blob: f4af59f4e50b67232261c1827bd51ef41d4fa7e8 [file] [log] [blame]
"""Calculation of the least upper bound types (joins)."""
from __future__ import annotations
from typing import overload
import mypy.typeops
from mypy.maptype import map_instance_to_supertype
from mypy.nodes import CONTRAVARIANT, COVARIANT, INVARIANT
from mypy.state import state
from mypy.subtypes import (
SubtypeContext,
find_member,
is_equivalent,
is_proper_subtype,
is_protocol_implementation,
is_subtype,
)
from mypy.types import (
AnyType,
CallableType,
DeletedType,
ErasedType,
FunctionLike,
Instance,
LiteralType,
NoneType,
Overloaded,
Parameters,
ParamSpecType,
PartialType,
ProperType,
TupleType,
Type,
TypeAliasType,
TypedDictType,
TypeOfAny,
TypeType,
TypeVarTupleType,
TypeVarType,
TypeVisitor,
UnboundType,
UninhabitedType,
UnionType,
UnpackType,
get_proper_type,
get_proper_types,
)
class InstanceJoiner:
def __init__(self) -> None:
self.seen_instances: list[tuple[Instance, Instance]] = []
def join_instances(self, t: Instance, s: Instance) -> ProperType:
if (t, s) in self.seen_instances or (s, t) in self.seen_instances:
return object_from_instance(t)
self.seen_instances.append((t, s))
# Calculate the join of two instance types
if t.type == s.type:
# Simplest case: join two types with the same base type (but
# potentially different arguments).
# Combine type arguments.
args: list[Type] = []
# N.B: We use zip instead of indexing because the lengths might have
# mismatches during daemon reprocessing.
for ta, sa, type_var in zip(t.args, s.args, t.type.defn.type_vars):
ta_proper = get_proper_type(ta)
sa_proper = get_proper_type(sa)
new_type: Type | None = None
if isinstance(ta_proper, AnyType):
new_type = AnyType(TypeOfAny.from_another_any, ta_proper)
elif isinstance(sa_proper, AnyType):
new_type = AnyType(TypeOfAny.from_another_any, sa_proper)
elif isinstance(type_var, TypeVarType):
if type_var.variance == COVARIANT:
new_type = join_types(ta, sa, self)
if len(type_var.values) != 0 and new_type not in type_var.values:
self.seen_instances.pop()
return object_from_instance(t)
if not is_subtype(new_type, type_var.upper_bound):
self.seen_instances.pop()
return object_from_instance(t)
# TODO: contravariant case should use meet but pass seen instances as
# an argument to keep track of recursive checks.
elif type_var.variance in (INVARIANT, CONTRAVARIANT):
if not is_equivalent(ta, sa):
self.seen_instances.pop()
return object_from_instance(t)
# If the types are different but equivalent, then an Any is involved
# so using a join in the contravariant case is also OK.
new_type = join_types(ta, sa, self)
else:
# ParamSpec type variables behave the same, independent of variance
if not is_equivalent(ta, sa):
return get_proper_type(type_var.upper_bound)
new_type = join_types(ta, sa, self)
assert new_type is not None
args.append(new_type)
result: ProperType = Instance(t.type, args)
elif t.type.bases and is_proper_subtype(
t, s, subtype_context=SubtypeContext(ignore_type_params=True)
):
result = self.join_instances_via_supertype(t, s)
else:
# Now t is not a subtype of s, and t != s. Now s could be a subtype
# of t; alternatively, we need to find a common supertype. This works
# in of the both cases.
result = self.join_instances_via_supertype(s, t)
self.seen_instances.pop()
return result
def join_instances_via_supertype(self, t: Instance, s: Instance) -> ProperType:
# Give preference to joins via duck typing relationship, so that
# join(int, float) == float, for example.
for p in t.type._promote:
if is_subtype(p, s):
return join_types(p, s, self)
for p in s.type._promote:
if is_subtype(p, t):
return join_types(t, p, self)
# Compute the "best" supertype of t when joined with s.
# The definition of "best" may evolve; for now it is the one with
# the longest MRO. Ties are broken by using the earlier base.
best: ProperType | None = None
for base in t.type.bases:
mapped = map_instance_to_supertype(t, base.type)
res = self.join_instances(mapped, s)
if best is None or is_better(res, best):
best = res
assert best is not None
for promote in t.type._promote:
if isinstance(promote, Instance):
res = self.join_instances(promote, s)
if is_better(res, best):
best = res
return best
def join_simple(declaration: Type | None, s: Type, t: Type) -> ProperType:
"""Return a simple least upper bound given the declared type.
This function should be only used by binder, and should not recurse.
For all other uses, use `join_types()`.
"""
declaration = get_proper_type(declaration)
s = get_proper_type(s)
t = get_proper_type(t)
if (s.can_be_true, s.can_be_false) != (t.can_be_true, t.can_be_false):
# if types are restricted in different ways, use the more general versions
s = mypy.typeops.true_or_false(s)
t = mypy.typeops.true_or_false(t)
if isinstance(s, AnyType):
return s
if isinstance(s, ErasedType):
return t
if is_proper_subtype(s, t, ignore_promotions=True):
return t
if is_proper_subtype(t, s, ignore_promotions=True):
return s
if isinstance(declaration, UnionType):
return mypy.typeops.make_simplified_union([s, t])
if isinstance(s, NoneType) and not isinstance(t, NoneType):
s, t = t, s
if isinstance(s, UninhabitedType) and not isinstance(t, UninhabitedType):
s, t = t, s
# Meets/joins require callable type normalization.
s, t = normalize_callables(s, t)
if isinstance(s, UnionType) and not isinstance(t, UnionType):
s, t = t, s
value = t.accept(TypeJoinVisitor(s))
if declaration is None or is_subtype(value, declaration):
return value
return declaration
def trivial_join(s: Type, t: Type) -> Type:
"""Return one of types (expanded) if it is a supertype of other, otherwise top type."""
if is_subtype(s, t):
return t
elif is_subtype(t, s):
return s
else:
return object_or_any_from_type(get_proper_type(t))
@overload
def join_types(
s: ProperType, t: ProperType, instance_joiner: InstanceJoiner | None = None
) -> ProperType:
...
@overload
def join_types(s: Type, t: Type, instance_joiner: InstanceJoiner | None = None) -> Type:
...
def join_types(s: Type, t: Type, instance_joiner: InstanceJoiner | None = None) -> Type:
"""Return the least upper bound of s and t.
For example, the join of 'int' and 'object' is 'object'.
"""
if mypy.typeops.is_recursive_pair(s, t):
# This case can trigger an infinite recursion, general support for this will be
# tricky so we use a trivial join (like for protocols).
return trivial_join(s, t)
s = get_proper_type(s)
t = get_proper_type(t)
if (s.can_be_true, s.can_be_false) != (t.can_be_true, t.can_be_false):
# if types are restricted in different ways, use the more general versions
s = mypy.typeops.true_or_false(s)
t = mypy.typeops.true_or_false(t)
if isinstance(s, UnionType) and not isinstance(t, UnionType):
s, t = t, s
if isinstance(s, AnyType):
return s
if isinstance(s, ErasedType):
return t
if isinstance(s, NoneType) and not isinstance(t, NoneType):
s, t = t, s
if isinstance(s, UninhabitedType) and not isinstance(t, UninhabitedType):
s, t = t, s
# Meets/joins require callable type normalization.
s, t = normalize_callables(s, t)
# Use a visitor to handle non-trivial cases.
return t.accept(TypeJoinVisitor(s, instance_joiner))
class TypeJoinVisitor(TypeVisitor[ProperType]):
"""Implementation of the least upper bound algorithm.
Attributes:
s: The other (left) type operand.
"""
def __init__(self, s: ProperType, instance_joiner: InstanceJoiner | None = None) -> None:
self.s = s
self.instance_joiner = instance_joiner
def visit_unbound_type(self, t: UnboundType) -> ProperType:
return AnyType(TypeOfAny.special_form)
def visit_union_type(self, t: UnionType) -> ProperType:
if is_proper_subtype(self.s, t):
return t
else:
return mypy.typeops.make_simplified_union([self.s, t])
def visit_any(self, t: AnyType) -> ProperType:
return t
def visit_none_type(self, t: NoneType) -> ProperType:
if state.strict_optional:
if isinstance(self.s, (NoneType, UninhabitedType)):
return t
elif isinstance(self.s, UnboundType):
return AnyType(TypeOfAny.special_form)
else:
return mypy.typeops.make_simplified_union([self.s, t])
else:
return self.s
def visit_uninhabited_type(self, t: UninhabitedType) -> ProperType:
return self.s
def visit_deleted_type(self, t: DeletedType) -> ProperType:
return self.s
def visit_erased_type(self, t: ErasedType) -> ProperType:
return self.s
def visit_type_var(self, t: TypeVarType) -> ProperType:
if isinstance(self.s, TypeVarType) and self.s.id == t.id:
return self.s
else:
return self.default(self.s)
def visit_param_spec(self, t: ParamSpecType) -> ProperType:
if self.s == t:
return t
return self.default(self.s)
def visit_type_var_tuple(self, t: TypeVarTupleType) -> ProperType:
if self.s == t:
return t
return self.default(self.s)
def visit_unpack_type(self, t: UnpackType) -> UnpackType:
raise NotImplementedError
def visit_parameters(self, t: Parameters) -> ProperType:
if self.s == t:
return t
else:
return self.default(self.s)
def visit_instance(self, t: Instance) -> ProperType:
if isinstance(self.s, Instance):
if self.instance_joiner is None:
self.instance_joiner = InstanceJoiner()
nominal = self.instance_joiner.join_instances(t, self.s)
structural: Instance | None = None
if t.type.is_protocol and is_protocol_implementation(self.s, t):
structural = t
elif self.s.type.is_protocol and is_protocol_implementation(t, self.s):
structural = self.s
# Structural join is preferred in the case where we have found both
# structural and nominal and they have same MRO length (see two comments
# in join_instances_via_supertype). Otherwise, just return the nominal join.
if not structural or is_better(nominal, structural):
return nominal
return structural
elif isinstance(self.s, FunctionLike):
if t.type.is_protocol:
call = unpack_callback_protocol(t)
if call:
return join_types(call, self.s)
return join_types(t, self.s.fallback)
elif isinstance(self.s, TypeType):
return join_types(t, self.s)
elif isinstance(self.s, TypedDictType):
return join_types(t, self.s)
elif isinstance(self.s, TupleType):
return join_types(t, self.s)
elif isinstance(self.s, LiteralType):
return join_types(t, self.s)
else:
return self.default(self.s)
def visit_callable_type(self, t: CallableType) -> ProperType:
if isinstance(self.s, CallableType) and is_similar_callables(t, self.s):
if is_equivalent(t, self.s):
return combine_similar_callables(t, self.s)
result = join_similar_callables(t, self.s)
# We set the from_type_type flag to suppress error when a collection of
# concrete class objects gets inferred as their common abstract superclass.
if not (
(t.is_type_obj() and t.type_object().is_abstract)
or (self.s.is_type_obj() and self.s.type_object().is_abstract)
):
result.from_type_type = True
if any(
isinstance(tp, (NoneType, UninhabitedType))
for tp in get_proper_types(result.arg_types)
):
# We don't want to return unusable Callable, attempt fallback instead.
return join_types(t.fallback, self.s)
return result
elif isinstance(self.s, Overloaded):
# Switch the order of arguments to that we'll get to visit_overloaded.
return join_types(t, self.s)
elif isinstance(self.s, Instance) and self.s.type.is_protocol:
call = unpack_callback_protocol(self.s)
if call:
return join_types(t, call)
return join_types(t.fallback, self.s)
def visit_overloaded(self, t: Overloaded) -> ProperType:
# This is more complex than most other cases. Here are some
# examples that illustrate how this works.
#
# First let's define a concise notation:
# - Cn are callable types (for n in 1, 2, ...)
# - Ov(C1, C2, ...) is an overloaded type with items C1, C2, ...
# - Callable[[T, ...], S] is written as [T, ...] -> S.
#
# We want some basic properties to hold (assume Cn are all
# unrelated via Any-similarity):
#
# join(Ov(C1, C2), C1) == C1
# join(Ov(C1, C2), Ov(C1, C2)) == Ov(C1, C2)
# join(Ov(C1, C2), Ov(C1, C3)) == C1
# join(Ov(C2, C2), C3) == join of fallback types
#
# The presence of Any types makes things more interesting. The join is the
# most general type we can get with respect to Any:
#
# join(Ov([int] -> int, [str] -> str), [Any] -> str) == Any -> str
#
# We could use a simplification step that removes redundancies, but that's not
# implemented right now. Consider this example, where we get a redundancy:
#
# join(Ov([int, Any] -> Any, [str, Any] -> Any), [Any, int] -> Any) ==
# Ov([Any, int] -> Any, [Any, int] -> Any)
#
# TODO: Consider more cases of callable subtyping.
result: list[CallableType] = []
s = self.s
if isinstance(s, FunctionLike):
# The interesting case where both types are function types.
for t_item in t.items:
for s_item in s.items:
if is_similar_callables(t_item, s_item):
if is_equivalent(t_item, s_item):
result.append(combine_similar_callables(t_item, s_item))
elif is_subtype(t_item, s_item):
result.append(s_item)
if result:
# TODO: Simplify redundancies from the result.
if len(result) == 1:
return result[0]
else:
return Overloaded(result)
return join_types(t.fallback, s.fallback)
elif isinstance(s, Instance) and s.type.is_protocol:
call = unpack_callback_protocol(s)
if call:
return join_types(t, call)
return join_types(t.fallback, s)
def visit_tuple_type(self, t: TupleType) -> ProperType:
# When given two fixed-length tuples:
# * If they have the same length, join their subtypes item-wise:
# Tuple[int, bool] + Tuple[bool, bool] becomes Tuple[int, bool]
# * If lengths do not match, return a variadic tuple:
# Tuple[bool, int] + Tuple[bool] becomes Tuple[int, ...]
#
# Otherwise, `t` is a fixed-length tuple but `self.s` is NOT:
# * Joining with a variadic tuple returns variadic tuple:
# Tuple[int, bool] + Tuple[bool, ...] becomes Tuple[int, ...]
# * Joining with any Sequence also returns a Sequence:
# Tuple[int, bool] + List[bool] becomes Sequence[int]
if isinstance(self.s, TupleType) and self.s.length() == t.length():
if self.instance_joiner is None:
self.instance_joiner = InstanceJoiner()
fallback = self.instance_joiner.join_instances(
mypy.typeops.tuple_fallback(self.s), mypy.typeops.tuple_fallback(t)
)
assert isinstance(fallback, Instance)
if self.s.length() == t.length():
items: list[Type] = []
for i in range(t.length()):
items.append(join_types(t.items[i], self.s.items[i]))
return TupleType(items, fallback)
else:
return fallback
else:
return join_types(self.s, mypy.typeops.tuple_fallback(t))
def visit_typeddict_type(self, t: TypedDictType) -> ProperType:
if isinstance(self.s, TypedDictType):
items = {
item_name: s_item_type
for (item_name, s_item_type, t_item_type) in self.s.zip(t)
if (
is_equivalent(s_item_type, t_item_type)
and (item_name in t.required_keys) == (item_name in self.s.required_keys)
)
}
fallback = self.s.create_anonymous_fallback()
# We need to filter by items.keys() since some required keys present in both t and
# self.s might be missing from the join if the types are incompatible.
required_keys = set(items.keys()) & t.required_keys & self.s.required_keys
return TypedDictType(items, required_keys, fallback)
elif isinstance(self.s, Instance):
return join_types(self.s, t.fallback)
else:
return self.default(self.s)
def visit_literal_type(self, t: LiteralType) -> ProperType:
if isinstance(self.s, LiteralType):
if t == self.s:
return t
if self.s.fallback.type.is_enum and t.fallback.type.is_enum:
return mypy.typeops.make_simplified_union([self.s, t])
return join_types(self.s.fallback, t.fallback)
else:
return join_types(self.s, t.fallback)
def visit_partial_type(self, t: PartialType) -> ProperType:
# We only have partial information so we can't decide the join result. We should
# never get here.
assert False, "Internal error"
def visit_type_type(self, t: TypeType) -> ProperType:
if isinstance(self.s, TypeType):
return TypeType.make_normalized(join_types(t.item, self.s.item), line=t.line)
elif isinstance(self.s, Instance) and self.s.type.fullname == "builtins.type":
return self.s
else:
return self.default(self.s)
def visit_type_alias_type(self, t: TypeAliasType) -> ProperType:
assert False, f"This should be never called, got {t}"
def default(self, typ: Type) -> ProperType:
typ = get_proper_type(typ)
if isinstance(typ, Instance):
return object_from_instance(typ)
elif isinstance(typ, UnboundType):
return AnyType(TypeOfAny.special_form)
elif isinstance(typ, TupleType):
return self.default(mypy.typeops.tuple_fallback(typ))
elif isinstance(typ, TypedDictType):
return self.default(typ.fallback)
elif isinstance(typ, FunctionLike):
return self.default(typ.fallback)
elif isinstance(typ, TypeVarType):
return self.default(typ.upper_bound)
elif isinstance(typ, ParamSpecType):
return self.default(typ.upper_bound)
else:
return AnyType(TypeOfAny.special_form)
def is_better(t: Type, s: Type) -> bool:
# Given two possible results from join_instances_via_supertype(),
# indicate whether t is the better one.
t = get_proper_type(t)
s = get_proper_type(s)
if isinstance(t, Instance):
if not isinstance(s, Instance):
return True
# Use len(mro) as a proxy for the better choice.
if len(t.type.mro) > len(s.type.mro):
return True
return False
def normalize_callables(s: ProperType, t: ProperType) -> tuple[ProperType, ProperType]:
if isinstance(s, (CallableType, Overloaded)):
s = s.with_unpacked_kwargs()
if isinstance(t, (CallableType, Overloaded)):
t = t.with_unpacked_kwargs()
return s, t
def is_similar_callables(t: CallableType, s: CallableType) -> bool:
"""Return True if t and s have identical numbers of
arguments, default arguments and varargs.
"""
return (
len(t.arg_types) == len(s.arg_types)
and t.min_args == s.min_args
and t.is_var_arg == s.is_var_arg
)
def join_similar_callables(t: CallableType, s: CallableType) -> CallableType:
from mypy.meet import meet_types
arg_types: list[Type] = []
for i in range(len(t.arg_types)):
arg_types.append(meet_types(t.arg_types[i], s.arg_types[i]))
# TODO in combine_similar_callables also applies here (names and kinds; user metaclasses)
# The fallback type can be either 'function', 'type', or some user-provided metaclass.
# The result should always use 'function' as a fallback if either operands are using it.
if t.fallback.type.fullname == "builtins.function":
fallback = t.fallback
else:
fallback = s.fallback
return t.copy_modified(
arg_types=arg_types,
arg_names=combine_arg_names(t, s),
ret_type=join_types(t.ret_type, s.ret_type),
fallback=fallback,
name=None,
)
def combine_similar_callables(t: CallableType, s: CallableType) -> CallableType:
arg_types: list[Type] = []
for i in range(len(t.arg_types)):
arg_types.append(join_types(t.arg_types[i], s.arg_types[i]))
# TODO kinds and argument names
# TODO what should happen if one fallback is 'type' and the other is a user-provided metaclass?
# The fallback type can be either 'function', 'type', or some user-provided metaclass.
# The result should always use 'function' as a fallback if either operands are using it.
if t.fallback.type.fullname == "builtins.function":
fallback = t.fallback
else:
fallback = s.fallback
return t.copy_modified(
arg_types=arg_types,
arg_names=combine_arg_names(t, s),
ret_type=join_types(t.ret_type, s.ret_type),
fallback=fallback,
name=None,
)
def combine_arg_names(t: CallableType, s: CallableType) -> list[str | None]:
"""Produces a list of argument names compatible with both callables.
For example, suppose 't' and 's' have the following signatures:
- t: (a: int, b: str, X: str) -> None
- s: (a: int, b: str, Y: str) -> None
This function would return ["a", "b", None]. This information
is then used above to compute the join of t and s, which results
in a signature of (a: int, b: str, str) -> None.
Note that the third argument's name is omitted and 't' and 's'
are both valid subtypes of this inferred signature.
Precondition: is_similar_types(t, s) is true.
"""
num_args = len(t.arg_types)
new_names = []
for i in range(num_args):
t_name = t.arg_names[i]
s_name = s.arg_names[i]
if t_name == s_name or t.arg_kinds[i].is_named() or s.arg_kinds[i].is_named():
new_names.append(t_name)
else:
new_names.append(None)
return new_names
def object_from_instance(instance: Instance) -> Instance:
"""Construct the type 'builtins.object' from an instance type."""
# Use the fact that 'object' is always the last class in the mro.
res = Instance(instance.type.mro[-1], [])
return res
def object_or_any_from_type(typ: ProperType) -> ProperType:
# Similar to object_from_instance() but tries hard for all types.
# TODO: find a better way to get object, or make this more reliable.
if isinstance(typ, Instance):
return object_from_instance(typ)
elif isinstance(typ, (CallableType, TypedDictType, LiteralType)):
return object_from_instance(typ.fallback)
elif isinstance(typ, TupleType):
return object_from_instance(typ.partial_fallback)
elif isinstance(typ, TypeType):
return object_or_any_from_type(typ.item)
elif isinstance(typ, TypeVarType) and isinstance(typ.upper_bound, ProperType):
return object_or_any_from_type(typ.upper_bound)
elif isinstance(typ, UnionType):
for item in typ.items:
if isinstance(item, ProperType):
candidate = object_or_any_from_type(item)
if isinstance(candidate, Instance):
return candidate
return AnyType(TypeOfAny.implementation_artifact)
def join_type_list(types: list[Type]) -> Type:
if not types:
# This is a little arbitrary but reasonable. Any empty tuple should be compatible
# with all variable length tuples, and this makes it possible.
return UninhabitedType()
joined = types[0]
for t in types[1:]:
joined = join_types(joined, t)
return joined
def unpack_callback_protocol(t: Instance) -> ProperType | None:
assert t.type.is_protocol
if t.type.protocol_members == ["__call__"]:
return get_proper_type(find_member("__call__", t, t, is_operator=True))
return None