| # Copyright 2006 Google, Inc. All Rights Reserved. |
| # Licensed to PSF under a Contributor Agreement. |
| |
| """ |
| Python parse tree definitions. |
| |
| This is a very concrete parse tree; we need to keep every token and |
| even the comments and whitespace between tokens. |
| |
| There's also a pattern matching implementation here. |
| """ |
| |
| # mypy: allow-untyped-defs, allow-incomplete-defs |
| |
| from typing import ( |
| Any, |
| Dict, |
| Iterator, |
| List, |
| Optional, |
| Text, |
| Tuple, |
| TypeVar, |
| Union, |
| Set, |
| Iterable, |
| ) |
| from blib2to3.pgen2.grammar import Grammar |
| |
| __author__ = "Guido van Rossum <guido@python.org>" |
| |
| import sys |
| from io import StringIO |
| |
| HUGE: int = 0x7FFFFFFF # maximum repeat count, default max |
| |
| _type_reprs: Dict[int, Union[Text, int]] = {} |
| |
| |
| def type_repr(type_num: int) -> Union[Text, int]: |
| global _type_reprs |
| if not _type_reprs: |
| from .pygram import python_symbols |
| |
| # printing tokens is possible but not as useful |
| # from .pgen2 import token // token.__dict__.items(): |
| for name in dir(python_symbols): |
| val = getattr(python_symbols, name) |
| if type(val) == int: |
| _type_reprs[val] = name |
| return _type_reprs.setdefault(type_num, type_num) |
| |
| |
| _P = TypeVar("_P", bound="Base") |
| |
| NL = Union["Node", "Leaf"] |
| Context = Tuple[Text, Tuple[int, int]] |
| RawNode = Tuple[int, Optional[Text], Optional[Context], Optional[List[NL]]] |
| |
| |
| class Base(object): |
| |
| """ |
| Abstract base class for Node and Leaf. |
| |
| This provides some default functionality and boilerplate using the |
| template pattern. |
| |
| A node may be a subnode of at most one parent. |
| """ |
| |
| # Default values for instance variables |
| type: int # int: token number (< 256) or symbol number (>= 256) |
| parent: Optional["Node"] = None # Parent node pointer, or None |
| children: List[NL] # List of subnodes |
| was_changed: bool = False |
| was_checked: bool = False |
| |
| def __new__(cls, *args, **kwds): |
| """Constructor that prevents Base from being instantiated.""" |
| assert cls is not Base, "Cannot instantiate Base" |
| return object.__new__(cls) |
| |
| def __eq__(self, other: Any) -> bool: |
| """ |
| Compare two nodes for equality. |
| |
| This calls the method _eq(). |
| """ |
| if self.__class__ is not other.__class__: |
| return NotImplemented |
| return self._eq(other) |
| |
| @property |
| def prefix(self) -> Text: |
| raise NotImplementedError |
| |
| def _eq(self: _P, other: _P) -> bool: |
| """ |
| Compare two nodes for equality. |
| |
| This is called by __eq__ and __ne__. It is only called if the two nodes |
| have the same type. This must be implemented by the concrete subclass. |
| Nodes should be considered equal if they have the same structure, |
| ignoring the prefix string and other context information. |
| """ |
| raise NotImplementedError |
| |
| def __deepcopy__(self: _P, memo: Any) -> _P: |
| return self.clone() |
| |
| def clone(self: _P) -> _P: |
| """ |
| Return a cloned (deep) copy of self. |
| |
| This must be implemented by the concrete subclass. |
| """ |
| raise NotImplementedError |
| |
| def post_order(self) -> Iterator[NL]: |
| """ |
| Return a post-order iterator for the tree. |
| |
| This must be implemented by the concrete subclass. |
| """ |
| raise NotImplementedError |
| |
| def pre_order(self) -> Iterator[NL]: |
| """ |
| Return a pre-order iterator for the tree. |
| |
| This must be implemented by the concrete subclass. |
| """ |
| raise NotImplementedError |
| |
| def replace(self, new: Union[NL, List[NL]]) -> None: |
| """Replace this node with a new one in the parent.""" |
| assert self.parent is not None, str(self) |
| assert new is not None |
| if not isinstance(new, list): |
| new = [new] |
| l_children = [] |
| found = False |
| for ch in self.parent.children: |
| if ch is self: |
| assert not found, (self.parent.children, self, new) |
| if new is not None: |
| l_children.extend(new) |
| found = True |
| else: |
| l_children.append(ch) |
| assert found, (self.children, self, new) |
| self.parent.children = l_children |
| self.parent.changed() |
| self.parent.invalidate_sibling_maps() |
| for x in new: |
| x.parent = self.parent |
| self.parent = None |
| |
| def get_lineno(self) -> Optional[int]: |
| """Return the line number which generated the invocant node.""" |
| node = self |
| while not isinstance(node, Leaf): |
| if not node.children: |
| return None |
| node = node.children[0] |
| return node.lineno |
| |
| def changed(self) -> None: |
| if self.was_changed: |
| return |
| if self.parent: |
| self.parent.changed() |
| self.was_changed = True |
| |
| def remove(self) -> Optional[int]: |
| """ |
| Remove the node from the tree. Returns the position of the node in its |
| parent's children before it was removed. |
| """ |
| if self.parent: |
| for i, node in enumerate(self.parent.children): |
| if node is self: |
| del self.parent.children[i] |
| self.parent.changed() |
| self.parent.invalidate_sibling_maps() |
| self.parent = None |
| return i |
| return None |
| |
| @property |
| def next_sibling(self) -> Optional[NL]: |
| """ |
| The node immediately following the invocant in their parent's children |
| list. If the invocant does not have a next sibling, it is None |
| """ |
| if self.parent is None: |
| return None |
| |
| if self.parent.next_sibling_map is None: |
| self.parent.update_sibling_maps() |
| assert self.parent.next_sibling_map is not None |
| return self.parent.next_sibling_map[id(self)] |
| |
| @property |
| def prev_sibling(self) -> Optional[NL]: |
| """ |
| The node immediately preceding the invocant in their parent's children |
| list. If the invocant does not have a previous sibling, it is None. |
| """ |
| if self.parent is None: |
| return None |
| |
| if self.parent.prev_sibling_map is None: |
| self.parent.update_sibling_maps() |
| assert self.parent.prev_sibling_map is not None |
| return self.parent.prev_sibling_map[id(self)] |
| |
| def leaves(self) -> Iterator["Leaf"]: |
| for child in self.children: |
| yield from child.leaves() |
| |
| def depth(self) -> int: |
| if self.parent is None: |
| return 0 |
| return 1 + self.parent.depth() |
| |
| def get_suffix(self) -> Text: |
| """ |
| Return the string immediately following the invocant node. This is |
| effectively equivalent to node.next_sibling.prefix |
| """ |
| next_sib = self.next_sibling |
| if next_sib is None: |
| return "" |
| prefix = next_sib.prefix |
| return prefix |
| |
| |
| class Node(Base): |
| |
| """Concrete implementation for interior nodes.""" |
| |
| fixers_applied: Optional[List[Any]] |
| used_names: Optional[Set[Text]] |
| |
| def __init__( |
| self, |
| type: int, |
| children: List[NL], |
| context: Optional[Any] = None, |
| prefix: Optional[Text] = None, |
| fixers_applied: Optional[List[Any]] = None, |
| ) -> None: |
| """ |
| Initializer. |
| |
| Takes a type constant (a symbol number >= 256), a sequence of |
| child nodes, and an optional context keyword argument. |
| |
| As a side effect, the parent pointers of the children are updated. |
| """ |
| assert type >= 256, type |
| self.type = type |
| self.children = list(children) |
| for ch in self.children: |
| assert ch.parent is None, repr(ch) |
| ch.parent = self |
| self.invalidate_sibling_maps() |
| if prefix is not None: |
| self.prefix = prefix |
| if fixers_applied: |
| self.fixers_applied = fixers_applied[:] |
| else: |
| self.fixers_applied = None |
| |
| def __repr__(self) -> Text: |
| """Return a canonical string representation.""" |
| assert self.type is not None |
| return "%s(%s, %r)" % ( |
| self.__class__.__name__, |
| type_repr(self.type), |
| self.children, |
| ) |
| |
| def __str__(self) -> Text: |
| """ |
| Return a pretty string representation. |
| |
| This reproduces the input source exactly. |
| """ |
| return "".join(map(str, self.children)) |
| |
| def _eq(self, other: Base) -> bool: |
| """Compare two nodes for equality.""" |
| return (self.type, self.children) == (other.type, other.children) |
| |
| def clone(self) -> "Node": |
| assert self.type is not None |
| """Return a cloned (deep) copy of self.""" |
| return Node( |
| self.type, |
| [ch.clone() for ch in self.children], |
| fixers_applied=self.fixers_applied, |
| ) |
| |
| def post_order(self) -> Iterator[NL]: |
| """Return a post-order iterator for the tree.""" |
| for child in self.children: |
| yield from child.post_order() |
| yield self |
| |
| def pre_order(self) -> Iterator[NL]: |
| """Return a pre-order iterator for the tree.""" |
| yield self |
| for child in self.children: |
| yield from child.pre_order() |
| |
| @property |
| def prefix(self) -> Text: |
| """ |
| The whitespace and comments preceding this node in the input. |
| """ |
| if not self.children: |
| return "" |
| return self.children[0].prefix |
| |
| @prefix.setter |
| def prefix(self, prefix: Text) -> None: |
| if self.children: |
| self.children[0].prefix = prefix |
| |
| def set_child(self, i: int, child: NL) -> None: |
| """ |
| Equivalent to 'node.children[i] = child'. This method also sets the |
| child's parent attribute appropriately. |
| """ |
| child.parent = self |
| self.children[i].parent = None |
| self.children[i] = child |
| self.changed() |
| self.invalidate_sibling_maps() |
| |
| def insert_child(self, i: int, child: NL) -> None: |
| """ |
| Equivalent to 'node.children.insert(i, child)'. This method also sets |
| the child's parent attribute appropriately. |
| """ |
| child.parent = self |
| self.children.insert(i, child) |
| self.changed() |
| self.invalidate_sibling_maps() |
| |
| def append_child(self, child: NL) -> None: |
| """ |
| Equivalent to 'node.children.append(child)'. This method also sets the |
| child's parent attribute appropriately. |
| """ |
| child.parent = self |
| self.children.append(child) |
| self.changed() |
| self.invalidate_sibling_maps() |
| |
| def invalidate_sibling_maps(self) -> None: |
| self.prev_sibling_map: Optional[Dict[int, Optional[NL]]] = None |
| self.next_sibling_map: Optional[Dict[int, Optional[NL]]] = None |
| |
| def update_sibling_maps(self) -> None: |
| _prev: Dict[int, Optional[NL]] = {} |
| _next: Dict[int, Optional[NL]] = {} |
| self.prev_sibling_map = _prev |
| self.next_sibling_map = _next |
| previous: Optional[NL] = None |
| for current in self.children: |
| _prev[id(current)] = previous |
| _next[id(previous)] = current |
| previous = current |
| _next[id(current)] = None |
| |
| |
| class Leaf(Base): |
| |
| """Concrete implementation for leaf nodes.""" |
| |
| # Default values for instance variables |
| value: Text |
| fixers_applied: List[Any] |
| bracket_depth: int |
| # Changed later in brackets.py |
| opening_bracket: Optional["Leaf"] = None |
| used_names: Optional[Set[Text]] |
| _prefix = "" # Whitespace and comments preceding this token in the input |
| lineno: int = 0 # Line where this token starts in the input |
| column: int = 0 # Column where this token starts in the input |
| |
| def __init__( |
| self, |
| type: int, |
| value: Text, |
| context: Optional[Context] = None, |
| prefix: Optional[Text] = None, |
| fixers_applied: List[Any] = [], |
| opening_bracket: Optional["Leaf"] = None, |
| ) -> None: |
| """ |
| Initializer. |
| |
| Takes a type constant (a token number < 256), a string value, and an |
| optional context keyword argument. |
| """ |
| |
| assert 0 <= type < 256, type |
| if context is not None: |
| self._prefix, (self.lineno, self.column) = context |
| self.type = type |
| self.value = value |
| if prefix is not None: |
| self._prefix = prefix |
| self.fixers_applied: Optional[List[Any]] = fixers_applied[:] |
| self.children = [] |
| self.opening_bracket = opening_bracket |
| |
| def __repr__(self) -> str: |
| """Return a canonical string representation.""" |
| from .pgen2.token import tok_name |
| |
| assert self.type is not None |
| return "%s(%s, %r)" % ( |
| self.__class__.__name__, |
| tok_name.get(self.type, self.type), |
| self.value, |
| ) |
| |
| def __str__(self) -> Text: |
| """ |
| Return a pretty string representation. |
| |
| This reproduces the input source exactly. |
| """ |
| return self._prefix + str(self.value) |
| |
| def _eq(self, other: "Leaf") -> bool: |
| """Compare two nodes for equality.""" |
| return (self.type, self.value) == (other.type, other.value) |
| |
| def clone(self) -> "Leaf": |
| assert self.type is not None |
| """Return a cloned (deep) copy of self.""" |
| return Leaf( |
| self.type, |
| self.value, |
| (self.prefix, (self.lineno, self.column)), |
| fixers_applied=self.fixers_applied, |
| ) |
| |
| def leaves(self) -> Iterator["Leaf"]: |
| yield self |
| |
| def post_order(self) -> Iterator["Leaf"]: |
| """Return a post-order iterator for the tree.""" |
| yield self |
| |
| def pre_order(self) -> Iterator["Leaf"]: |
| """Return a pre-order iterator for the tree.""" |
| yield self |
| |
| @property |
| def prefix(self) -> Text: |
| """ |
| The whitespace and comments preceding this token in the input. |
| """ |
| return self._prefix |
| |
| @prefix.setter |
| def prefix(self, prefix: Text) -> None: |
| self.changed() |
| self._prefix = prefix |
| |
| |
| def convert(gr: Grammar, raw_node: RawNode) -> NL: |
| """ |
| Convert raw node information to a Node or Leaf instance. |
| |
| This is passed to the parser driver which calls it whenever a reduction of a |
| grammar rule produces a new complete node, so that the tree is build |
| strictly bottom-up. |
| """ |
| type, value, context, children = raw_node |
| if children or type in gr.number2symbol: |
| # If there's exactly one child, return that child instead of |
| # creating a new node. |
| assert children is not None |
| if len(children) == 1: |
| return children[0] |
| return Node(type, children, context=context) |
| else: |
| return Leaf(type, value or "", context=context) |
| |
| |
| _Results = Dict[Text, NL] |
| |
| |
| class BasePattern(object): |
| |
| """ |
| A pattern is a tree matching pattern. |
| |
| It looks for a specific node type (token or symbol), and |
| optionally for a specific content. |
| |
| This is an abstract base class. There are three concrete |
| subclasses: |
| |
| - LeafPattern matches a single leaf node; |
| - NodePattern matches a single node (usually non-leaf); |
| - WildcardPattern matches a sequence of nodes of variable length. |
| """ |
| |
| # Defaults for instance variables |
| type: Optional[int] |
| type = None # Node type (token if < 256, symbol if >= 256) |
| content: Any = None # Optional content matching pattern |
| name: Optional[Text] = None # Optional name used to store match in results dict |
| |
| def __new__(cls, *args, **kwds): |
| """Constructor that prevents BasePattern from being instantiated.""" |
| assert cls is not BasePattern, "Cannot instantiate BasePattern" |
| return object.__new__(cls) |
| |
| def __repr__(self) -> Text: |
| assert self.type is not None |
| args = [type_repr(self.type), self.content, self.name] |
| while args and args[-1] is None: |
| del args[-1] |
| return "%s(%s)" % (self.__class__.__name__, ", ".join(map(repr, args))) |
| |
| def _submatch(self, node, results=None) -> bool: |
| raise NotImplementedError |
| |
| def optimize(self) -> "BasePattern": |
| """ |
| A subclass can define this as a hook for optimizations. |
| |
| Returns either self or another node with the same effect. |
| """ |
| return self |
| |
| def match(self, node: NL, results: Optional[_Results] = None) -> bool: |
| """ |
| Does this pattern exactly match a node? |
| |
| Returns True if it matches, False if not. |
| |
| If results is not None, it must be a dict which will be |
| updated with the nodes matching named subpatterns. |
| |
| Default implementation for non-wildcard patterns. |
| """ |
| if self.type is not None and node.type != self.type: |
| return False |
| if self.content is not None: |
| r: Optional[_Results] = None |
| if results is not None: |
| r = {} |
| if not self._submatch(node, r): |
| return False |
| if r: |
| assert results is not None |
| results.update(r) |
| if results is not None and self.name: |
| results[self.name] = node |
| return True |
| |
| def match_seq(self, nodes: List[NL], results: Optional[_Results] = None) -> bool: |
| """ |
| Does this pattern exactly match a sequence of nodes? |
| |
| Default implementation for non-wildcard patterns. |
| """ |
| if len(nodes) != 1: |
| return False |
| return self.match(nodes[0], results) |
| |
| def generate_matches(self, nodes: List[NL]) -> Iterator[Tuple[int, _Results]]: |
| """ |
| Generator yielding all matches for this pattern. |
| |
| Default implementation for non-wildcard patterns. |
| """ |
| r: _Results = {} |
| if nodes and self.match(nodes[0], r): |
| yield 1, r |
| |
| |
| class LeafPattern(BasePattern): |
| def __init__( |
| self, |
| type: Optional[int] = None, |
| content: Optional[Text] = None, |
| name: Optional[Text] = None, |
| ) -> None: |
| """ |
| Initializer. Takes optional type, content, and name. |
| |
| The type, if given must be a token type (< 256). If not given, |
| this matches any *leaf* node; the content may still be required. |
| |
| The content, if given, must be a string. |
| |
| If a name is given, the matching node is stored in the results |
| dict under that key. |
| """ |
| if type is not None: |
| assert 0 <= type < 256, type |
| if content is not None: |
| assert isinstance(content, str), repr(content) |
| self.type = type |
| self.content = content |
| self.name = name |
| |
| def match(self, node: NL, results=None) -> bool: |
| """Override match() to insist on a leaf node.""" |
| if not isinstance(node, Leaf): |
| return False |
| return BasePattern.match(self, node, results) |
| |
| def _submatch(self, node, results=None): |
| """ |
| Match the pattern's content to the node's children. |
| |
| This assumes the node type matches and self.content is not None. |
| |
| Returns True if it matches, False if not. |
| |
| If results is not None, it must be a dict which will be |
| updated with the nodes matching named subpatterns. |
| |
| When returning False, the results dict may still be updated. |
| """ |
| return self.content == node.value |
| |
| |
| class NodePattern(BasePattern): |
| |
| wildcards: bool = False |
| |
| def __init__( |
| self, |
| type: Optional[int] = None, |
| content: Optional[Iterable[Text]] = None, |
| name: Optional[Text] = None, |
| ) -> None: |
| """ |
| Initializer. Takes optional type, content, and name. |
| |
| The type, if given, must be a symbol type (>= 256). If the |
| type is None this matches *any* single node (leaf or not), |
| except if content is not None, in which it only matches |
| non-leaf nodes that also match the content pattern. |
| |
| The content, if not None, must be a sequence of Patterns that |
| must match the node's children exactly. If the content is |
| given, the type must not be None. |
| |
| If a name is given, the matching node is stored in the results |
| dict under that key. |
| """ |
| if type is not None: |
| assert type >= 256, type |
| if content is not None: |
| assert not isinstance(content, str), repr(content) |
| newcontent = list(content) |
| for i, item in enumerate(newcontent): |
| assert isinstance(item, BasePattern), (i, item) |
| # I don't even think this code is used anywhere, but it does cause |
| # unreachable errors from mypy. This function's signature does look |
| # odd though *shrug*. |
| if isinstance(item, WildcardPattern): # type: ignore[unreachable] |
| self.wildcards = True # type: ignore[unreachable] |
| self.type = type |
| self.content = newcontent # TODO: this is unbound when content is None |
| self.name = name |
| |
| def _submatch(self, node, results=None) -> bool: |
| """ |
| Match the pattern's content to the node's children. |
| |
| This assumes the node type matches and self.content is not None. |
| |
| Returns True if it matches, False if not. |
| |
| If results is not None, it must be a dict which will be |
| updated with the nodes matching named subpatterns. |
| |
| When returning False, the results dict may still be updated. |
| """ |
| if self.wildcards: |
| for c, r in generate_matches(self.content, node.children): |
| if c == len(node.children): |
| if results is not None: |
| results.update(r) |
| return True |
| return False |
| if len(self.content) != len(node.children): |
| return False |
| for subpattern, child in zip(self.content, node.children): |
| if not subpattern.match(child, results): |
| return False |
| return True |
| |
| |
| class WildcardPattern(BasePattern): |
| |
| """ |
| A wildcard pattern can match zero or more nodes. |
| |
| This has all the flexibility needed to implement patterns like: |
| |
| .* .+ .? .{m,n} |
| (a b c | d e | f) |
| (...)* (...)+ (...)? (...){m,n} |
| |
| except it always uses non-greedy matching. |
| """ |
| |
| min: int |
| max: int |
| |
| def __init__( |
| self, |
| content: Optional[Text] = None, |
| min: int = 0, |
| max: int = HUGE, |
| name: Optional[Text] = None, |
| ) -> None: |
| """ |
| Initializer. |
| |
| Args: |
| content: optional sequence of subsequences of patterns; |
| if absent, matches one node; |
| if present, each subsequence is an alternative [*] |
| min: optional minimum number of times to match, default 0 |
| max: optional maximum number of times to match, default HUGE |
| name: optional name assigned to this match |
| |
| [*] Thus, if content is [[a, b, c], [d, e], [f, g, h]] this is |
| equivalent to (a b c | d e | f g h); if content is None, |
| this is equivalent to '.' in regular expression terms. |
| The min and max parameters work as follows: |
| min=0, max=maxint: .* |
| min=1, max=maxint: .+ |
| min=0, max=1: .? |
| min=1, max=1: . |
| If content is not None, replace the dot with the parenthesized |
| list of alternatives, e.g. (a b c | d e | f g h)* |
| """ |
| assert 0 <= min <= max <= HUGE, (min, max) |
| if content is not None: |
| f = lambda s: tuple(s) |
| wrapped_content = tuple(map(f, content)) # Protect against alterations |
| # Check sanity of alternatives |
| assert len(wrapped_content), repr( |
| wrapped_content |
| ) # Can't have zero alternatives |
| for alt in wrapped_content: |
| assert len(alt), repr(alt) # Can have empty alternatives |
| self.content = wrapped_content |
| self.min = min |
| self.max = max |
| self.name = name |
| |
| def optimize(self) -> Any: |
| """Optimize certain stacked wildcard patterns.""" |
| subpattern = None |
| if ( |
| self.content is not None |
| and len(self.content) == 1 |
| and len(self.content[0]) == 1 |
| ): |
| subpattern = self.content[0][0] |
| if self.min == 1 and self.max == 1: |
| if self.content is None: |
| return NodePattern(name=self.name) |
| if subpattern is not None and self.name == subpattern.name: |
| return subpattern.optimize() |
| if ( |
| self.min <= 1 |
| and isinstance(subpattern, WildcardPattern) |
| and subpattern.min <= 1 |
| and self.name == subpattern.name |
| ): |
| return WildcardPattern( |
| subpattern.content, |
| self.min * subpattern.min, |
| self.max * subpattern.max, |
| subpattern.name, |
| ) |
| return self |
| |
| def match(self, node, results=None) -> bool: |
| """Does this pattern exactly match a node?""" |
| return self.match_seq([node], results) |
| |
| def match_seq(self, nodes, results=None) -> bool: |
| """Does this pattern exactly match a sequence of nodes?""" |
| for c, r in self.generate_matches(nodes): |
| if c == len(nodes): |
| if results is not None: |
| results.update(r) |
| if self.name: |
| results[self.name] = list(nodes) |
| return True |
| return False |
| |
| def generate_matches(self, nodes) -> Iterator[Tuple[int, _Results]]: |
| """ |
| Generator yielding matches for a sequence of nodes. |
| |
| Args: |
| nodes: sequence of nodes |
| |
| Yields: |
| (count, results) tuples where: |
| count: the match comprises nodes[:count]; |
| results: dict containing named submatches. |
| """ |
| if self.content is None: |
| # Shortcut for special case (see __init__.__doc__) |
| for count in range(self.min, 1 + min(len(nodes), self.max)): |
| r = {} |
| if self.name: |
| r[self.name] = nodes[:count] |
| yield count, r |
| elif self.name == "bare_name": |
| yield self._bare_name_matches(nodes) |
| else: |
| # The reason for this is that hitting the recursion limit usually |
| # results in some ugly messages about how RuntimeErrors are being |
| # ignored. We only have to do this on CPython, though, because other |
| # implementations don't have this nasty bug in the first place. |
| if hasattr(sys, "getrefcount"): |
| save_stderr = sys.stderr |
| sys.stderr = StringIO() |
| try: |
| for count, r in self._recursive_matches(nodes, 0): |
| if self.name: |
| r[self.name] = nodes[:count] |
| yield count, r |
| except RuntimeError: |
| # We fall back to the iterative pattern matching scheme if the recursive |
| # scheme hits the recursion limit. |
| for count, r in self._iterative_matches(nodes): |
| if self.name: |
| r[self.name] = nodes[:count] |
| yield count, r |
| finally: |
| if hasattr(sys, "getrefcount"): |
| sys.stderr = save_stderr |
| |
| def _iterative_matches(self, nodes) -> Iterator[Tuple[int, _Results]]: |
| """Helper to iteratively yield the matches.""" |
| nodelen = len(nodes) |
| if 0 >= self.min: |
| yield 0, {} |
| |
| results = [] |
| # generate matches that use just one alt from self.content |
| for alt in self.content: |
| for c, r in generate_matches(alt, nodes): |
| yield c, r |
| results.append((c, r)) |
| |
| # for each match, iterate down the nodes |
| while results: |
| new_results = [] |
| for c0, r0 in results: |
| # stop if the entire set of nodes has been matched |
| if c0 < nodelen and c0 <= self.max: |
| for alt in self.content: |
| for c1, r1 in generate_matches(alt, nodes[c0:]): |
| if c1 > 0: |
| r = {} |
| r.update(r0) |
| r.update(r1) |
| yield c0 + c1, r |
| new_results.append((c0 + c1, r)) |
| results = new_results |
| |
| def _bare_name_matches(self, nodes) -> Tuple[int, _Results]: |
| """Special optimized matcher for bare_name.""" |
| count = 0 |
| r = {} # type: _Results |
| done = False |
| max = len(nodes) |
| while not done and count < max: |
| done = True |
| for leaf in self.content: |
| if leaf[0].match(nodes[count], r): |
| count += 1 |
| done = False |
| break |
| assert self.name is not None |
| r[self.name] = nodes[:count] |
| return count, r |
| |
| def _recursive_matches(self, nodes, count) -> Iterator[Tuple[int, _Results]]: |
| """Helper to recursively yield the matches.""" |
| assert self.content is not None |
| if count >= self.min: |
| yield 0, {} |
| if count < self.max: |
| for alt in self.content: |
| for c0, r0 in generate_matches(alt, nodes): |
| for c1, r1 in self._recursive_matches(nodes[c0:], count + 1): |
| r = {} |
| r.update(r0) |
| r.update(r1) |
| yield c0 + c1, r |
| |
| |
| class NegatedPattern(BasePattern): |
| def __init__(self, content: Optional[BasePattern] = None) -> None: |
| """ |
| Initializer. |
| |
| The argument is either a pattern or None. If it is None, this |
| only matches an empty sequence (effectively '$' in regex |
| lingo). If it is not None, this matches whenever the argument |
| pattern doesn't have any matches. |
| """ |
| if content is not None: |
| assert isinstance(content, BasePattern), repr(content) |
| self.content = content |
| |
| def match(self, node, results=None) -> bool: |
| # We never match a node in its entirety |
| return False |
| |
| def match_seq(self, nodes, results=None) -> bool: |
| # We only match an empty sequence of nodes in its entirety |
| return len(nodes) == 0 |
| |
| def generate_matches(self, nodes: List[NL]) -> Iterator[Tuple[int, _Results]]: |
| if self.content is None: |
| # Return a match if there is an empty sequence |
| if len(nodes) == 0: |
| yield 0, {} |
| else: |
| # Return a match if the argument pattern has no matches |
| for c, r in self.content.generate_matches(nodes): |
| return |
| yield 0, {} |
| |
| |
| def generate_matches( |
| patterns: List[BasePattern], nodes: List[NL] |
| ) -> Iterator[Tuple[int, _Results]]: |
| """ |
| Generator yielding matches for a sequence of patterns and nodes. |
| |
| Args: |
| patterns: a sequence of patterns |
| nodes: a sequence of nodes |
| |
| Yields: |
| (count, results) tuples where: |
| count: the entire sequence of patterns matches nodes[:count]; |
| results: dict containing named submatches. |
| """ |
| if not patterns: |
| yield 0, {} |
| else: |
| p, rest = patterns[0], patterns[1:] |
| for c0, r0 in p.generate_matches(nodes): |
| if not rest: |
| yield c0, r0 |
| else: |
| for c1, r1 in generate_matches(rest, nodes[c0:]): |
| r = {} |
| r.update(r0) |
| r.update(r1) |
| yield c0 + c1, r |