blob: 188d090f97c0872a55f4ec5575535f83d13ada2d [file] [log] [blame]
//! Graph algorithms.
//!
//! It is a goal to gradually migrate the algorithms to be based on graph traits
//! so that they are generally applicable. For now, some of these still require
//! the `Graph` type.
use std::collections::BinaryHeap;
use std::cmp::min;
use prelude::*;
use super::{
EdgeType,
};
use scored::MinScored;
use super::visit::{
GraphRef,
Visitable,
VisitMap,
IntoNeighbors,
IntoNeighborsDirected,
IntoNodeIdentifiers,
IntoExternals,
NodeIndexable,
NodeCompactIndexable,
IntoEdgeReferences,
EdgeRef,
Reversed,
};
use super::unionfind::UnionFind;
use super::graph::{
IndexType,
};
pub use super::isomorphism::{
is_isomorphic,
is_isomorphic_matching,
};
pub use super::dijkstra::dijkstra;
/// [Generic] Return the number of connected components of the graph.
///
/// For a directed graph, this is the *weakly* connected components.
pub fn connected_components<G>(g: G) -> usize
where G: NodeCompactIndexable + IntoEdgeReferences,
{
let mut vertex_sets = UnionFind::new(g.node_bound());
for edge in g.edge_references() {
let (a, b) = (edge.source(), edge.target());
// union the two vertices of the edge
vertex_sets.union(G::to_index(a), G::to_index(b));
}
let mut labels = vertex_sets.into_labeling();
labels.sort();
labels.dedup();
labels.len()
}
/// [Generic] Return `true` if the input graph contains a cycle.
///
/// Always treats the input graph as if undirected.
pub fn is_cyclic_undirected<G>(g: G) -> bool
where G: NodeIndexable + IntoEdgeReferences
{
let mut edge_sets = UnionFind::new(g.node_bound());
for edge in g.edge_references() {
let (a, b) = (edge.source(), edge.target());
// union the two vertices of the edge
// -- if they were already the same, then we have a cycle
if !edge_sets.union(G::to_index(a), G::to_index(b)) {
return true
}
}
false
}
/// [Generic] Perform a topological sort of a directed graph `g`.
///
/// Visit each node in order (if it is part of a topological order).
///
/// If `space` is not `None`, it is reused instead of creating a temporary
/// workspace for graph traversal.
#[inline]
fn toposort_generic<G, F>(g: G,
space: Option<&mut DfsSpaceType<G>>,
mut visit: F)
where G: IntoNeighborsDirected + IntoExternals + Visitable,
F: FnMut(G, G::NodeId),
{
with_dfs(g, space, |dfs| {
dfs.reset(g);
let mut ordered = &mut dfs.discovered;
let mut tovisit = &mut dfs.stack;
// find all initial nodes
tovisit.extend(g.externals(Incoming));
// Take an unvisited element and find which of its neighbors are next
while let Some(nix) = tovisit.pop() {
if ordered.is_visited(&nix) {
continue;
}
visit(g, nix.clone());
ordered.visit(nix.clone());
for neigh in g.neighbors_directed(nix, Outgoing) {
// Look at each neighbor, and those that only have incoming edges
// from the already ordered list, they are the next to visit.
if g.neighbors_directed(neigh.clone(), Incoming)
.all(|b| ordered.is_visited(&b)) {
tovisit.push(neigh);
}
}
}
})
}
/// [Generic] Return `true` if the input directed graph contains a cycle.
///
/// If `space` is not `None`, it is reused instead of creating a temporary
/// workspace for graph traversal.
pub fn is_cyclic_directed<G>(g: G, space: Option<&mut DfsSpaceType<G>>) -> bool
where G: IntoNodeIdentifiers + IntoNeighborsDirected + IntoExternals + Visitable,
{
let mut n_ordered = 0;
toposort_generic(g, space, |_, _| n_ordered += 1);
n_ordered != g.node_count()
}
type DfsSpaceType<G> where G: Visitable = DfsSpace<G::NodeId, G::Map>;
/// Workspace for a graph traversal.
#[derive(Clone, Debug)]
pub struct DfsSpace<N, VM> {
dfs: Dfs<N, VM>,
}
impl<N, VM> DfsSpace<N, VM>
where N: Copy,
VM: VisitMap<N>,
{
pub fn new<G>(g: G) -> Self
where G: GraphRef + Visitable<NodeId=N, Map=VM>,
{
DfsSpace {
dfs: Dfs::empty(g)
}
}
}
impl<N, VM> Default for DfsSpace<N, VM>
where VM: VisitMap<N> + Default,
{
fn default() -> Self {
DfsSpace {
dfs: Dfs {
stack: <_>::default(),
discovered: <_>::default(),
}
}
}
}
/// [Generic] Perform a topological sort of a directed graph.
///
/// Return a vector of nodes in topological order: each node is ordered
/// before its successors.
///
/// NOTE: If the returned vec contains less than all the nodes of the graph,
/// then the graph had a cycle.
///
/// If `space` is not `None`, it is reused instead of creating a temporary
/// workspace for graph traversal.
pub fn toposort<G>(g: G, space: Option<&mut DfsSpaceType<G>>) -> Vec<G::NodeId>
where G: IntoNodeIdentifiers + IntoNeighborsDirected + IntoExternals + Visitable,
{
let mut order = Vec::with_capacity(g.node_count());
toposort_generic(g, space, |_, ix| order.push(ix));
order
}
/// Create a Dfs if it's needed
fn with_dfs<G, F, R>(g: G, space: Option<&mut DfsSpaceType<G>>, f: F) -> R
where G: GraphRef + Visitable,
F: FnOnce(&mut Dfs<G::NodeId, G::Map>) -> R
{
let mut local_visitor;
let dfs = if let Some(v) = space { &mut v.dfs } else {
local_visitor = Dfs::empty(g);
&mut local_visitor
};
f(dfs)
}
/// [Generic] Check if there exists a path starting at `from` and reaching `to`.
///
/// `from` and `to` are equal, this function returns true.
///
/// If `space` is not `None`, it is reused instead of creating a temporary
/// workspace for graph traversal.
pub fn has_path_connecting<G>(g: G, from: G::NodeId, to: G::NodeId,
space: Option<&mut DfsSpaceType<G>>)
-> bool
where G: IntoNeighbors + Visitable,
G::NodeId: PartialEq,
{
with_dfs(g, space, |dfs| {
dfs.reset(g);
dfs.move_to(from);
while let Some(x) = dfs.next(g) {
if x == to {
return true;
}
}
false
})
}
/// [Generic] Compute the *strongly connected components* using Kosaraju's algorithm.
///
/// Return a vector where each element is a strongly connected component (scc).
///
/// The order of `NodeId` within each scc is arbitrary, but the order of
/// the sccs is their postorder (reverse topological sort).
///
/// This implementation is iterative and does two passes over the nodes.
///
/// For an undirected graph, the sccs are simply the connected components.
pub fn scc<G>(g: G) -> Vec<Vec<G::NodeId>>
where G: IntoNeighborsDirected + Visitable + IntoNodeIdentifiers,
{
let mut dfs = DfsPostOrder::empty(g);
// First phase, reverse dfs pass, compute finishing times.
// http://stackoverflow.com/a/26780899/161659
let mut finish_order = Vec::with_capacity(g.node_count());
for i in g.node_identifiers() {
if dfs.discovered.is_visited(&i) {
continue
}
dfs.move_to(i);
while let Some(nx) = dfs.next(Reversed(g)) {
finish_order.push(nx);
}
}
let mut dfs = Dfs::from_parts(dfs.stack, dfs.discovered);
dfs.reset(g);
let mut sccs = Vec::new();
// Second phase
// Process in decreasing finishing time order
for i in finish_order.into_iter().rev() {
if dfs.discovered.is_visited(&i) {
continue;
}
// Move to the leader node `i`.
dfs.move_to(i);
let mut scc = Vec::new();
while let Some(nx) = dfs.next(g) {
scc.push(nx);
}
sccs.push(scc);
}
sccs
}
/// [Generic] Compute the *strongly connected components* using Tarjan's algorithm.
///
/// Return a vector where each element is a strongly connected component (scc).
///
/// The order of `NodeId` within each scc is arbitrary, but the order of
/// the sccs is their postorder (reverse topological sort).
///
/// This implementation is recursive and does one pass over the nodes.
///
/// For an undirected graph, the sccs are simply the connected components.
pub fn tarjan_scc<G>(g: G) -> Vec<Vec<G::NodeId>>
where G: IntoNodeIdentifiers + IntoNeighbors + NodeIndexable
{
#[derive(Copy, Clone)]
#[derive(Debug)]
struct NodeData {
index: Option<usize>,
lowlink: usize,
on_stack: bool,
}
#[derive(Debug)]
struct Data<'a, G>
where G: NodeIndexable,
G::NodeId: 'a
{
index: usize,
nodes: Vec<NodeData>,
stack: Vec<G::NodeId>,
sccs: &'a mut Vec<Vec<G::NodeId>>,
}
fn scc_visit<G>(v: G::NodeId, g: G, data: &mut Data<G>)
where G: IntoNeighbors + NodeIndexable
{
macro_rules! node {
($node:expr) => (data.nodes[G::to_index($node)])
}
if node![v].index.is_some() {
// already visited
return;
}
let v_index = data.index;
node![v].index = Some(v_index);
node![v].lowlink = v_index;
node![v].on_stack = true;
data.stack.push(v);
data.index += 1;
for w in g.neighbors(v) {
match node![w].index {
None => {
scc_visit(w, g, data);
node![v].lowlink = min(node![v].lowlink, node![w].lowlink);
}
Some(w_index) => {
if node![w].on_stack {
// Successor w is in stack S and hence in the current SCC
let v_lowlink = &mut node![v].lowlink;
*v_lowlink = min(*v_lowlink, w_index);
}
}
}
}
// If v is a root node, pop the stack and generate an SCC
if let Some(v_index) = node![v].index {
if node![v].lowlink == v_index {
let mut cur_scc = Vec::new();
loop {
let w = data.stack.pop().unwrap();
node![w].on_stack = false;
cur_scc.push(w);
if G::to_index(w) == G::to_index(v) { break; }
}
data.sccs.push(cur_scc);
}
}
}
let mut sccs = Vec::new();
{
let map = vec![NodeData { index: None, lowlink: !0, on_stack: false }; g.node_bound()];
let mut data = Data {
index: 0,
nodes: map,
stack: Vec::new(),
sccs: &mut sccs,
};
for n in g.node_identifiers() {
scc_visit(n, g, &mut data);
}
}
sccs
}
/// [Graph] Condense every strongly connected component into a single node and return the result.
///
/// If `make_acyclic` is true, self-loops and multi edges are ignored, guaranteeing that
/// the output is acyclic.
pub fn condensation<N, E, Ty, Ix>(g: Graph<N, E, Ty, Ix>, make_acyclic: bool) -> Graph<Vec<N>, E, Ty, Ix>
where Ty: EdgeType,
Ix: IndexType,
{
let sccs = scc(&g);
let mut condensed: Graph<Vec<N>, E, Ty, Ix> = Graph::with_capacity(sccs.len(), g.edge_count());
// Build a map from old indices to new ones.
let mut node_map = vec![NodeIndex::end(); g.node_count()];
for comp in sccs {
let new_nix = condensed.add_node(Vec::new());
for nix in comp {
node_map[nix.index()] = new_nix;
}
}
// Consume nodes and edges of the old graph and insert them into the new one.
let (nodes, edges) = g.into_nodes_edges();
for (nix, node) in nodes.into_iter().enumerate() {
condensed[node_map[nix]].push(node.weight);
}
for edge in edges {
let source = node_map[edge.source().index()];
let target = node_map[edge.target().index()];
if make_acyclic {
if source != target {
condensed.update_edge(source, target, edge.weight);
}
} else {
condensed.add_edge(source, target, edge.weight);
}
}
condensed
}
/// [Graph] Compute a *minimum spanning tree* of a graph.
///
/// Treat the input graph as undirected.
///
/// Using Kruskal's algorithm with runtime **O(|E| log |E|)**. We actually
/// return a minimum spanning forest, i.e. a minimum spanning tree for each connected
/// component of the graph.
///
/// The resulting graph has all the vertices of the input graph (with identical node indices),
/// and **|V| - c** edges, where **c** is the number of connected components in `g`.
pub fn min_spanning_tree<N, E, Ty, Ix>(g: &Graph<N, E, Ty, Ix>)
-> Graph<N, E, Undirected, Ix>
where N: Clone,
E: Clone + PartialOrd,
Ty: EdgeType,
Ix: IndexType,
{
if g.node_count() == 0 {
return Graph::with_capacity(0, 0)
}
// Create a mst skeleton by copying all nodes
let mut mst = Graph::with_capacity(g.node_count(), g.node_count() - 1);
for node in g.raw_nodes() {
mst.add_node(node.weight.clone());
}
// Initially each vertex is its own disjoint subgraph, track the connectedness
// of the pre-MST with a union & find datastructure.
let mut subgraphs = UnionFind::new(g.node_count());
let mut sort_edges = BinaryHeap::with_capacity(g.edge_count());
for edge in g.edge_references() {
sort_edges.push(MinScored(edge.weight().clone(), (edge.source(), edge.target())));
}
// Kruskal's algorithm.
// Algorithm is this:
//
// 1. Create a pre-MST with all the vertices and no edges.
// 2. Repeat:
//
// a. Remove the shortest edge from the original graph.
// b. If the edge connects two disjoint trees in the pre-MST,
// add the edge.
while let Some(MinScored(score, (a, b))) = sort_edges.pop() {
// check if the edge would connect two disjoint parts
if subgraphs.union(a.index(), b.index()) {
mst.add_edge(a, b, score);
}
}
debug_assert!(mst.node_count() == g.node_count());
debug_assert!(mst.edge_count() < g.node_count());
mst
}