} else {')
cast_temp = self.temp_name()
self.emit_tuple_cast(src, cast_temp, typ, declare_dest=True, err='', src_type=None)
self.emit_line('if (unlikely({} == NULL)) {{'.format(cast_temp))
# self.emit_arg_check(src, dest, typ,
# '(!PyTuple_Check({}) || PyTuple_Size({}) != {}) {{'.format(
# src, src, len(typ.types)), optional)
self.emit_lines(*failure) # TODO: Decrease refcount?
self.emit_line('} else {')
if not typ.types:
self.emit_line('{}.empty_struct_error_flag = 0;'.format(dest))
for i, item_type in enumerate(typ.types):
temp = self.temp_name()
# emit_tuple_cast above checks the size, so this should not fail
self.emit_line('PyObject *{} = PyTuple_GET_ITEM({}, {});'.format(temp, src, i))
temp2 = self.temp_name()
# Unbox or check the item.
if item_type.is_unboxed:
self.emit_unbox(temp, temp2, item_type, custom_failure, declare_dest=True,
borrow=borrow)
else:
if not borrow:
self.emit_inc_ref(temp, object_rprimitive)
self.emit_cast(temp, temp2, item_type, declare_dest=True)
self.emit_line('{}.f{} = {};'.format(dest, i, temp2))
self.emit_line('}')
if optional:
self.emit_line('}')
else:
assert False, 'Unboxing not implemented: %s' % typ
def emit_box(self, src: str, dest: str, typ: RType, declare_dest: bool = False,
can_borrow: bool = False) -> None:
"""Emit code for boxing a value of given type.
Generate a simple assignment if no boxing is needed.
The source reference count is stolen for the result (no need to decref afterwards).
"""
# TODO: Always generate a new reference (if a reference type)
if declare_dest:
declaration = 'PyObject *'
else:
declaration = ''
if is_int_rprimitive(typ) or is_short_int_rprimitive(typ):
# Steal the existing reference if it exists.
self.emit_line('{}{} = CPyTagged_StealAsObject({});'.format(declaration, dest, src))
elif is_bool_rprimitive(typ):
# N.B: bool is special cased to produce a borrowed value
# after boxing, so we don't need to increment the refcount
# when this comes directly from a Box op.
self.emit_lines('{}{} = {} ? Py_True : Py_False;'.format(declaration, dest, src))
if not can_borrow:
self.emit_inc_ref(dest, object_rprimitive)
elif is_none_rprimitive(typ):
# N.B: None is special cased to produce a borrowed value
# after boxing, so we don't need to increment the refcount
# when this comes directly from a Box op.
self.emit_lines('{}{} = Py_None;'.format(declaration, dest))
if not can_borrow:
self.emit_inc_ref(dest, object_rprimitive)
elif isinstance(typ, RTuple):
self.declare_tuple_struct(typ)
self.emit_line('{}{} = PyTuple_New({});'.format(declaration, dest, len(typ.types)))
self.emit_line('if (unlikely({} == NULL))'.format(dest))
self.emit_line(' CPyError_OutOfMemory();')
# TODO: Fail if dest is None
for i in range(0, len(typ.types)):
if not typ.is_unboxed:
self.emit_line('PyTuple_SET_ITEM({}, {}, {}.f{}'.format(dest, i, src, i))
else:
inner_name = self.temp_name()
self.emit_box('{}.f{}'.format(src, i), inner_name, typ.types[i],
declare_dest=True)
self.emit_line('PyTuple_SET_ITEM({}, {}, {});'.format(dest, i, inner_name))
else:
assert not typ.is_unboxed
# Type is boxed -- trivially just assign.
self.emit_line('{}{} = {};'.format(declaration, dest, src))
def emit_error_check(self, value: str, rtype: RType, failure: str) -> None:
"""Emit code for checking a native function return value for uncaught exception."""
if not isinstance(rtype, RTuple):
self.emit_line('if ({} == {}) {{'.format(value, self.c_error_value(rtype)))
else:
if len(rtype.types) == 0:
return # empty tuples can't fail.
else:
cond = self.tuple_undefined_check_cond(rtype, value, self.c_error_value, '==')
self.emit_line('if ({}) {{'.format(cond))
self.emit_lines(failure, '}')
def emit_gc_visit(self, target: str, rtype: RType) -> None:
"""Emit code for GC visiting a C variable reference.
Assume that 'target' represents a C expression that refers to a
struct member, such as 'self->x'.
"""
if not rtype.is_refcounted:
# Not refcounted -> no pointers -> no GC interaction.
return
elif isinstance(rtype, RPrimitive) and rtype.name == 'builtins.int':
self.emit_line('if (CPyTagged_CheckLong({})) {{'.format(target))
self.emit_line('Py_VISIT(CPyTagged_LongAsObject({}));'.format(target))
self.emit_line('}')
elif isinstance(rtype, RTuple):
for i, item_type in enumerate(rtype.types):
self.emit_gc_visit('{}.f{}'.format(target, i), item_type)
elif self.ctype(rtype) == 'PyObject *':
# The simplest case.
self.emit_line('Py_VISIT({});'.format(target))
else:
assert False, 'emit_gc_visit() not implemented for %s' % repr(rtype)
def emit_gc_clear(self, target: str, rtype: RType) -> None:
"""Emit code for clearing a C attribute reference for GC.
Assume that 'target' represents a C expression that refers to a
struct member, such as 'self->x'.
"""
if not rtype.is_refcounted:
# Not refcounted -> no pointers -> no GC interaction.
return
elif isinstance(rtype, RPrimitive) and rtype.name == 'builtins.int':
self.emit_line('if (CPyTagged_CheckLong({})) {{'.format(target))
self.emit_line('CPyTagged __tmp = {};'.format(target))
self.emit_line('{} = {};'.format(target, self.c_undefined_value(rtype)))
self.emit_line('Py_XDECREF(CPyTagged_LongAsObject(__tmp));')
self.emit_line('}')
elif isinstance(rtype, RTuple):
for i, item_type in enumerate(rtype.types):
self.emit_gc_clear('{}.f{}'.format(target, i), item_type)
elif self.ctype(rtype) == 'PyObject *' and self.c_undefined_value(rtype) == 'NULL':
# The simplest case.
self.emit_line('Py_CLEAR({});'.format(target))
else:
assert False, 'emit_gc_clear() not implemented for %s' % repr(rtype)