blob: 8e0d8fdca630623c840f613a1a341c961a9bf0e7 [file] [log] [blame]
package ipallocator
import (
"fmt"
"math/big"
"net"
"testing"
)
func reset() {
allocatedIPs = networkSet{}
}
func TestConversion(t *testing.T) {
ip := net.ParseIP("127.0.0.1")
i := ipToBigInt(ip)
if i.Cmp(big.NewInt(0x7f000001)) != 0 {
t.Fatal("incorrect conversion")
}
conv := bigIntToIP(i)
if !ip.Equal(conv) {
t.Error(conv.String())
}
}
func TestConversionIPv6(t *testing.T) {
ip := net.ParseIP("2a00:1450::1")
ip2 := net.ParseIP("2a00:1450::2")
ip3 := net.ParseIP("2a00:1450::1:1")
i := ipToBigInt(ip)
val, success := big.NewInt(0).SetString("2a001450000000000000000000000001", 16)
if !success {
t.Fatal("Hex-String to BigInt conversion failed.")
}
if i.Cmp(val) != 0 {
t.Fatal("incorrent conversion")
}
conv := bigIntToIP(i)
conv2 := bigIntToIP(big.NewInt(0).Add(i, big.NewInt(1)))
conv3 := bigIntToIP(big.NewInt(0).Add(i, big.NewInt(0x10000)))
if !ip.Equal(conv) {
t.Error("2a00:1450::1 should be equal to " + conv.String())
}
if !ip2.Equal(conv2) {
t.Error("2a00:1450::2 should be equal to " + conv2.String())
}
if !ip3.Equal(conv3) {
t.Error("2a00:1450::1:1 should be equal to " + conv3.String())
}
}
func TestRequestNewIps(t *testing.T) {
defer reset()
network := &net.IPNet{
IP: []byte{192, 168, 0, 1},
Mask: []byte{255, 255, 255, 0},
}
var ip net.IP
var err error
for i := 1; i < 10; i++ {
ip, err = RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
if expected := fmt.Sprintf("192.168.0.%d", i); ip.String() != expected {
t.Fatalf("Expected ip %s got %s", expected, ip.String())
}
}
value := bigIntToIP(big.NewInt(0).Add(ipToBigInt(ip), big.NewInt(1))).String()
if err := ReleaseIP(network, ip); err != nil {
t.Fatal(err)
}
ip, err = RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
if ip.String() != value {
t.Fatalf("Expected to receive the next ip %s got %s", value, ip.String())
}
}
func TestRequestNewIpV6(t *testing.T) {
defer reset()
network := &net.IPNet{
IP: []byte{0x2a, 0x00, 0x14, 0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1},
Mask: []byte{255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0}, // /64 netmask
}
var ip net.IP
var err error
for i := 1; i < 10; i++ {
ip, err = RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
if expected := fmt.Sprintf("2a00:1450::%d", i); ip.String() != expected {
t.Fatalf("Expected ip %s got %s", expected, ip.String())
}
}
value := bigIntToIP(big.NewInt(0).Add(ipToBigInt(ip), big.NewInt(1))).String()
if err := ReleaseIP(network, ip); err != nil {
t.Fatal(err)
}
ip, err = RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
if ip.String() != value {
t.Fatalf("Expected to receive the next ip %s got %s", value, ip.String())
}
}
func TestReleaseIp(t *testing.T) {
defer reset()
network := &net.IPNet{
IP: []byte{192, 168, 0, 1},
Mask: []byte{255, 255, 255, 0},
}
ip, err := RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
if err := ReleaseIP(network, ip); err != nil {
t.Fatal(err)
}
}
func TestReleaseIpV6(t *testing.T) {
defer reset()
network := &net.IPNet{
IP: []byte{0x2a, 0x00, 0x14, 0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1},
Mask: []byte{255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0}, // /64 netmask
}
ip, err := RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
if err := ReleaseIP(network, ip); err != nil {
t.Fatal(err)
}
}
func TestGetReleasedIp(t *testing.T) {
defer reset()
network := &net.IPNet{
IP: []byte{192, 168, 0, 1},
Mask: []byte{255, 255, 255, 0},
}
ip, err := RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
value := ip.String()
if err := ReleaseIP(network, ip); err != nil {
t.Fatal(err)
}
for i := 0; i < 253; i++ {
_, err = RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
err = ReleaseIP(network, ip)
if err != nil {
t.Fatal(err)
}
}
ip, err = RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
if ip.String() != value {
t.Fatalf("Expected to receive same ip %s got %s", value, ip.String())
}
}
func TestGetReleasedIpV6(t *testing.T) {
defer reset()
network := &net.IPNet{
IP: []byte{0x2a, 0x00, 0x14, 0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1},
Mask: []byte{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0},
}
ip, err := RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
value := ip.String()
if err := ReleaseIP(network, ip); err != nil {
t.Fatal(err)
}
for i := 0; i < 253; i++ {
_, err = RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
err = ReleaseIP(network, ip)
if err != nil {
t.Fatal(err)
}
}
ip, err = RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
if ip.String() != value {
t.Fatalf("Expected to receive same ip %s got %s", value, ip.String())
}
}
func TestRequestSpecificIp(t *testing.T) {
defer reset()
network := &net.IPNet{
IP: []byte{192, 168, 0, 1},
Mask: []byte{255, 255, 255, 224},
}
ip := net.ParseIP("192.168.0.5")
// Request a "good" IP.
if _, err := RequestIP(network, ip); err != nil {
t.Fatal(err)
}
// Request the same IP again.
if _, err := RequestIP(network, ip); err != ErrIPAlreadyAllocated {
t.Fatalf("Got the same IP twice: %#v", err)
}
// Request an out of range IP.
if _, err := RequestIP(network, net.ParseIP("192.168.0.42")); err != ErrIPOutOfRange {
t.Fatalf("Got an out of range IP: %#v", err)
}
}
func TestRequestSpecificIpV6(t *testing.T) {
defer reset()
network := &net.IPNet{
IP: []byte{0x2a, 0x00, 0x14, 0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1},
Mask: []byte{255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0}, // /64 netmask
}
ip := net.ParseIP("2a00:1450::5")
// Request a "good" IP.
if _, err := RequestIP(network, ip); err != nil {
t.Fatal(err)
}
// Request the same IP again.
if _, err := RequestIP(network, ip); err != ErrIPAlreadyAllocated {
t.Fatalf("Got the same IP twice: %#v", err)
}
// Request an out of range IP.
if _, err := RequestIP(network, net.ParseIP("2a00:1500::1")); err != ErrIPOutOfRange {
t.Fatalf("Got an out of range IP: %#v", err)
}
}
func TestIPAllocator(t *testing.T) {
expectedIPs := []net.IP{
0: net.IPv4(127, 0, 0, 1),
1: net.IPv4(127, 0, 0, 2),
2: net.IPv4(127, 0, 0, 3),
3: net.IPv4(127, 0, 0, 4),
4: net.IPv4(127, 0, 0, 5),
5: net.IPv4(127, 0, 0, 6),
}
gwIP, n, _ := net.ParseCIDR("127.0.0.1/29")
network := &net.IPNet{IP: gwIP, Mask: n.Mask}
// Pool after initialisation (f = free, u = used)
// 1(f) - 2(f) - 3(f) - 4(f) - 5(f) - 6(f)
// ↑
// Check that we get 6 IPs, from 127.0.0.1–127.0.0.6, in that
// order.
for i := 0; i < 6; i++ {
ip, err := RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
assertIPEquals(t, expectedIPs[i], ip)
}
// Before loop begin
// 1(f) - 2(f) - 3(f) - 4(f) - 5(f) - 6(f)
// ↑
// After i = 0
// 1(u) - 2(f) - 3(f) - 4(f) - 5(f) - 6(f)
// ↑
// After i = 1
// 1(u) - 2(u) - 3(f) - 4(f) - 5(f) - 6(f)
// ↑
// After i = 2
// 1(u) - 2(u) - 3(u) - 4(f) - 5(f) - 6(f)
// ↑
// After i = 3
// 1(u) - 2(u) - 3(u) - 4(u) - 5(f) - 6(f)
// ↑
// After i = 4
// 1(u) - 2(u) - 3(u) - 4(u) - 5(u) - 6(f)
// ↑
// After i = 5
// 1(u) - 2(u) - 3(u) - 4(u) - 5(u) - 6(u)
// ↑
// Check that there are no more IPs
ip, err := RequestIP(network, nil)
if err == nil {
t.Fatalf("There shouldn't be any IP addresses at this point, got %s\n", ip)
}
// Release some IPs in non-sequential order
if err := ReleaseIP(network, expectedIPs[3]); err != nil {
t.Fatal(err)
}
// 1(u) - 2(u) - 3(u) - 4(f) - 5(u) - 6(u)
// ↑
if err := ReleaseIP(network, expectedIPs[2]); err != nil {
t.Fatal(err)
}
// 1(u) - 2(u) - 3(f) - 4(f) - 5(u) - 6(u)
// ↑
if err := ReleaseIP(network, expectedIPs[4]); err != nil {
t.Fatal(err)
}
// 1(u) - 2(u) - 3(f) - 4(f) - 5(f) - 6(u)
// ↑
// Make sure that IPs are reused in sequential order, starting
// with the first released IP
newIPs := make([]net.IP, 3)
for i := 0; i < 3; i++ {
ip, err := RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
newIPs[i] = ip
}
assertIPEquals(t, expectedIPs[2], newIPs[0])
assertIPEquals(t, expectedIPs[3], newIPs[1])
assertIPEquals(t, expectedIPs[4], newIPs[2])
_, err = RequestIP(network, nil)
if err == nil {
t.Fatal("There shouldn't be any IP addresses at this point")
}
}
func TestAllocateFirstIP(t *testing.T) {
defer reset()
network := &net.IPNet{
IP: []byte{192, 168, 0, 0},
Mask: []byte{255, 255, 255, 0},
}
firstIP := network.IP.To4().Mask(network.Mask)
first := big.NewInt(0).Add(ipToBigInt(firstIP), big.NewInt(1))
ip, err := RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
allocated := ipToBigInt(ip)
if allocated == first {
t.Fatalf("allocated ip should not equal first ip: %d == %d", first, allocated)
}
}
func TestAllocateAllIps(t *testing.T) {
defer reset()
network := &net.IPNet{
IP: []byte{192, 168, 0, 1},
Mask: []byte{255, 255, 255, 0},
}
var (
current, first net.IP
err error
isFirst = true
)
for err == nil {
current, err = RequestIP(network, nil)
if isFirst {
first = current
isFirst = false
}
}
if err != ErrNoAvailableIPs {
t.Fatal(err)
}
if _, err := RequestIP(network, nil); err != ErrNoAvailableIPs {
t.Fatal(err)
}
if err := ReleaseIP(network, first); err != nil {
t.Fatal(err)
}
again, err := RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
assertIPEquals(t, first, again)
// ensure that alloc.last == alloc.begin won't result in dead loop
if _, err := RequestIP(network, nil); err != ErrNoAvailableIPs {
t.Fatal(err)
}
// Test by making alloc.last the only free ip and ensure we get it back
// #1. first of the range, (alloc.last == ipToInt(first) already)
if err := ReleaseIP(network, first); err != nil {
t.Fatal(err)
}
ret, err := RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
assertIPEquals(t, first, ret)
// #2. last of the range, note that current is the last one
last := net.IPv4(192, 168, 0, 254)
setLastTo(t, network, last)
ret, err = RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
assertIPEquals(t, last, ret)
// #3. middle of the range
mid := net.IPv4(192, 168, 0, 7)
setLastTo(t, network, mid)
ret, err = RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
assertIPEquals(t, mid, ret)
}
// make sure the pool is full when calling setLastTo.
// we don't cheat here
func setLastTo(t *testing.T, network *net.IPNet, ip net.IP) {
if err := ReleaseIP(network, ip); err != nil {
t.Fatal(err)
}
ret, err := RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
assertIPEquals(t, ip, ret)
if err := ReleaseIP(network, ip); err != nil {
t.Fatal(err)
}
}
func TestAllocateDifferentSubnets(t *testing.T) {
defer reset()
network1 := &net.IPNet{
IP: []byte{192, 168, 0, 1},
Mask: []byte{255, 255, 255, 0},
}
network2 := &net.IPNet{
IP: []byte{127, 0, 0, 1},
Mask: []byte{255, 255, 255, 0},
}
network3 := &net.IPNet{
IP: []byte{0x2a, 0x00, 0x14, 0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1},
Mask: []byte{255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0}, // /64 netmask
}
network4 := &net.IPNet{
IP: []byte{0x2a, 0x00, 0x16, 0x32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1},
Mask: []byte{255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0}, // /64 netmask
}
expectedIPs := []net.IP{
0: net.IPv4(192, 168, 0, 1),
1: net.IPv4(192, 168, 0, 2),
2: net.IPv4(127, 0, 0, 1),
3: net.IPv4(127, 0, 0, 2),
4: net.ParseIP("2a00:1450::1"),
5: net.ParseIP("2a00:1450::2"),
6: net.ParseIP("2a00:1450::3"),
7: net.ParseIP("2a00:1632::1"),
8: net.ParseIP("2a00:1632::2"),
}
ip11, err := RequestIP(network1, nil)
if err != nil {
t.Fatal(err)
}
ip12, err := RequestIP(network1, nil)
if err != nil {
t.Fatal(err)
}
ip21, err := RequestIP(network2, nil)
if err != nil {
t.Fatal(err)
}
ip22, err := RequestIP(network2, nil)
if err != nil {
t.Fatal(err)
}
ip31, err := RequestIP(network3, nil)
if err != nil {
t.Fatal(err)
}
ip32, err := RequestIP(network3, nil)
if err != nil {
t.Fatal(err)
}
ip33, err := RequestIP(network3, nil)
if err != nil {
t.Fatal(err)
}
ip41, err := RequestIP(network4, nil)
if err != nil {
t.Fatal(err)
}
ip42, err := RequestIP(network4, nil)
if err != nil {
t.Fatal(err)
}
assertIPEquals(t, expectedIPs[0], ip11)
assertIPEquals(t, expectedIPs[1], ip12)
assertIPEquals(t, expectedIPs[2], ip21)
assertIPEquals(t, expectedIPs[3], ip22)
assertIPEquals(t, expectedIPs[4], ip31)
assertIPEquals(t, expectedIPs[5], ip32)
assertIPEquals(t, expectedIPs[6], ip33)
assertIPEquals(t, expectedIPs[7], ip41)
assertIPEquals(t, expectedIPs[8], ip42)
}
func TestRegisterBadTwice(t *testing.T) {
defer reset()
network := &net.IPNet{
IP: []byte{192, 168, 1, 1},
Mask: []byte{255, 255, 255, 0},
}
subnet := &net.IPNet{
IP: []byte{192, 168, 1, 8},
Mask: []byte{255, 255, 255, 248},
}
if err := RegisterSubnet(network, subnet); err != nil {
t.Fatal(err)
}
subnet = &net.IPNet{
IP: []byte{192, 168, 1, 16},
Mask: []byte{255, 255, 255, 248},
}
if err := RegisterSubnet(network, subnet); err != ErrNetworkAlreadyRegistered {
t.Fatalf("Expecteded ErrNetworkAlreadyRegistered error, got %v", err)
}
}
func TestRegisterBadRange(t *testing.T) {
defer reset()
network := &net.IPNet{
IP: []byte{192, 168, 1, 1},
Mask: []byte{255, 255, 255, 0},
}
subnet := &net.IPNet{
IP: []byte{192, 168, 1, 1},
Mask: []byte{255, 255, 0, 0},
}
if err := RegisterSubnet(network, subnet); err != ErrBadSubnet {
t.Fatalf("Expected ErrBadSubnet error, got %v", err)
}
}
func TestAllocateFromRange(t *testing.T) {
defer reset()
network := &net.IPNet{
IP: []byte{192, 168, 0, 1},
Mask: []byte{255, 255, 255, 0},
}
// 192.168.1.9 - 192.168.1.14
subnet := &net.IPNet{
IP: []byte{192, 168, 0, 8},
Mask: []byte{255, 255, 255, 248},
}
if err := RegisterSubnet(network, subnet); err != nil {
t.Fatal(err)
}
expectedIPs := []net.IP{
0: net.IPv4(192, 168, 0, 9),
1: net.IPv4(192, 168, 0, 10),
2: net.IPv4(192, 168, 0, 11),
3: net.IPv4(192, 168, 0, 12),
4: net.IPv4(192, 168, 0, 13),
5: net.IPv4(192, 168, 0, 14),
}
for _, ip := range expectedIPs {
rip, err := RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
assertIPEquals(t, ip, rip)
}
if _, err := RequestIP(network, nil); err != ErrNoAvailableIPs {
t.Fatalf("Expected ErrNoAvailableIPs error, got %v", err)
}
for _, ip := range expectedIPs {
ReleaseIP(network, ip)
rip, err := RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
assertIPEquals(t, ip, rip)
}
}
func assertIPEquals(t *testing.T, ip1, ip2 net.IP) {
if !ip1.Equal(ip2) {
t.Fatalf("Expected IP %s, got %s", ip1, ip2)
}
}
func BenchmarkRequestIP(b *testing.B) {
network := &net.IPNet{
IP: []byte{192, 168, 0, 1},
Mask: []byte{255, 255, 255, 0},
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
for j := 0; j < 253; j++ {
_, err := RequestIP(network, nil)
if err != nil {
b.Fatal(err)
}
}
reset()
}
}