| // Float primitive operations |
| // |
| // These are registered in mypyc.primitives.float_ops. |
| |
| #include <Python.h> |
| #include "CPy.h" |
| |
| |
| static double CPy_DomainError(void) { |
| PyErr_SetString(PyExc_ValueError, "math domain error"); |
| return CPY_FLOAT_ERROR; |
| } |
| |
| static double CPy_MathRangeError(void) { |
| PyErr_SetString(PyExc_OverflowError, "math range error"); |
| return CPY_FLOAT_ERROR; |
| } |
| |
| double CPyFloat_FromTagged(CPyTagged x) { |
| if (CPyTagged_CheckShort(x)) { |
| return CPyTagged_ShortAsSsize_t(x); |
| } |
| double result = PyFloat_AsDouble(CPyTagged_LongAsObject(x)); |
| if (unlikely(result == -1.0) && PyErr_Occurred()) { |
| return CPY_FLOAT_ERROR; |
| } |
| return result; |
| } |
| |
| double CPyFloat_Sin(double x) { |
| double v = sin(x); |
| if (unlikely(isnan(v)) && !isnan(x)) { |
| return CPy_DomainError(); |
| } |
| return v; |
| } |
| |
| double CPyFloat_Cos(double x) { |
| double v = cos(x); |
| if (unlikely(isnan(v)) && !isnan(x)) { |
| return CPy_DomainError(); |
| } |
| return v; |
| } |
| |
| double CPyFloat_Tan(double x) { |
| if (unlikely(isinf(x))) { |
| return CPy_DomainError(); |
| } |
| return tan(x); |
| } |
| |
| double CPyFloat_Sqrt(double x) { |
| if (x < 0.0) { |
| return CPy_DomainError(); |
| } |
| return sqrt(x); |
| } |
| |
| double CPyFloat_Exp(double x) { |
| double v = exp(x); |
| if (unlikely(v == INFINITY) && x != INFINITY) { |
| return CPy_MathRangeError(); |
| } |
| return v; |
| } |
| |
| double CPyFloat_Log(double x) { |
| if (x <= 0.0) { |
| return CPy_DomainError(); |
| } |
| return log(x); |
| } |
| |
| CPyTagged CPyFloat_Floor(double x) { |
| double v = floor(x); |
| return CPyTagged_FromFloat(v); |
| } |
| |
| CPyTagged CPyFloat_Ceil(double x) { |
| double v = ceil(x); |
| return CPyTagged_FromFloat(v); |
| } |
| |
| bool CPyFloat_IsInf(double x) { |
| return isinf(x) != 0; |
| } |
| |
| bool CPyFloat_IsNaN(double x) { |
| return isnan(x) != 0; |
| } |
| |
| // From CPython 3.10.0, Objects/floatobject.c |
| static void |
| _float_div_mod(double vx, double wx, double *floordiv, double *mod) |
| { |
| double div; |
| *mod = fmod(vx, wx); |
| /* fmod is typically exact, so vx-mod is *mathematically* an |
| exact multiple of wx. But this is fp arithmetic, and fp |
| vx - mod is an approximation; the result is that div may |
| not be an exact integral value after the division, although |
| it will always be very close to one. |
| */ |
| div = (vx - *mod) / wx; |
| if (*mod) { |
| /* ensure the remainder has the same sign as the denominator */ |
| if ((wx < 0) != (*mod < 0)) { |
| *mod += wx; |
| div -= 1.0; |
| } |
| } |
| else { |
| /* the remainder is zero, and in the presence of signed zeroes |
| fmod returns different results across platforms; ensure |
| it has the same sign as the denominator. */ |
| *mod = copysign(0.0, wx); |
| } |
| /* snap quotient to nearest integral value */ |
| if (div) { |
| *floordiv = floor(div); |
| if (div - *floordiv > 0.5) { |
| *floordiv += 1.0; |
| } |
| } |
| else { |
| /* div is zero - get the same sign as the true quotient */ |
| *floordiv = copysign(0.0, vx / wx); /* zero w/ sign of vx/wx */ |
| } |
| } |
| |
| double CPyFloat_FloorDivide(double x, double y) { |
| double mod, floordiv; |
| if (y == 0) { |
| PyErr_SetString(PyExc_ZeroDivisionError, "float floor division by zero"); |
| return CPY_FLOAT_ERROR; |
| } |
| _float_div_mod(x, y, &floordiv, &mod); |
| return floordiv; |
| } |
| |
| // Adapted from CPython 3.10.7 |
| double CPyFloat_Pow(double x, double y) { |
| if (!isfinite(x) || !isfinite(y)) { |
| if (isnan(x)) |
| return y == 0.0 ? 1.0 : x; /* NaN**0 = 1 */ |
| else if (isnan(y)) |
| return x == 1.0 ? 1.0 : y; /* 1**NaN = 1 */ |
| else if (isinf(x)) { |
| int odd_y = isfinite(y) && fmod(fabs(y), 2.0) == 1.0; |
| if (y > 0.0) |
| return odd_y ? x : fabs(x); |
| else if (y == 0.0) |
| return 1.0; |
| else /* y < 0. */ |
| return odd_y ? copysign(0.0, x) : 0.0; |
| } |
| else if (isinf(y)) { |
| if (fabs(x) == 1.0) |
| return 1.0; |
| else if (y > 0.0 && fabs(x) > 1.0) |
| return y; |
| else if (y < 0.0 && fabs(x) < 1.0) { |
| #if PY_VERSION_HEX < 0x030B0000 |
| if (x == 0.0) { /* 0**-inf: divide-by-zero */ |
| return CPy_DomainError(); |
| } |
| #endif |
| return -y; /* result is +inf */ |
| } else |
| return 0.0; |
| } |
| } |
| double r = pow(x, y); |
| if (!isfinite(r)) { |
| if (isnan(r)) { |
| return CPy_DomainError(); |
| } |
| /* |
| an infinite result here arises either from: |
| (A) (+/-0.)**negative (-> divide-by-zero) |
| (B) overflow of x**y with x and y finite |
| */ |
| else if (isinf(r)) { |
| if (x == 0.0) |
| return CPy_DomainError(); |
| else |
| return CPy_MathRangeError(); |
| } |
| } |
| return r; |
| } |