blob: fe9c4018e3473ddbc825ec764082d8aab7fb0684 [file] [log] [blame]
use std::collections::{
HashMap,
BinaryHeap,
};
use std::collections::hash_map::Entry::{
Occupied,
Vacant,
};
use std::hash::Hash;
use scored::MinScored;
use super::visit::{
Visitable,
VisitMap,
IntoEdges,
EdgeRef,
};
use algo::Measure;
/// [Generic] Dijkstra's shortest path algorithm.
///
/// Compute the length of the shortest path from `start` to every reachable
/// node.
///
/// The graph should be `Visitable` and implement `IntoEdges`. The function
/// `edge_cost` should return the cost for a particular edge, which is used
/// to compute path costs. Edge costs must be non-negative.
///
/// If `goal` is not `None`, then the algorithm terminates once the `goal` node's
/// cost is calculated.
///
/// Returns a `HashMap` that maps `NodeId` to path cost.
pub fn dijkstra<G, F, K>(graph: G, start: G::NodeId, goal: Option<G::NodeId>,
mut edge_cost: F)
-> HashMap<G::NodeId, K>
where G: IntoEdges + Visitable,
G::NodeId: Eq + Hash,
F: FnMut(G::EdgeRef) -> K,
K: Measure + Copy,
{
let mut visited = graph.visit_map();
let mut scores = HashMap::new();
//let mut predecessor = HashMap::new();
let mut visit_next = BinaryHeap::new();
let zero_score = K::default();
scores.insert(start, zero_score);
visit_next.push(MinScored(zero_score, start));
while let Some(MinScored(node_score, node)) = visit_next.pop() {
if visited.is_visited(&node) {
continue
}
if goal.as_ref() == Some(&node) {
break
}
for edge in graph.edges(node) {
let next = edge.target();
if visited.is_visited(&next) {
continue
}
let mut next_score = node_score + edge_cost(edge);
match scores.entry(next) {
Occupied(ent) => if next_score < *ent.get() {
*ent.into_mut() = next_score;
//predecessor.insert(next.clone(), node.clone());
} else {
next_score = *ent.get();
},
Vacant(ent) => {
ent.insert(next_score);
//predecessor.insert(next.clone(), node.clone());
}
}
visit_next.push(MinScored(next_score, next));
}
visited.visit(node);
}
scores
}