blob: e263c284f09f2bfe2e180519e9554c8a4c189a5d [file] [log] [blame]
package ioutils
import (
"errors"
"io"
"sync"
)
// maxCap is the highest capacity to use in byte slices that buffer data.
const maxCap = 1e6
// blockThreshold is the minimum number of bytes in the buffer which will cause
// a write to BytesPipe to block when allocating a new slice.
const blockThreshold = 1e6
// ErrClosed is returned when Write is called on a closed BytesPipe.
var ErrClosed = errors.New("write to closed BytesPipe")
// BytesPipe is io.ReadWriteCloser which works similarly to pipe(queue).
// All written data may be read at most once. Also, BytesPipe allocates
// and releases new byte slices to adjust to current needs, so the buffer
// won't be overgrown after peak loads.
type BytesPipe struct {
mu sync.Mutex
wait *sync.Cond
buf [][]byte // slice of byte-slices of buffered data
lastRead int // index in the first slice to a read point
bufLen int // length of data buffered over the slices
closeErr error // error to return from next Read. set to nil if not closed.
}
// NewBytesPipe creates new BytesPipe, initialized by specified slice.
// If buf is nil, then it will be initialized with slice which cap is 64.
// buf will be adjusted in a way that len(buf) == 0, cap(buf) == cap(buf).
func NewBytesPipe(buf []byte) *BytesPipe {
if cap(buf) == 0 {
buf = make([]byte, 0, 64)
}
bp := &BytesPipe{
buf: [][]byte{buf[:0]},
}
bp.wait = sync.NewCond(&bp.mu)
return bp
}
// Write writes p to BytesPipe.
// It can allocate new []byte slices in a process of writing.
func (bp *BytesPipe) Write(p []byte) (int, error) {
bp.mu.Lock()
defer bp.mu.Unlock()
written := 0
for {
if bp.closeErr != nil {
return written, ErrClosed
}
// write data to the last buffer
b := bp.buf[len(bp.buf)-1]
// copy data to the current empty allocated area
n := copy(b[len(b):cap(b)], p)
// increment buffered data length
bp.bufLen += n
// include written data in last buffer
bp.buf[len(bp.buf)-1] = b[:len(b)+n]
written += n
// if there was enough room to write all then break
if len(p) == n {
break
}
// more data: write to the next slice
p = p[n:]
// block if too much data is still in the buffer
for bp.bufLen >= blockThreshold {
bp.wait.Wait()
}
// allocate slice that has twice the size of the last unless maximum reached
nextCap := 2 * cap(bp.buf[len(bp.buf)-1])
if nextCap > maxCap {
nextCap = maxCap
}
// add new byte slice to the buffers slice and continue writing
bp.buf = append(bp.buf, make([]byte, 0, nextCap))
}
bp.wait.Broadcast()
return written, nil
}
// CloseWithError causes further reads from a BytesPipe to return immediately.
func (bp *BytesPipe) CloseWithError(err error) error {
bp.mu.Lock()
if err != nil {
bp.closeErr = err
} else {
bp.closeErr = io.EOF
}
bp.wait.Broadcast()
bp.mu.Unlock()
return nil
}
// Close causes further reads from a BytesPipe to return immediately.
func (bp *BytesPipe) Close() error {
return bp.CloseWithError(nil)
}
func (bp *BytesPipe) len() int {
return bp.bufLen - bp.lastRead
}
// Read reads bytes from BytesPipe.
// Data could be read only once.
func (bp *BytesPipe) Read(p []byte) (n int, err error) {
bp.mu.Lock()
defer bp.mu.Unlock()
if bp.len() == 0 {
if bp.closeErr != nil {
return 0, bp.closeErr
}
bp.wait.Wait()
if bp.len() == 0 && bp.closeErr != nil {
return 0, bp.closeErr
}
}
for {
read := copy(p, bp.buf[0][bp.lastRead:])
n += read
bp.lastRead += read
if bp.len() == 0 {
// we have read everything. reset to the beginning.
bp.lastRead = 0
bp.bufLen -= len(bp.buf[0])
bp.buf[0] = bp.buf[0][:0]
break
}
// break if everything was read
if len(p) == read {
break
}
// more buffered data and more asked. read from next slice.
p = p[read:]
bp.lastRead = 0
bp.bufLen -= len(bp.buf[0])
bp.buf[0] = nil // throw away old slice
bp.buf = bp.buf[1:] // switch to next
}
bp.wait.Broadcast()
return
}