Merge pull request #273 from ultrasaurus/doc-indices

attempt to clarify index documentation
diff --git a/Cargo.toml b/Cargo.toml
index 1221614..df77606 100644
--- a/Cargo.toml
+++ b/Cargo.toml
@@ -28,7 +28,7 @@
 debug = true
 
 [dependencies]
-fixedbitset = { version = "0.1.4" }
+fixedbitset = { version = "0.2.0", default-features = false }
 quickcheck = { optional = true, version = "0.8", default-features = false }
 indexmap = { version = "1.0.2", optional = true }
 serde = { version = "1.0", optional = true }
@@ -41,17 +41,18 @@
 itertools = { version = "0.8", default-features = false }
 
 [features]
-default = ["graphmap", "stable_graph"]
+default = ["graphmap", "stable_graph", "matrix_graph"]
 graphmap = ["indexmap"]
 serde-1 = ["serde", "serde_derive"]
 stable_graph = []
+matrix_graph = []
 
 # For unstable features
 generate = []
 unstable = ["generate"]
 
 # feature flags for testing use only
-all = ["unstable", "quickcheck", "stable_graph", "graphmap"]
+all = ["unstable", "quickcheck", "matrix_graph", "stable_graph", "graphmap"]
 
 [workspace]
 members = ["serialization-tests"]
diff --git a/README.rst b/README.rst
index 5cabe87..dff5633 100644
--- a/README.rst
+++ b/README.rst
@@ -20,6 +20,7 @@
 
 - ``graphmap`` (default) enable ``GraphMap``.
 - ``stable_graph`` (default) enable ``StableGraph``.
+- ``matrix_graph`` (default) enable ``MatrixGraph``.
 - ``serde-1`` (optional) enable serialization for ``Graph, StableGraph`` using
   serde 1.0. Requires Rust version as required by serde.
 
diff --git a/benches/matrix_graph.rs b/benches/matrix_graph.rs
new file mode 100644
index 0000000..ef81733
--- /dev/null
+++ b/benches/matrix_graph.rs
@@ -0,0 +1,237 @@
+#![feature(test)]
+
+extern crate petgraph;
+extern crate test;
+
+use test::Bencher;
+
+use petgraph::{EdgeType, Directed, Outgoing, Incoming};
+use petgraph::algo;
+use petgraph::matrix_graph::{MatrixGraph, node_index};
+
+#[bench]
+fn add_100_nodes(b: &mut test::Bencher) {
+    b.iter(|| {
+        let mut g = MatrixGraph::<(), ()>::with_capacity(100);
+
+        for _ in 0..100 {
+            let _ = g.add_node(());
+        }
+    });
+}
+
+#[bench]
+fn add_100_edges_to_self(b: &mut test::Bencher) {
+    let mut g = MatrixGraph::<(), ()>::with_capacity(100);
+    let nodes: Vec<_> = (0..100).map(|_| g.add_node(())).collect();
+    let g = g;
+
+    b.iter(|| {
+        let mut g = g.clone();
+
+        for &node in nodes.iter() {
+            let _ = g.add_edge(node, node, ());
+        }
+    });
+}
+
+#[bench]
+fn add_5_edges_for_each_of_100_nodes(b: &mut test::Bencher) {
+    let mut g = MatrixGraph::<(), ()>::with_capacity(100);
+    let nodes: Vec<_> = (0..100).map(|_| g.add_node(())).collect();
+    let g = g;
+
+    let edges_to_add: Vec<_> = nodes.iter()
+        .enumerate()
+        .map(|(i, &node)| {
+            let edges: Vec<_> = (0..5)
+                .map(|j| (i + j + 1) % nodes.len())
+                .map(|j| (node, nodes[j]))
+                .collect();
+
+            edges
+        })
+        .flat_map(|e| e)
+        .collect();
+
+    b.iter(|| {
+        let mut g = g.clone();
+
+        for &(source, target) in edges_to_add.iter() {
+            let _ = g.add_edge(source, target, ());
+        }
+    });
+}
+
+#[bench]
+fn add_edges_from_root(bench: &mut test::Bencher) {
+    bench.iter(|| {
+        let mut gr = MatrixGraph::new();
+        let a = gr.add_node(());
+
+        for _ in 0..100 {
+            let b = gr.add_node(());
+            gr.add_edge(a, b, ());
+        }
+    });
+}
+
+#[bench]
+fn add_adjacent_edges(bench: &mut test::Bencher) {
+    bench.iter(|| {
+        let mut gr = MatrixGraph::new();
+        let mut prev = None;
+        for _ in 0..100 {
+            let b = gr.add_node(());
+
+            if let Some(a) = prev {
+                gr.add_edge(a, b, ());
+            }
+
+            prev = Some(b);
+        }
+    });
+}
+
+/// An almost full set
+const FULL: &'static str = "
+ 1 1 1 1 1 1 1 1 1 1
+ 1 1 1 1 1 1 1 1 1 1
+ 1 1 1 1 1 1 1 1 1 1
+ 1 1 1 1 1 1 1 1 1 1
+ 1 1 1 1 1 1 1 1 1 1
+ 1 1 1 1 1 1 1 1 1 1
+ 1 1 1 1 1 1 1 1 1 1
+ 1 1 1 1 1 1 1 1 1 1
+ 1 1 1 1 0 1 1 1 0 1
+ 1 1 1 1 1 1 1 1 1 1
+";
+
+const BIGGER: &'static str = "
+ 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
+ 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
+ 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
+ 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0
+ 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 1 0 0 0
+ 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 1
+ 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1
+ 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1
+ 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0
+ 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
+ 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ 0 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0
+ 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
+ 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0
+ 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0
+ 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0
+ 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1
+ 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0
+ 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 1 0 0 0
+ 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 1
+ 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0
+ 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1
+ 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1
+ 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1
+ 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0
+";
+
+/// Parse a text adjacency matrix format into a directed graph
+fn parse_matrix<Ty: EdgeType>(s: &str) -> MatrixGraph<(), (), Ty> {
+    let mut gr = MatrixGraph::default();
+    let s = s.trim();
+    let lines = s.lines().filter(|l| !l.is_empty());
+    for (row, line) in lines.enumerate() {
+        for (col, word) in line.split(' ')
+                                .filter(|s| s.len() > 0)
+                                .enumerate()
+        {
+            let has_edge = word.parse::<i32>().unwrap();
+            assert!(has_edge == 0 || has_edge == 1);
+            if has_edge == 0 {
+                continue;
+            }
+            while col >= gr.node_count() || row >= gr.node_count() {
+                gr.add_node(());
+            }
+            gr.add_edge(node_index(row), node_index(col), ());
+        }
+    }
+    gr
+}
+
+#[bench]
+fn full_edges_out(bench: &mut Bencher) {
+    let a = parse_matrix::<Directed>(FULL);
+    bench.iter(|| a.edges_directed(node_index(1), Outgoing).count())
+}
+
+#[bench]
+fn full_edges_in(bench: &mut Bencher) {
+    let a = parse_matrix::<Directed>(FULL);
+    bench.iter(|| a.edges_directed(node_index(1), Incoming).count())
+}
+
+#[bench]
+fn full_neighbors_out(bench: &mut Bencher) {
+    let a = parse_matrix::<Directed>(FULL);
+    bench.iter(|| a.neighbors_directed(node_index(1), Outgoing).count())
+}
+
+#[bench]
+fn full_neighbors_in(bench: &mut Bencher) {
+    let a = parse_matrix::<Directed>(FULL);
+
+    bench.iter(|| a.neighbors_directed(node_index(1), Incoming).count())
+}
+
+#[bench]
+fn full_sccs(bench: &mut Bencher) {
+    let a = parse_matrix::<Directed>(FULL);
+    bench.iter(|| algo::kosaraju_scc(&a));
+}
+
+#[bench]
+fn bigger_edges_out(bench: &mut Bencher) {
+    let a = parse_matrix::<Directed>(BIGGER);
+    bench.iter(|| a.edges_directed(node_index(1), Outgoing).count())
+}
+
+#[bench]
+fn bigger_edges_in(bench: &mut Bencher) {
+    let a = parse_matrix::<Directed>(BIGGER);
+    bench.iter(|| a.edges_directed(node_index(1), Incoming).count())
+}
+
+#[bench]
+fn bigger_neighbors_out(bench: &mut Bencher) {
+    let a = parse_matrix::<Directed>(BIGGER);
+    bench.iter(|| a.neighbors_directed(node_index(1), Outgoing).count())
+}
+
+#[bench]
+fn bigger_neighbors_in(bench: &mut Bencher) {
+    let a = parse_matrix::<Directed>(BIGGER);
+
+    bench.iter(|| a.neighbors_directed(node_index(1), Incoming).count())
+}
+
+#[bench]
+fn bigger_sccs(bench: &mut Bencher) {
+    let a = parse_matrix::<Directed>(BIGGER);
+    bench.iter(|| algo::kosaraju_scc(&a));
+}
diff --git a/src/lib.rs b/src/lib.rs
index 5febc29..4a76111 100644
--- a/src/lib.rs
+++ b/src/lib.rs
@@ -10,6 +10,9 @@
 //! - [`GraphMap`](./graphmap/struct.GraphMap.html) is an adjacency list graph
 //! which is backed by a hash table and the node identifiers are the keys
 //! into the table.
+//!
+//! - [`MatrixGraph`](./matrix_graph/struct.MatrixGraph.html) is an adjacency matrix graph.
+//!
 //! - [`CSR`](./csr/struct.Csr.html) is a sparse adjacency matrix graph with
 //! arbitrary associated data.
 //!
@@ -50,6 +53,8 @@
 pub mod generate;
 #[cfg(feature = "graphmap")]
 pub mod graphmap;
+#[cfg(feature = "matrix_graph")]
+pub mod matrix_graph;
 mod graph_impl;
 pub mod dot;
 pub mod unionfind;
diff --git a/src/matrix_graph.rs b/src/matrix_graph.rs
new file mode 100644
index 0000000..3d2bd8a
--- /dev/null
+++ b/src/matrix_graph.rs
@@ -0,0 +1,1565 @@
+//! `MatrixGraph<N, E, Ty, NullN, NullE, Ix>` is a graph datastructure backed by an adjacency matrix.
+
+use std::marker::PhantomData;
+use std::ops::{Index, IndexMut};
+
+use std::cmp;
+use std::mem;
+
+use indexmap::IndexSet;
+
+use fixedbitset::FixedBitSet;
+
+use crate::{
+    Directed,
+    EdgeType,
+    Outgoing,
+    Undirected,
+    Direction,
+    IntoWeightedEdge,
+};
+
+use crate::graph::NodeIndex as GraphNodeIndex;
+
+use crate::visit::{
+    Data,
+    GetAdjacencyMatrix,
+    GraphBase,
+    GraphProp,
+    IntoEdgeReferences,
+    IntoEdges,
+    IntoNeighbors,
+    IntoNeighborsDirected,
+    IntoNodeIdentifiers,
+    IntoNodeReferences,
+    NodeCount,
+    NodeIndexable,
+    NodeCompactIndexable,
+    Visitable,
+};
+
+use crate::data::Build;
+
+pub use crate::graph::IndexType;
+
+// The following types are used to control the max size of the adjacency matrix. Since the maximum
+// size of the matrix vector's is the square of the maximum number of nodes, the number of nodes
+// should be reasonably picked.
+type DefaultIx = u16;
+
+/// Node identifier.
+pub type NodeIndex<Ix=DefaultIx> = GraphNodeIndex<Ix>;
+
+mod private {
+    pub trait Sealed {}
+
+    impl<T> Sealed for super::NotZero<T> {}
+    impl<T> Sealed for Option<T> {}
+}
+
+/// Wrapper trait for an `Option`, allowing user-defined structs to be input as containers when
+/// defining a null element.
+///
+/// Note: this trait is currently *sealed* and cannot be implemented for types outside this crate.
+pub trait Nullable: Default + Into<Option<<Self as Nullable>::Wrapped>> + private::Sealed {
+    #[doc(hidden)]
+    type Wrapped;
+
+    #[doc(hidden)]
+    fn new(value: Self::Wrapped) -> Self;
+
+    #[doc(hidden)]
+    fn as_ref(&self) -> Option<&Self::Wrapped>;
+
+    #[doc(hidden)]
+    fn as_mut(&mut self) -> Option<&mut Self::Wrapped>;
+
+    #[doc(hidden)]
+    fn is_null(&self) -> bool {
+        self.as_ref().is_none()
+    }
+}
+
+impl<T> Nullable for Option<T> {
+    type Wrapped = T;
+
+    fn new(value: T) -> Self {
+        Some(value)
+    }
+
+    fn as_ref(&self) -> Option<&Self::Wrapped> {
+        self.as_ref()
+    }
+
+    fn as_mut(&mut self) -> Option<&mut Self::Wrapped> {
+        self.as_mut()
+    }
+}
+
+/// `NotZero` is used to optimize the memory usage of edge weights `E` in a
+/// [`MatrixGraph`](struct.MatrixGraph.html), replacing the default `Option<E>` sentinel.
+///
+/// Pre-requisite: edge weight should implement [`Zero`](trait.Zero.html).
+///
+/// Note that if you're already using the standard non-zero types (such as `NonZeroU32`), you don't
+/// have to use this wrapper and can leave the default `Null` type argument.
+pub struct NotZero<T>(T);
+
+impl<T: Zero> Default for NotZero<T> {
+    fn default() -> Self {
+        NotZero(T::zero())
+    }
+}
+
+impl<T: Zero> Nullable for NotZero<T> {
+    type Wrapped = T;
+
+    fn new(value: T) -> Self {
+        assert!(!value.is_zero());
+        NotZero(value)
+    }
+
+    // implemented here for optimization purposes
+    fn is_null(&self) -> bool {
+        self.0.is_zero()
+    }
+
+    fn as_ref(&self) -> Option<&Self::Wrapped> {
+        if !self.is_null() { Some(&self.0) }
+        else { None }
+    }
+
+    fn as_mut(&mut self) -> Option<&mut Self::Wrapped> {
+        if !self.is_null() { Some(&mut self.0) }
+        else { None }
+    }
+}
+
+impl<T: Zero> Into<Option<T>> for NotZero<T> {
+    fn into(self) -> Option<T> {
+        if !self.is_null() { Some(self.0) }
+        else { None }
+    }
+}
+
+/// Base trait for types that can be wrapped in a [`NotZero`](struct.NotZero.html).
+///
+/// Implementors must provide a singleton object that will be used to mark empty edges in a
+/// [`MatrixGraph`](struct.MatrixGraph.html).
+///
+/// Note that this trait is already implemented for the base numeric types.
+pub trait Zero {
+    /// Return the singleton object which can be used as a sentinel value.
+    fn zero() -> Self;
+
+    /// Return true if `self` is equal to the sentinel value.
+    fn is_zero(&self) -> bool;
+}
+
+macro_rules! not_zero_impl {
+    ($t:ty,$z:expr) => {
+        impl Zero for $t {
+            fn zero() -> Self {
+                $z as $t
+            }
+
+            fn is_zero(&self) -> bool {
+                self == &Self::zero()
+            }
+        }
+    }
+}
+
+macro_rules! not_zero_impls {
+    ($($t:ty),*) => {
+        $(
+            not_zero_impl!($t, 0);
+        )*
+    }
+}
+
+not_zero_impls!(u8, u16, u32, u64, usize);
+not_zero_impls!(i8, i16, i32, i64, isize);
+not_zero_impls!(f32, f64);
+
+/// Short version of `NodeIndex::new` (with Ix = `DefaultIx`)
+#[inline]
+pub fn node_index(ax: usize) -> NodeIndex {
+    NodeIndex::new(ax)
+}
+
+/// `MatrixGraph<N, E, Ty, Null>` is a graph datastructure using an adjacency matrix
+/// representation.
+///
+/// `MatrixGraph` is parameterized over:
+///
+/// - Associated data `N` for nodes and `E` for edges, called *weights*.
+///   The associated data can be of arbitrary type.
+/// - Edge type `Ty` that determines whether the graph edges are directed or undirected.
+/// - Nullable type `Null`, which denotes the edges' presence (defaults to `Option<E>`). You may
+///   specify [`NotZero<E>`](struct.NotZero.html) if you want to use a sentinel value (such as 0)
+///   to mark the absence of an edge.
+/// - Index type `Ix` that sets the maximum size for the graph (defaults to `DefaultIx`).
+///
+/// The graph uses **O(|V^2|)** space, with fast edge insertion & amortized node insertion, as well
+/// as efficient graph search and graph algorithms on dense graphs.
+///
+/// This graph is backed by a flattened 2D array. For undirected graphs, only the lower triangular
+/// matrix is stored. Since the backing array stores edge weights, it is recommended to box large
+/// edge weights.
+#[derive(Clone)]
+pub struct MatrixGraph<N, E, Ty = Directed, Null: Nullable<Wrapped=E> = Option<E>, Ix = DefaultIx> {
+    node_adjacencies: Vec<Null>,
+    node_capacity: usize,
+    nodes: IdStorage<N>,
+    nb_edges: usize,
+    ty: PhantomData<Ty>,
+    ix: PhantomData<Ix>,
+}
+
+/// A `MatrixGraph` with directed edges.
+pub type DiMatrix<N, E, Null = Option<E>, Ix = DefaultIx> = MatrixGraph<N, E, Directed, Null, Ix>;
+
+/// A `MatrixGraph` with undirected edges.
+pub type UnMatrix<N, E, Null = Option<E>, Ix = DefaultIx> = MatrixGraph<N, E, Undirected, Null, Ix>;
+
+impl<N, E, Ty: EdgeType, Null: Nullable<Wrapped=E>, Ix: IndexType> MatrixGraph<N, E, Ty, Null, Ix> {
+    /// Create a new `MatrixGraph` with estimated capacity for nodes.
+    pub fn with_capacity(node_capacity: usize) -> Self {
+        let mut m = Self {
+            node_adjacencies: vec![],
+            node_capacity: 0,
+            nodes: IdStorage::with_capacity(node_capacity),
+            nb_edges: 0,
+            ty: PhantomData,
+            ix: PhantomData,
+        };
+
+        debug_assert!(node_capacity <= <Ix as IndexType>::max().index());
+        m.extend_capacity_for_node(NodeIndex::new(node_capacity));
+
+        m
+    }
+
+    #[inline]
+    fn to_edge_position(&self, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> usize {
+        to_linearized_matrix_position::<Ty>(a.index(), b.index(), self.node_capacity)
+    }
+
+    /// Remove all nodes and edges.
+    pub fn clear(&mut self) {
+        for edge in self.node_adjacencies.iter_mut() {
+            *edge = Default::default();
+        }
+        self.nodes.clear();
+        self.nb_edges = 0;
+    }
+
+    /// Return the number of nodes (vertices) in the graph.
+    ///
+    /// Computes in **O(1)** time.
+    #[inline]
+    pub fn node_count(&self) -> usize {
+        self.nodes.len()
+    }
+
+    /// Return the number of edges in the graph.
+    ///
+    /// Computes in **O(1)** time.
+    #[inline]
+    pub fn edge_count(&self) -> usize {
+        self.nb_edges
+    }
+
+    /// Return whether the graph has directed edges or not.
+    #[inline]
+    pub fn is_directed(&self) -> bool {
+        Ty::is_directed()
+    }
+
+    /// Add a node (also called vertex) with associated data `weight` to the graph.
+    ///
+    /// Computes in **O(1)** time.
+    ///
+    /// Return the index of the new node.
+    ///
+    /// **Panics** if the MatrixGraph is at the maximum number of nodes for its index type.
+    pub fn add_node(&mut self, weight: N) -> NodeIndex<Ix> {
+        NodeIndex::new(self.nodes.add(weight))
+    }
+
+    /// Remove `a` from the graph.
+    ///
+    /// Computes in **O(V)** time, due to the removal of edges with other nodes.
+    ///
+    /// **Panics** if the node `a` does not exist.
+    pub fn remove_node(&mut self, a: NodeIndex<Ix>) -> N {
+        for id in self.nodes.iter_ids() {
+            let position = self.to_edge_position(a, NodeIndex::new(id));
+            self.node_adjacencies[position] = Default::default();
+
+            if Ty::is_directed() {
+                let position = self.to_edge_position(NodeIndex::new(id), a);
+                self.node_adjacencies[position] = Default::default();
+            }
+        }
+
+        self.nodes.remove(a.index())
+    }
+
+    #[inline]
+    fn extend_capacity_for_node(&mut self, min_node: NodeIndex<Ix>) {
+        self.node_capacity = extend_linearized_matrix::<Ty, _>(&mut self.node_adjacencies, self.node_capacity, min_node.index());
+    }
+
+    #[inline]
+    fn extend_capacity_for_edge(&mut self, a: NodeIndex<Ix>, b: NodeIndex<Ix>) {
+        let min_node = cmp::max(a, b);
+        if min_node.index() >= self.node_capacity {
+            self.extend_capacity_for_node(min_node);
+        }
+    }
+
+    /// Update the edge from `a` to `b` to the graph, with its associated data `weight`.
+    ///
+    /// Return the previous data, if any.
+    ///
+    /// Computes in **O(1)** time, best case.
+    /// Computes in **O(|V|^2)** time, worst case (matrix needs to be re-allocated).
+    ///
+    /// **Panics** if any of the nodes don't exist.
+    pub fn update_edge(&mut self, a: NodeIndex<Ix>, b: NodeIndex<Ix>, weight: E) -> Option<E> {
+        self.extend_capacity_for_edge(a, b);
+
+        let p = self.to_edge_position(a, b);
+        let old_weight = mem::replace(&mut self.node_adjacencies[p], Null::new(weight));
+        if old_weight.is_null() {
+            self.nb_edges += 1;
+        }
+        old_weight.into()
+    }
+
+    /// Add an edge from `a` to `b` to the graph, with its associated
+    /// data `weight`.
+    ///
+    /// Return the index of the new edge.
+    ///
+    /// Computes in **O(1)** time, best case.
+    /// Computes in **O(|V|^2)** time, worst case (matrix needs to be re-allocated).
+    ///
+    /// **Panics** if any of the nodes don't exist.
+    /// **Panics** if an edge already exists from `a` to `b`.
+    ///
+    /// **Note:** `MatrixGraph` does not allow adding parallel (“duplicate”) edges. If you want to avoid
+    /// this, use [`.update_edge(a, b, weight)`](#method.update_edge) instead.
+    pub fn add_edge(&mut self, a: NodeIndex<Ix>, b: NodeIndex<Ix>, weight: E) {
+        let old_edge_id = self.update_edge(a, b, weight);
+        assert!(old_edge_id.is_none());
+    }
+
+    /// Remove the edge from `a` to `b` to the graph.
+    ///
+    /// **Panics** if any of the nodes don't exist.
+    /// **Panics** if no edge exists between `a` and `b`.
+    pub fn remove_edge(&mut self, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> E {
+        let p = self.to_edge_position(a, b);
+        let old_weight = mem::replace(&mut self.node_adjacencies[p], Default::default()).into().unwrap();
+        let old_weight: Option<_> = old_weight.into();
+        self.nb_edges -= 1;
+        old_weight.unwrap()
+    }
+
+    /// Return true if there is an edge between `a` and `b`.
+    ///
+    /// **Panics** if any of the nodes don't exist.
+    pub fn has_edge(&self, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> bool {
+        let p = self.to_edge_position(a, b);
+        !self.node_adjacencies[p].is_null()
+    }
+
+    /// Access the weight for node `a`.
+    ///
+    /// Also available with indexing syntax: `&graph[a]`.
+    ///
+    /// **Panics** if the node doesn't exist.
+    pub fn node_weight(&self, a: NodeIndex<Ix>) -> &N {
+        &self.nodes[a.index()]
+    }
+
+    /// Access the weight for node `a`, mutably.
+    ///
+    /// Also available with indexing syntax: `&mut graph[a]`.
+    ///
+    /// **Panics** if the node doesn't exist.
+    pub fn node_weight_mut(&mut self, a: NodeIndex<Ix>) -> &mut N {
+        &mut self.nodes[a.index()]
+    }
+
+    /// Access the weight for edge `e`.
+    ///
+    /// Also available with indexing syntax: `&graph[e]`.
+    ///
+    /// **Panics** if no edge exists between `a` and `b`.
+    pub fn edge_weight(&self, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> &E {
+        let p = self.to_edge_position(a, b);
+        self.node_adjacencies[p].as_ref().unwrap()
+    }
+
+    /// Access the weight for edge `e`, mutably.
+    ///
+    /// Also available with indexing syntax: `&mut graph[e]`.
+    ///
+    /// **Panics** if no edge exists between `a` and `b`.
+    pub fn edge_weight_mut(&mut self, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> &mut E {
+        let p = self.to_edge_position(a, b);
+        self.node_adjacencies[p].as_mut().unwrap()
+    }
+
+    /// Return an iterator of all nodes with an edge starting from `a`.
+    ///
+    /// - `Directed`: Outgoing edges from `a`.
+    /// - `Undirected`: All edges from or to `a`.
+    ///
+    /// Produces an empty iterator if the node doesn't exist.<br>
+    /// Iterator element type is [`NodeIndex<Ix>`](../graph/struct.NodeIndex.html).
+    pub fn neighbors(&self, a: NodeIndex<Ix>) -> Neighbors<Ty, Null, Ix> {
+        Neighbors(Edges::on_columns(a.index(), &self.node_adjacencies, self.node_capacity))
+    }
+
+    /// Return an iterator of all edges of `a`.
+    ///
+    /// - `Directed`: Outgoing edges from `a`.
+    /// - `Undirected`: All edges connected to `a`.
+    ///
+    /// Produces an empty iterator if the node doesn't exist.<br>
+    /// Iterator element type is [`Edges<E, Ix>`](../graph/struct.Edges.html).
+    pub fn edges(&self, a: NodeIndex<Ix>) -> Edges<Ty, Null, Ix> {
+        Edges::on_columns(a.index(), &self.node_adjacencies, self.node_capacity)
+    }
+
+    /// Create a new `MatrixGraph` from an iterable of edges.
+    ///
+    /// Node weights `N` are set to default values.
+    /// Edge weights `E` may either be specified in the list,
+    /// or they are filled with default values.
+    ///
+    /// Nodes are inserted automatically to match the edges.
+    ///
+    /// ```
+    /// use petgraph::matrix_graph::MatrixGraph;
+    ///
+    /// let gr = MatrixGraph::<(), i32>::from_edges(&[
+    ///     (0, 1), (0, 2), (0, 3),
+    ///     (1, 2), (1, 3),
+    ///     (2, 3),
+    /// ]);
+    /// ```
+    pub fn from_edges<I>(iterable: I) -> Self
+        where I: IntoIterator,
+              I::Item: IntoWeightedEdge<E>,
+              <I::Item as IntoWeightedEdge<E>>::NodeId: Into<NodeIndex<Ix>>,
+              N: Default,
+    {
+        let mut g = Self::default();
+        g.extend_with_edges(iterable);
+        g
+    }
+
+    /// Extend the graph from an iterable of edges.
+    ///
+    /// Node weights `N` are set to default values.
+    /// Edge weights `E` may either be specified in the list,
+    /// or they are filled with default values.
+    ///
+    /// Nodes are inserted automatically to match the edges.
+    pub fn extend_with_edges<I>(&mut self, iterable: I)
+        where I: IntoIterator,
+              I::Item: IntoWeightedEdge<E>,
+              <I::Item as IntoWeightedEdge<E>>::NodeId: Into<NodeIndex<Ix>>,
+              N: Default,
+    {
+        for elt in iterable {
+            let (source, target, weight) = elt.into_weighted_edge();
+            let (source, target) = (source.into(), target.into());
+            let nx = cmp::max(source, target);
+            while nx.index() >= self.node_count() {
+                self.add_node(N::default());
+            }
+            self.add_edge(source, target, weight);
+        }
+    }
+}
+
+impl<N, E, Null: Nullable<Wrapped=E>, Ix: IndexType> MatrixGraph<N, E, Directed, Null, Ix> {
+    /// Return an iterator of all neighbors that have an edge between them and
+    /// `a`, in the specified direction.
+    /// If the graph's edges are undirected, this is equivalent to *.neighbors(a)*.
+    ///
+    /// - `Directed`, `Outgoing`: All edges from `a`.
+    /// - `Directed`, `Incoming`: All edges to `a`.
+    /// - `Undirected`: All edges from or to `a`.
+    ///
+    /// Produces an empty iterator if the node doesn't exist.<br>
+    /// Iterator element type is [`NodeIndex<Ix>`](../graph/struct.NodeIndex.html).
+    pub fn neighbors_directed(&self, a: NodeIndex<Ix>, d: Direction) -> Neighbors<Directed, Null, Ix> {
+        if d == Outgoing {
+            self.neighbors(a)
+        } else {
+            Neighbors(Edges::on_rows(a.index(), &self.node_adjacencies, self.node_capacity))
+        }
+    }
+
+    /// Return an iterator of all edges of `a`, in the specified direction.
+    ///
+    /// - `Directed`, `Outgoing`: All edges from `a`.
+    /// - `Directed`, `Incoming`: All edges to `a`.
+    /// - `Undirected`: All edges connected to `a`.
+    ///
+    /// Produces an empty iterator if the node `a` doesn't exist.<br>
+    /// Iterator element type is [`EdgeReference<E, Ix>`](../graph/struct.EdgeReference.html).
+    pub fn edges_directed(&self, a: NodeIndex<Ix>, d: Direction) -> Edges<Directed, Null, Ix> {
+        if d == Outgoing {
+            self.edges(a)
+        } else {
+            Edges::on_rows(a.index(), &self.node_adjacencies, self.node_capacity)
+        }
+    }
+}
+
+/// Iterator over the node identifiers of a graph.
+///
+/// Created from a call to [`.node_identifiers()`][1] on a [`MatrixGraph`][2].
+///
+/// [1]: ../visit/trait.IntoNodeIdentifiers.html#tymethod.node_identifiers
+/// [2]: struct.MatrixGraph.html
+pub struct NodeIdentifiers<'a, Ix> {
+    iter: IdIterator<'a>,
+    ix: PhantomData<Ix>,
+}
+
+impl<'a, Ix: IndexType> NodeIdentifiers<'a, Ix> {
+    fn new(iter: IdIterator<'a>) -> Self {
+        Self { iter, ix: PhantomData }
+    }
+}
+
+impl<'a, Ix: IndexType> Iterator for NodeIdentifiers<'a, Ix> {
+    type Item = NodeIndex<Ix>;
+
+    fn next(&mut self) -> Option<Self::Item> {
+        self.iter.next().map(NodeIndex::new)
+    }
+}
+
+/// Iterator over all nodes of a graph.
+///
+/// Created from a call to [`.node_references()`][1] on a [`MatrixGraph`][2].
+///
+/// [1]: ../visit/trait.IntoNodeReferences.html#tymethod.node_references
+/// [2]: struct.MatrixGraph.html
+pub struct NodeReferences<'a, N: 'a, Ix> {
+    nodes: &'a IdStorage<N>,
+    iter: IdIterator<'a>,
+    ix: PhantomData<Ix>,
+}
+
+impl<'a, N: 'a, Ix> NodeReferences<'a, N, Ix> {
+    fn new(nodes: &'a IdStorage<N>) -> Self {
+        NodeReferences {
+            nodes: nodes,
+            iter: nodes.iter_ids(),
+            ix: PhantomData,
+        }
+    }
+}
+
+impl<'a, N: 'a, Ix: IndexType> Iterator for NodeReferences<'a, N, Ix> {
+    type Item = (NodeIndex<Ix>, &'a N);
+
+    fn next(&mut self) -> Option<Self::Item> {
+        self.iter.next().map(|i| (NodeIndex::new(i), &self.nodes[i]))
+    }
+}
+
+/// Iterator over all edges of a graph.
+///
+/// Created from a call to [`.edge_references()`][1] on a [`MatrixGraph`][2].
+///
+/// [1]: ../visit/trait.IntoEdgeReferences.html#tymethod.edge_references
+/// [2]: struct.MatrixGraph.html
+pub struct EdgeReferences<'a, Ty: EdgeType, Null: 'a + Nullable, Ix> {
+    row: usize,
+    column: usize,
+    node_adjacencies: &'a [Null],
+    node_capacity: usize,
+    ty: PhantomData<Ty>,
+    ix: PhantomData<Ix>,
+}
+
+impl<'a, Ty: EdgeType, Null: 'a + Nullable, Ix> EdgeReferences<'a, Ty, Null, Ix> {
+    fn new(node_adjacencies: &'a [Null], node_capacity: usize) -> Self {
+        EdgeReferences {
+            row: 0, column: 0,
+            node_adjacencies: node_adjacencies,
+            node_capacity: node_capacity,
+            ty: PhantomData,
+            ix: PhantomData,
+        }
+    }
+}
+
+impl<'a, Ty: EdgeType, Null: Nullable, Ix: IndexType> Iterator for EdgeReferences<'a, Ty, Null, Ix> {
+    type Item = (NodeIndex<Ix>, NodeIndex<Ix>, &'a Null::Wrapped);
+
+    fn next(&mut self) -> Option<Self::Item> {
+        loop {
+            let (row, column) = (self.row, self.column);
+            if row >= self.node_capacity {
+                return None;
+            }
+
+            // By default, advance the column. Reset and advance the row if the column overflows.
+            //
+            // Note that for undirected graphs, we don't want to yield the same edge twice,
+            // therefore the maximum column length should be the index new after the row index.
+            self.column += 1;
+            let max_column_len = if !Ty::is_directed() { row + 1 } else { self.node_capacity };
+            if self.column >= max_column_len {
+                self.column = 0;
+                self.row += 1;
+            }
+
+            let p = to_linearized_matrix_position::<Ty>(row, column, self.node_capacity);
+            if let Some(e) = self.node_adjacencies[p].as_ref() {
+                return Some((NodeIndex::new(row), NodeIndex::new(column), e));
+            }
+        }
+    }
+}
+
+/// Iterator over the neighbors of a node.
+///
+/// Iterator element type is `NodeIndex<Ix>`.
+///
+/// Created with [`.neighbors()`][1], [`.neighbors_directed()`][2].
+///
+/// [1]: struct.MatrixGraph.html#method.neighbors
+/// [2]: struct.MatrixGraph.html#method.neighbors_directed
+pub struct Neighbors<'a, Ty: EdgeType, Null: 'a + Nullable, Ix>(Edges<'a, Ty, Null, Ix>);
+
+impl<'a, Ty: EdgeType, Null: Nullable, Ix: IndexType> Iterator for Neighbors<'a, Ty, Null, Ix> {
+    type Item = NodeIndex<Ix>;
+
+    fn next(&mut self) -> Option<Self::Item> {
+        self.0.next().map(|(_, b, _)| b)
+    }
+}
+
+enum NeighborIterDirection {
+    Rows,
+    Columns,
+}
+
+/// Iterator over the edges of from or to a node
+///
+/// Created with [`.edges()`][1], [`.edges_directed()`][2].
+///
+/// [1]: struct.MatrixGraph.html#method.edges
+/// [2]: struct.MatrixGraph.html#method.edges_directed
+pub struct Edges<'a, Ty: EdgeType, Null: 'a + Nullable, Ix> {
+    iter_direction: NeighborIterDirection,
+    node_adjacencies: &'a [Null],
+    node_capacity: usize,
+    row: usize,
+    column: usize,
+    ty: PhantomData<Ty>,
+    ix: PhantomData<Ix>,
+}
+
+impl<'a, Ty: EdgeType, Null: 'a + Nullable, Ix> Edges<'a, Ty, Null, Ix> {
+    fn on_columns(row: usize, node_adjacencies: &'a [Null], node_capacity: usize) -> Self {
+        Edges {
+            iter_direction: NeighborIterDirection::Columns,
+            node_adjacencies: node_adjacencies,
+            node_capacity: node_capacity,
+            row: row,
+            column: 0,
+            ty: PhantomData,
+            ix: PhantomData,
+        }
+    }
+
+    fn on_rows(column: usize, node_adjacencies: &'a [Null], node_capacity: usize) -> Self {
+        Edges {
+            iter_direction: NeighborIterDirection::Rows,
+            node_adjacencies: node_adjacencies,
+            node_capacity: node_capacity,
+            row: 0,
+            column: column,
+            ty: PhantomData,
+            ix: PhantomData,
+        }
+    }
+}
+
+impl<'a, Ty: EdgeType, Null: Nullable, Ix: IndexType> Iterator for Edges<'a, Ty, Null, Ix> {
+    type Item = (NodeIndex<Ix>, NodeIndex<Ix>, &'a Null::Wrapped);
+
+    fn next(&mut self) -> Option<Self::Item> {
+        use self::NeighborIterDirection::*;
+
+        loop {
+            let (row, column) = (self.row, self.column);
+            if row >= self.node_capacity || column >= self.node_capacity {
+                return None;
+            }
+
+            match self.iter_direction {
+                Rows    => self.row += 1,
+                Columns => self.column += 1,
+            }
+
+            let p = to_linearized_matrix_position::<Ty>(row, column, self.node_capacity);
+            if let Some(e) = self.node_adjacencies[p].as_ref() {
+                let (a, b) = match self.iter_direction {
+                    Rows    => (column, row),
+                    Columns => (row, column),
+                };
+
+                return Some((NodeIndex::new(a), NodeIndex::new(b), e));
+            }
+        }
+    }
+}
+
+#[inline]
+fn to_linearized_matrix_position<Ty: EdgeType>(row: usize, column: usize, width: usize) -> usize {
+    if Ty::is_directed() {
+        to_flat_square_matrix_position(row, column, width)
+    } else {
+        to_lower_triangular_matrix_position(row, column)
+    }
+}
+
+#[inline]
+fn extend_linearized_matrix<Ty: EdgeType, T: Default>(node_adjacencies: &mut Vec<T>, old_node_capacity: usize, min_node_capacity: usize) -> usize {
+    if Ty::is_directed() {
+        extend_flat_square_matrix(node_adjacencies, old_node_capacity, min_node_capacity)
+    } else {
+        extend_lower_triangular_matrix(node_adjacencies, min_node_capacity)
+    }
+}
+
+#[inline]
+fn to_flat_square_matrix_position(row: usize, column: usize, width: usize) -> usize {
+    row * width + column
+}
+
+#[inline]
+fn extend_flat_square_matrix<T: Default>(node_adjacencies: &mut Vec<T>, old_node_capacity: usize, min_node_capacity: usize) -> usize {
+    let min_node_capacity = (min_node_capacity + 1).next_power_of_two();
+
+    // Optimization: when resizing the matrix this way we skip the first few grows to make
+    // small matrices a bit faster to work with.
+    const MIN_CAPACITY: usize = 4;
+    let new_node_capacity = cmp::max(min_node_capacity, MIN_CAPACITY);
+
+    let mut new_node_adjacencies = vec![];
+    ensure_len(&mut new_node_adjacencies, new_node_capacity.pow(2));
+
+    for c in 0..old_node_capacity {
+        let pos = c * old_node_capacity;
+        let new_pos = c * new_node_capacity;
+
+        let mut old = &mut node_adjacencies[pos..pos + old_node_capacity];
+        let mut new = &mut new_node_adjacencies[new_pos..new_pos + old_node_capacity];
+
+        mem::swap(&mut old, &mut new);
+    }
+
+    mem::swap(node_adjacencies, &mut new_node_adjacencies);
+
+    new_node_capacity
+}
+
+#[inline]
+fn to_lower_triangular_matrix_position(row: usize, column: usize) -> usize {
+    let (row, column) = if row > column { (row, column) } else { (column, row) };
+    (row * (row + 1)) / 2 + column
+}
+
+#[inline]
+fn extend_lower_triangular_matrix<T: Default>(node_adjacencies: &mut Vec<T>, new_node_capacity: usize) -> usize {
+    let max_pos = to_lower_triangular_matrix_position(new_node_capacity, new_node_capacity);
+    ensure_len(node_adjacencies, max_pos + 1);
+    new_node_capacity + 1
+}
+
+/// Grow a Vec by appending the type's default value the `size` is reached.
+fn ensure_len<T: Default>(v: &mut Vec<T>, size: usize) {
+    if let Some(n) = size.checked_sub(v.len()) {
+        v.reserve(n);
+        for _ in 0..n {
+            v.push(T::default());
+        }
+    }
+}
+
+#[derive(Clone)]
+struct IdStorage<T> {
+    elements: Vec<Option<T>>,
+    upper_bound: usize,
+    removed_ids: IndexSet<usize>,
+}
+
+impl<T> IdStorage<T> {
+    fn with_capacity(capacity: usize) -> Self {
+        IdStorage {
+            elements: Vec::with_capacity(capacity),
+            upper_bound: 0,
+            removed_ids: IndexSet::new(),
+        }
+    }
+
+    fn add(&mut self, element: T) -> usize {
+        let id = if let Some(id) = self.removed_ids.pop() {
+            id
+        } else {
+            let id = self.upper_bound;
+            self.upper_bound += 1;
+
+            ensure_len(&mut self.elements, id + 1);
+
+            id
+        };
+
+        self.elements[id] = Some(element);
+
+        id
+    }
+
+    fn remove(&mut self, id: usize) -> T {
+        let data = self.elements[id].take().unwrap();
+        if self.upper_bound - id == 1 {
+            self.upper_bound -= 1;
+        } else {
+            self.removed_ids.insert(id);
+        }
+        data
+    }
+
+    fn clear(&mut self) {
+        self.upper_bound = 0;
+        self.elements.clear();
+        self.removed_ids.clear();
+    }
+
+    #[inline]
+    fn len(&self) -> usize {
+        self.upper_bound - self.removed_ids.len()
+    }
+
+    fn iter_ids(&self) -> IdIterator {
+        IdIterator {
+            upper_bound: self.upper_bound,
+            removed_ids: &self.removed_ids,
+            current: None,
+        }
+    }
+}
+
+impl<T> Index<usize> for IdStorage<T> {
+    type Output = T;
+    fn index(&self, index: usize) -> &T {
+        self.elements[index].as_ref().unwrap()
+    }
+}
+
+impl<T> IndexMut<usize> for IdStorage<T> {
+    fn index_mut(&mut self, index: usize) -> &mut T {
+        self.elements[index].as_mut().unwrap()
+    }
+}
+
+struct IdIterator<'a> {
+    upper_bound: usize,
+    removed_ids: &'a IndexSet<usize>,
+    current: Option<usize>,
+}
+
+impl<'a> Iterator for IdIterator<'a> {
+    type Item = usize;
+
+    fn next(&mut self) -> Option<Self::Item> {
+        // initialize / advance
+        let current = {
+            if self.current.is_none() {
+                self.current = Some(0);
+                self.current.as_mut().unwrap()
+            } else {
+                let current = self.current.as_mut().unwrap();
+                *current += 1;
+                current
+            }
+        };
+
+        // skip removed ids
+        while self.removed_ids.contains(current) && *current < self.upper_bound {
+            *current += 1;
+        }
+
+        if *current < self.upper_bound {
+            Some(*current)
+        } else {
+            None
+        }
+    }
+}
+
+/// Create a new empty `MatrixGraph`.
+impl<N, E, Ty: EdgeType, Null: Nullable<Wrapped=E>, Ix: IndexType> Default for MatrixGraph<N, E, Ty, Null, Ix> {
+    fn default() -> Self {
+        Self::with_capacity(0)
+    }
+}
+
+impl<N, E> MatrixGraph<N, E, Directed> {
+    /// Create a new `MatrixGraph` with directed edges.
+    ///
+    /// This is a convenience method. Use `MatrixGraph::with_capacity` or `MatrixGraph::default` for
+    /// a constructor that is generic in all the type parameters of `MatrixGraph`.
+    pub fn new() -> Self {
+        MatrixGraph::default()
+    }
+}
+
+impl<N, E> MatrixGraph<N, E, Undirected> {
+    /// Create a new `MatrixGraph` with undirected edges.
+    ///
+    /// This is a convenience method. Use `MatrixGraph::with_capacity` or `MatrixGraph::default` for
+    /// a constructor that is generic in all the type parameters of `MatrixGraph`.
+    pub fn new_undirected() -> Self {
+        MatrixGraph::default()
+    }
+}
+
+/// Index the `MatrixGraph` by `NodeIndex` to access node weights.
+///
+/// **Panics** if the node doesn't exist.
+impl<N, E, Ty: EdgeType, Null: Nullable<Wrapped=E>, Ix: IndexType> Index<NodeIndex<Ix>> for MatrixGraph<N, E, Ty, Null, Ix> {
+    type Output = N;
+
+    fn index(&self, ax: NodeIndex<Ix>) -> &N {
+        self.node_weight(ax)
+    }
+}
+
+/// Index the `MatrixGraph` by `NodeIndex` to access node weights.
+///
+/// **Panics** if the node doesn't exist.
+impl<N, E, Ty: EdgeType, Null: Nullable<Wrapped=E>, Ix: IndexType> IndexMut<NodeIndex<Ix>> for MatrixGraph<N, E, Ty, Null, Ix> {
+    fn index_mut(&mut self, ax: NodeIndex<Ix>) -> &mut N {
+        self.node_weight_mut(ax)
+    }
+}
+
+impl<N, E, Ty: EdgeType, Null: Nullable<Wrapped=E>, Ix: IndexType> NodeCount for MatrixGraph<N, E, Ty, Null, Ix> {
+    fn node_count(&self) -> usize {
+        MatrixGraph::node_count(self)
+    }
+}
+
+/// Index the `MatrixGraph` by `NodeIndex` pair to access edge weights.
+///
+/// Also available with indexing syntax: `&graph[e]`.
+///
+/// **Panics** if no edge exists between `a` and `b`.
+impl<N, E, Ty: EdgeType, Null: Nullable<Wrapped=E>, Ix: IndexType> Index<(NodeIndex<Ix>, NodeIndex<Ix>)> for MatrixGraph<N, E, Ty, Null, Ix> {
+    type Output = E;
+
+    fn index(&self, (ax, bx): (NodeIndex<Ix>, NodeIndex<Ix>)) -> &E {
+        self.edge_weight(ax, bx)
+    }
+}
+
+/// Index the `MatrixGraph` by `NodeIndex` pair to access edge weights.
+///
+/// Also available with indexing syntax: `&mut graph[e]`.
+///
+/// **Panics** if no edge exists between `a` and `b`.
+impl<N, E, Ty: EdgeType, Null: Nullable<Wrapped=E>, Ix: IndexType> IndexMut<(NodeIndex<Ix>, NodeIndex<Ix>)> for MatrixGraph<N, E, Ty, Null, Ix> {
+    fn index_mut(&mut self, (ax, bx): (NodeIndex<Ix>, NodeIndex<Ix>)) -> &mut E {
+        self.edge_weight_mut(ax, bx)
+    }
+}
+
+impl<N, E, Ty: EdgeType, Null: Nullable<Wrapped=E>, Ix: IndexType> GetAdjacencyMatrix for MatrixGraph<N, E, Ty, Null, Ix> {
+    type AdjMatrix = ();
+
+    fn adjacency_matrix(&self) -> Self::AdjMatrix {
+    }
+
+    fn is_adjacent(&self, _: &Self::AdjMatrix, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> bool {
+        MatrixGraph::has_edge(self, a, b)
+    }
+}
+
+impl<N, E, Ty: EdgeType, Null: Nullable<Wrapped=E>, Ix: IndexType> Visitable for MatrixGraph<N, E, Ty, Null, Ix> {
+    type Map = FixedBitSet;
+
+    fn visit_map(&self) -> FixedBitSet {
+        FixedBitSet::with_capacity(self.node_count())
+    }
+
+    fn reset_map(&self, map: &mut Self::Map) {
+        map.clear();
+        map.grow(self.node_count());
+    }
+}
+
+impl<N, E, Ty: EdgeType, Null: Nullable<Wrapped=E>, Ix: IndexType> GraphBase for MatrixGraph<N, E, Ty, Null, Ix> {
+    type NodeId = NodeIndex<Ix>;
+    type EdgeId = (NodeIndex<Ix>, NodeIndex<Ix>);
+}
+
+impl<N, E, Ty: EdgeType, Null: Nullable<Wrapped=E>, Ix: IndexType> GraphProp for MatrixGraph<N, E, Ty, Null, Ix> {
+    type EdgeType = Ty;
+}
+
+impl<N, E, Ty: EdgeType, Null: Nullable<Wrapped=E>, Ix: IndexType> Data for MatrixGraph<N, E, Ty, Null, Ix> {
+    type NodeWeight = N;
+    type EdgeWeight = E;
+}
+
+impl<'a, N, E: 'a, Ty: EdgeType, Null: Nullable<Wrapped=E>, Ix: IndexType> IntoNodeIdentifiers for &'a MatrixGraph<N, E, Ty, Null, Ix> {
+    type NodeIdentifiers = NodeIdentifiers<'a, Ix>;
+
+    fn node_identifiers(self) -> Self::NodeIdentifiers {
+        NodeIdentifiers::new(self.nodes.iter_ids())
+    }
+}
+
+impl<'a, N, E: 'a, Ty: EdgeType, Null: Nullable<Wrapped=E>, Ix: IndexType> IntoNeighbors for &'a MatrixGraph<N, E, Ty, Null, Ix> {
+    type Neighbors = Neighbors<'a, Ty, Null, Ix>;
+
+    fn neighbors(self, a: NodeIndex<Ix>) -> Self::Neighbors {
+        MatrixGraph::neighbors(self, a)
+    }
+}
+
+impl<'a, N, E: 'a, Null: Nullable<Wrapped=E>, Ix: IndexType> IntoNeighborsDirected for &'a MatrixGraph<N, E, Directed, Null, Ix> {
+    type NeighborsDirected = Neighbors<'a, Directed, Null, Ix>;
+
+    fn neighbors_directed(self, a: NodeIndex<Ix>, d: Direction) -> Self::NeighborsDirected {
+        MatrixGraph::neighbors_directed(self, a, d)
+    }
+}
+
+impl<'a, N, E, Ty: EdgeType, Null: Nullable<Wrapped=E>, Ix: IndexType> IntoNodeReferences for &'a MatrixGraph<N, E, Ty, Null, Ix> {
+    type NodeRef = (NodeIndex<Ix>, &'a N);
+    type NodeReferences = NodeReferences<'a, N, Ix>;
+    fn node_references(self) -> Self::NodeReferences {
+        NodeReferences::new(&self.nodes)
+    }
+}
+
+impl<'a, N, E, Ty: EdgeType, Null: Nullable<Wrapped=E>, Ix: IndexType> IntoEdgeReferences for &'a MatrixGraph<N, E, Ty, Null, Ix> {
+    type EdgeRef = (NodeIndex<Ix>, NodeIndex<Ix>, &'a E);
+    type EdgeReferences = EdgeReferences<'a, Ty, Null, Ix>;
+    fn edge_references(self) -> Self::EdgeReferences {
+        EdgeReferences::new(&self.node_adjacencies, self.node_capacity)
+    }
+}
+
+impl<'a, N, E, Ty: EdgeType, Null: Nullable<Wrapped=E>, Ix: IndexType> IntoEdges for &'a MatrixGraph<N, E, Ty, Null, Ix> {
+    type Edges = Edges<'a, Ty, Null, Ix>;
+    fn edges(self, a: Self::NodeId) -> Self::Edges {
+        MatrixGraph::edges(self, a)
+    }
+}
+
+impl<N, E, Ty: EdgeType, Null: Nullable<Wrapped=E>, Ix: IndexType> NodeIndexable for MatrixGraph<N, E, Ty, Null, Ix> {
+    fn node_bound(&self) -> usize {
+        self.node_count()
+    }
+
+    fn to_index(&self, ix: NodeIndex<Ix>) -> usize {
+        ix.index()
+    }
+
+    fn from_index(&self, ix: usize) -> Self::NodeId {
+        NodeIndex::new(ix)
+    }
+}
+
+impl<N, E, Ty: EdgeType, Null: Nullable<Wrapped=E>, Ix: IndexType> NodeCompactIndexable for MatrixGraph<N, E, Ty, Null, Ix> {
+}
+
+impl<N, E, Ty: EdgeType, Null: Nullable<Wrapped=E>, Ix: IndexType> Build for MatrixGraph<N, E, Ty, Null, Ix> {
+    fn add_node(&mut self, weight: Self::NodeWeight) -> Self::NodeId {
+        self.add_node(weight)
+    }
+
+    fn add_edge(&mut self, a: Self::NodeId, b: Self::NodeId, weight: Self::EdgeWeight) -> Option<Self::EdgeId> {
+        if !self.has_edge(a, b) {
+            MatrixGraph::update_edge(self, a, b, weight);
+            Some((a, b))
+        } else {
+            None
+        }
+    }
+
+    fn update_edge(&mut self, a: Self::NodeId, b: Self::NodeId, weight: Self::EdgeWeight) -> Self::EdgeId {
+        MatrixGraph::update_edge(self, a, b, weight);
+        (a, b)
+    }
+}
+
+#[cfg(test)]
+mod tests {
+    use super::*;
+    use crate::{Outgoing, Incoming};
+
+    #[test]
+    fn test_new() {
+        let g = MatrixGraph::<i32, i32>::new();
+        assert_eq!(g.node_count(), 0);
+        assert_eq!(g.edge_count(), 0);
+    }
+
+    #[test]
+    fn test_default() {
+        let g = MatrixGraph::<i32, i32>::default();
+        assert_eq!(g.node_count(), 0);
+        assert_eq!(g.edge_count(), 0);
+    }
+
+    #[test]
+    fn test_with_capacity() {
+        let g = MatrixGraph::<i32, i32>::with_capacity(10);
+        assert_eq!(g.node_count(), 0);
+        assert_eq!(g.edge_count(), 0);
+    }
+
+    #[test]
+    fn test_node_indexing() {
+        let mut g: MatrixGraph<char, ()> = MatrixGraph::new();
+        let a = g.add_node('a');
+        let b = g.add_node('b');
+        assert_eq!(g.node_count(), 2);
+        assert_eq!(g.edge_count(), 0);
+        assert_eq!(g[a], 'a');
+        assert_eq!(g[b], 'b');
+    }
+
+    #[test]
+    fn test_remove_node() {
+        let mut g: MatrixGraph<char, ()> = MatrixGraph::new();
+        let a = g.add_node('a');
+
+        g.remove_node(a);
+
+        assert_eq!(g.node_count(), 0);
+        assert_eq!(g.edge_count(), 0);
+    }
+
+    #[test]
+    fn test_add_edge() {
+        let mut g = MatrixGraph::new();
+        let a = g.add_node('a');
+        let b = g.add_node('b');
+        let c = g.add_node('c');
+        g.add_edge(a, b, ());
+        g.add_edge(b, c, ());
+        assert_eq!(g.node_count(), 3);
+        assert_eq!(g.edge_count(), 2);
+    }
+
+    #[test]
+    fn test_add_edge_with_weights() {
+        let mut g = MatrixGraph::new();
+        let a = g.add_node('a');
+        let b = g.add_node('b');
+        let c = g.add_node('c');
+        g.add_edge(a, b, true);
+        g.add_edge(b, c, false);
+        assert_eq!(*g.edge_weight(a, b), true);
+        assert_eq!(*g.edge_weight(b, c), false);
+    }
+
+    #[test]
+    fn test_add_edge_with_weights_undirected() {
+        let mut g = MatrixGraph::new_undirected();
+        let a = g.add_node('a');
+        let b = g.add_node('b');
+        let c = g.add_node('c');
+        let d = g.add_node('d');
+        g.add_edge(a, b, "ab");
+        g.add_edge(a, a, "aa");
+        g.add_edge(b, c, "bc");
+        g.add_edge(d, d, "dd");
+        assert_eq!(*g.edge_weight(a, b), "ab");
+        assert_eq!(*g.edge_weight(b, c), "bc");
+    }
+
+    /// Shorthand for `.collect::<Vec<_>>()`
+    trait IntoVec<T> {
+        fn into_vec(self) -> Vec<T>;
+    }
+
+    impl<It, T> IntoVec<T> for It
+        where It: Iterator<Item=T>,
+    {
+        fn into_vec(self) -> Vec<T> {
+            self.collect()
+        }
+    }
+
+    #[test]
+    fn test_clear() {
+        let mut g = MatrixGraph::new();
+        let a = g.add_node('a');
+        let b = g.add_node('b');
+        let c = g.add_node('c');
+        assert_eq!(g.node_count(), 3);
+
+        g.add_edge(a, b, ());
+        g.add_edge(b, c, ());
+        g.add_edge(c, a, ());
+        assert_eq!(g.edge_count(), 3);
+
+        g.clear();
+
+        assert_eq!(g.node_count(), 0);
+        assert_eq!(g.edge_count(), 0);
+
+        let a = g.add_node('a');
+        let b = g.add_node('b');
+        let c = g.add_node('c');
+        assert_eq!(g.node_count(), 3);
+        assert_eq!(g.edge_count(), 0);
+
+        assert_eq!(g.neighbors_directed(a, Incoming).into_vec(), vec![]);
+        assert_eq!(g.neighbors_directed(b, Incoming).into_vec(), vec![]);
+        assert_eq!(g.neighbors_directed(c, Incoming).into_vec(), vec![]);
+
+        assert_eq!(g.neighbors_directed(a, Outgoing).into_vec(), vec![]);
+        assert_eq!(g.neighbors_directed(b, Outgoing).into_vec(), vec![]);
+        assert_eq!(g.neighbors_directed(c, Outgoing).into_vec(), vec![]);
+    }
+
+    #[test]
+    fn test_clear_undirected() {
+        let mut g = MatrixGraph::new_undirected();
+        let a = g.add_node('a');
+        let b = g.add_node('b');
+        let c = g.add_node('c');
+        assert_eq!(g.node_count(), 3);
+
+        g.add_edge(a, b, ());
+        g.add_edge(b, c, ());
+        g.add_edge(c, a, ());
+        assert_eq!(g.edge_count(), 3);
+
+        g.clear();
+
+        assert_eq!(g.node_count(), 0);
+        assert_eq!(g.edge_count(), 0);
+
+        let a = g.add_node('a');
+        let b = g.add_node('b');
+        let c = g.add_node('c');
+        assert_eq!(g.node_count(), 3);
+        assert_eq!(g.edge_count(), 0);
+
+        assert_eq!(g.neighbors(a).into_vec(), vec![]);
+        assert_eq!(g.neighbors(b).into_vec(), vec![]);
+        assert_eq!(g.neighbors(c).into_vec(), vec![]);
+    }
+
+    /// Helper trait for always sorting before testing.
+    trait IntoSortedVec<T> {
+        fn into_sorted_vec(self) -> Vec<T>;
+    }
+
+    impl<It, T> IntoSortedVec<T> for It
+        where It: Iterator<Item=T>,
+            T: Ord,
+    {
+        fn into_sorted_vec(self) -> Vec<T> {
+            let mut v: Vec<T> = self.collect();
+            v.sort();
+            v
+        }
+    }
+
+    /// Helper macro for always sorting before testing.
+    macro_rules! sorted_vec {
+        ($($x:expr),*) => {
+            {
+                let mut v = vec![$($x,)*];
+                v.sort();
+                v
+            }
+        }
+    }
+
+    #[test]
+    fn test_neighbors() {
+        let mut g = MatrixGraph::new();
+        let a = g.add_node('a');
+        let b = g.add_node('b');
+        let c = g.add_node('c');
+        g.add_edge(a, b, ());
+        g.add_edge(a, c, ());
+
+        let a_neighbors = g.neighbors(a).into_sorted_vec();
+        assert_eq!(a_neighbors, sorted_vec![b, c]);
+
+        let b_neighbors = g.neighbors(b).into_sorted_vec();
+        assert_eq!(b_neighbors, vec![]);
+
+        let c_neighbors = g.neighbors(c).into_sorted_vec();
+        assert_eq!(c_neighbors, vec![]);
+    }
+
+    #[test]
+    fn test_neighbors_undirected() {
+        let mut g = MatrixGraph::new_undirected();
+        let a = g.add_node('a');
+        let b = g.add_node('b');
+        let c = g.add_node('c');
+        g.add_edge(a, b, ());
+        g.add_edge(a, c, ());
+
+        let a_neighbors = g.neighbors(a).into_sorted_vec();
+        assert_eq!(a_neighbors, sorted_vec![b, c]);
+
+        let b_neighbors = g.neighbors(b).into_sorted_vec();
+        assert_eq!(b_neighbors, sorted_vec![a]);
+
+        let c_neighbors = g.neighbors(c).into_sorted_vec();
+        assert_eq!(c_neighbors, sorted_vec![a]);
+    }
+
+    #[test]
+    fn test_remove_node_and_edges() {
+        let mut g = MatrixGraph::new();
+        let a = g.add_node('a');
+        let b = g.add_node('b');
+        let c = g.add_node('c');
+        g.add_edge(a, b, ());
+        g.add_edge(b, c, ());
+        g.add_edge(c, a, ());
+
+        // removing b should break the `a -> b` and `b -> c` edges
+        g.remove_node(b);
+
+        assert_eq!(g.node_count(), 2);
+
+        let a_neighbors = g.neighbors(a).into_sorted_vec();
+        assert_eq!(a_neighbors, vec![]);
+
+        let c_neighbors = g.neighbors(c).into_sorted_vec();
+        assert_eq!(c_neighbors, vec![a]);
+    }
+
+    #[test]
+    fn test_remove_node_and_edges_undirected() {
+        let mut g = UnMatrix::new_undirected();
+        let a = g.add_node('a');
+        let b = g.add_node('b');
+        let c = g.add_node('c');
+        g.add_edge(a, b, ());
+        g.add_edge(b, c, ());
+        g.add_edge(c, a, ());
+
+        // removing a should break the `a - b` and `a - c` edges
+        g.remove_node(a);
+
+        assert_eq!(g.node_count(), 2);
+
+        let b_neighbors = g.neighbors(b).into_sorted_vec();
+        assert_eq!(b_neighbors, vec![c]);
+
+        let c_neighbors = g.neighbors(c).into_sorted_vec();
+        assert_eq!(c_neighbors, vec![b]);
+    }
+
+    #[test]
+    fn test_node_identifiers() {
+        let mut g = MatrixGraph::new();
+        let a = g.add_node('a');
+        let b = g.add_node('b');
+        let c = g.add_node('c');
+        let d = g.add_node('c');
+        g.add_edge(a, b, ());
+        g.add_edge(a, c, ());
+
+        let node_ids = g.node_identifiers().into_sorted_vec();
+        assert_eq!(node_ids, sorted_vec![a, b, c, d]);
+    }
+
+    #[test]
+    fn test_edges_directed() {
+        let g: MatrixGraph<char, bool> = MatrixGraph::from_edges(&[
+            (0, 5), (0, 2), (0, 3), (0, 1),
+            (1, 3),
+            (2, 3), (2, 4),
+            (4, 0),
+            (6, 6),
+        ]);
+
+        assert_eq!(g.edges_directed(node_index(0), Outgoing).count(), 4);
+        assert_eq!(g.edges_directed(node_index(1), Outgoing).count(), 1);
+        assert_eq!(g.edges_directed(node_index(2), Outgoing).count(), 2);
+        assert_eq!(g.edges_directed(node_index(3), Outgoing).count(), 0);
+        assert_eq!(g.edges_directed(node_index(4), Outgoing).count(), 1);
+        assert_eq!(g.edges_directed(node_index(5), Outgoing).count(), 0);
+        assert_eq!(g.edges_directed(node_index(6), Outgoing).count(), 1);
+
+        assert_eq!(g.edges_directed(node_index(0), Incoming).count(), 1);
+        assert_eq!(g.edges_directed(node_index(1), Incoming).count(), 1);
+        assert_eq!(g.edges_directed(node_index(2), Incoming).count(), 1);
+        assert_eq!(g.edges_directed(node_index(3), Incoming).count(), 3);
+        assert_eq!(g.edges_directed(node_index(4), Incoming).count(), 1);
+        assert_eq!(g.edges_directed(node_index(5), Incoming).count(), 1);
+        assert_eq!(g.edges_directed(node_index(6), Incoming).count(), 1);
+    }
+
+    #[test]
+    fn test_edges_undirected() {
+        let g: UnMatrix<char, bool> = UnMatrix::from_edges(&[
+            (0, 5), (0, 2), (0, 3), (0, 1),
+            (1, 3),
+            (2, 3), (2, 4),
+            (4, 0),
+            (6, 6),
+        ]);
+
+        assert_eq!(g.edges(node_index(0)).count(), 5);
+        assert_eq!(g.edges(node_index(1)).count(), 2);
+        assert_eq!(g.edges(node_index(2)).count(), 3);
+        assert_eq!(g.edges(node_index(3)).count(), 3);
+        assert_eq!(g.edges(node_index(4)).count(), 2);
+        assert_eq!(g.edges(node_index(5)).count(), 1);
+        assert_eq!(g.edges(node_index(6)).count(), 1);
+    }
+
+    #[test]
+    fn test_edges_of_absent_node_is_empty_iterator() {
+        let g: MatrixGraph<char, bool> = MatrixGraph::new();
+        assert_eq!(g.edges(node_index(0)).count(), 0);
+    }
+
+    #[test]
+    fn test_neighbors_of_absent_node_is_empty_iterator() {
+        let g: MatrixGraph<char, bool> = MatrixGraph::new();
+        assert_eq!(g.neighbors(node_index(0)).count(), 0);
+    }
+
+    #[test]
+    fn test_edge_references() {
+        let g: MatrixGraph<char, bool> = MatrixGraph::from_edges(&[
+            (0, 5), (0, 2), (0, 3), (0, 1),
+            (1, 3),
+            (2, 3), (2, 4),
+            (4, 0),
+            (6, 6),
+        ]);
+
+        assert_eq!(g.edge_references().count(), 9);
+    }
+
+    #[test]
+    fn test_edge_references_undirected() {
+        let g: UnMatrix<char, bool> = UnMatrix::from_edges(&[
+            (0, 5), (0, 2), (0, 3), (0, 1),
+            (1, 3),
+            (2, 3), (2, 4),
+            (4, 0),
+            (6, 6),
+        ]);
+
+        assert_eq!(g.edge_references().count(), 9);
+    }
+
+    #[test]
+    fn test_id_storage() {
+        use super::IdStorage;
+
+        let mut storage: IdStorage<char> = IdStorage::with_capacity(0);
+        let a = storage.add('a');
+        let b = storage.add('b');
+        let c = storage.add('c');
+
+        assert!(a < b && b < c);
+
+        // list IDs
+        assert_eq!(storage.iter_ids().into_vec(), vec![a, b, c]);
+
+        storage.remove(b);
+
+        // re-use of IDs
+        let bb = storage.add('B');
+        assert_eq!(b, bb);
+
+        // list IDs
+        assert_eq!(storage.iter_ids().into_vec(), vec![a, b, c]);
+    }
+
+    #[test]
+    fn test_not_zero() {
+        let mut g: MatrixGraph<(), i32, Directed, NotZero<i32>> = MatrixGraph::default();
+
+        let a = g.add_node(());
+        let b = g.add_node(());
+
+        assert!(!g.has_edge(a, b));
+        assert_eq!(g.edge_count(), 0);
+
+        g.add_edge(a, b, 12);
+
+        assert!(g.has_edge(a, b));
+        assert_eq!(g.edge_count(), 1);
+        assert_eq!(g.edge_weight(a, b), &12);
+
+        g.remove_edge(a, b);
+
+        assert!(!g.has_edge(a, b));
+        assert_eq!(g.edge_count(), 0);
+    }
+
+    #[test]
+    #[should_panic]
+    fn test_not_zero_asserted() {
+        let mut g: MatrixGraph<(), i32, Directed, NotZero<i32>> = MatrixGraph::default();
+
+        let a = g.add_node(());
+        let b = g.add_node(());
+
+        g.add_edge(a, b, 0); // this should trigger an assertion
+    }
+
+    #[test]
+    fn test_not_zero_float() {
+        let mut g: MatrixGraph<(), f32, Directed, NotZero<f32>> = MatrixGraph::default();
+
+        let a = g.add_node(());
+        let b = g.add_node(());
+
+        assert!(!g.has_edge(a, b));
+        assert_eq!(g.edge_count(), 0);
+
+        g.add_edge(a, b, 12.);
+
+        assert!(g.has_edge(a, b));
+        assert_eq!(g.edge_count(), 1);
+        assert_eq!(g.edge_weight(a, b), &12.);
+
+        g.remove_edge(a, b);
+
+        assert!(!g.has_edge(a, b));
+        assert_eq!(g.edge_count(), 0);
+    }
+}