blob: e6dc0563f090ca97a0b8b2551ce0f7b9efb6de6f [file] [log] [blame]
// Copyright (c) 2012, 2013 Ugorji Nwoke. All rights reserved.
// Use of this source code is governed by a BSD-style license found in the LICENSE file.
package codec
// Contains code shared by both encode and decode.
import (
"encoding/binary"
"fmt"
"math"
"reflect"
"sort"
"strings"
"sync"
"time"
"unicode"
"unicode/utf8"
)
const (
structTagName = "codec"
// Support
// encoding.BinaryMarshaler: MarshalBinary() (data []byte, err error)
// encoding.BinaryUnmarshaler: UnmarshalBinary(data []byte) error
// This constant flag will enable or disable it.
supportBinaryMarshal = true
// Each Encoder or Decoder uses a cache of functions based on conditionals,
// so that the conditionals are not run every time.
//
// Either a map or a slice is used to keep track of the functions.
// The map is more natural, but has a higher cost than a slice/array.
// This flag (useMapForCodecCache) controls which is used.
useMapForCodecCache = false
// For some common container types, we can short-circuit an elaborate
// reflection dance and call encode/decode directly.
// The currently supported types are:
// - slices of strings, or id's (int64,uint64) or interfaces.
// - maps of str->str, str->intf, id(int64,uint64)->intf, intf->intf
shortCircuitReflectToFastPath = true
// for debugging, set this to false, to catch panic traces.
// Note that this will always cause rpc tests to fail, since they need io.EOF sent via panic.
recoverPanicToErr = true
)
type charEncoding uint8
const (
c_RAW charEncoding = iota
c_UTF8
c_UTF16LE
c_UTF16BE
c_UTF32LE
c_UTF32BE
)
// valueType is the stream type
type valueType uint8
const (
valueTypeUnset valueType = iota
valueTypeNil
valueTypeInt
valueTypeUint
valueTypeFloat
valueTypeBool
valueTypeString
valueTypeSymbol
valueTypeBytes
valueTypeMap
valueTypeArray
valueTypeTimestamp
valueTypeExt
valueTypeInvalid = 0xff
)
var (
bigen = binary.BigEndian
structInfoFieldName = "_struct"
cachedTypeInfo = make(map[uintptr]*typeInfo, 4)
cachedTypeInfoMutex sync.RWMutex
intfSliceTyp = reflect.TypeOf([]interface{}(nil))
intfTyp = intfSliceTyp.Elem()
strSliceTyp = reflect.TypeOf([]string(nil))
boolSliceTyp = reflect.TypeOf([]bool(nil))
uintSliceTyp = reflect.TypeOf([]uint(nil))
uint8SliceTyp = reflect.TypeOf([]uint8(nil))
uint16SliceTyp = reflect.TypeOf([]uint16(nil))
uint32SliceTyp = reflect.TypeOf([]uint32(nil))
uint64SliceTyp = reflect.TypeOf([]uint64(nil))
intSliceTyp = reflect.TypeOf([]int(nil))
int8SliceTyp = reflect.TypeOf([]int8(nil))
int16SliceTyp = reflect.TypeOf([]int16(nil))
int32SliceTyp = reflect.TypeOf([]int32(nil))
int64SliceTyp = reflect.TypeOf([]int64(nil))
float32SliceTyp = reflect.TypeOf([]float32(nil))
float64SliceTyp = reflect.TypeOf([]float64(nil))
mapIntfIntfTyp = reflect.TypeOf(map[interface{}]interface{}(nil))
mapStrIntfTyp = reflect.TypeOf(map[string]interface{}(nil))
mapStrStrTyp = reflect.TypeOf(map[string]string(nil))
mapIntIntfTyp = reflect.TypeOf(map[int]interface{}(nil))
mapInt64IntfTyp = reflect.TypeOf(map[int64]interface{}(nil))
mapUintIntfTyp = reflect.TypeOf(map[uint]interface{}(nil))
mapUint64IntfTyp = reflect.TypeOf(map[uint64]interface{}(nil))
stringTyp = reflect.TypeOf("")
timeTyp = reflect.TypeOf(time.Time{})
rawExtTyp = reflect.TypeOf(RawExt{})
mapBySliceTyp = reflect.TypeOf((*MapBySlice)(nil)).Elem()
binaryMarshalerTyp = reflect.TypeOf((*binaryMarshaler)(nil)).Elem()
binaryUnmarshalerTyp = reflect.TypeOf((*binaryUnmarshaler)(nil)).Elem()
rawExtTypId = reflect.ValueOf(rawExtTyp).Pointer()
intfTypId = reflect.ValueOf(intfTyp).Pointer()
timeTypId = reflect.ValueOf(timeTyp).Pointer()
intfSliceTypId = reflect.ValueOf(intfSliceTyp).Pointer()
strSliceTypId = reflect.ValueOf(strSliceTyp).Pointer()
boolSliceTypId = reflect.ValueOf(boolSliceTyp).Pointer()
uintSliceTypId = reflect.ValueOf(uintSliceTyp).Pointer()
uint8SliceTypId = reflect.ValueOf(uint8SliceTyp).Pointer()
uint16SliceTypId = reflect.ValueOf(uint16SliceTyp).Pointer()
uint32SliceTypId = reflect.ValueOf(uint32SliceTyp).Pointer()
uint64SliceTypId = reflect.ValueOf(uint64SliceTyp).Pointer()
intSliceTypId = reflect.ValueOf(intSliceTyp).Pointer()
int8SliceTypId = reflect.ValueOf(int8SliceTyp).Pointer()
int16SliceTypId = reflect.ValueOf(int16SliceTyp).Pointer()
int32SliceTypId = reflect.ValueOf(int32SliceTyp).Pointer()
int64SliceTypId = reflect.ValueOf(int64SliceTyp).Pointer()
float32SliceTypId = reflect.ValueOf(float32SliceTyp).Pointer()
float64SliceTypId = reflect.ValueOf(float64SliceTyp).Pointer()
mapStrStrTypId = reflect.ValueOf(mapStrStrTyp).Pointer()
mapIntfIntfTypId = reflect.ValueOf(mapIntfIntfTyp).Pointer()
mapStrIntfTypId = reflect.ValueOf(mapStrIntfTyp).Pointer()
mapIntIntfTypId = reflect.ValueOf(mapIntIntfTyp).Pointer()
mapInt64IntfTypId = reflect.ValueOf(mapInt64IntfTyp).Pointer()
mapUintIntfTypId = reflect.ValueOf(mapUintIntfTyp).Pointer()
mapUint64IntfTypId = reflect.ValueOf(mapUint64IntfTyp).Pointer()
// Id = reflect.ValueOf().Pointer()
// mapBySliceTypId = reflect.ValueOf(mapBySliceTyp).Pointer()
binaryMarshalerTypId = reflect.ValueOf(binaryMarshalerTyp).Pointer()
binaryUnmarshalerTypId = reflect.ValueOf(binaryUnmarshalerTyp).Pointer()
intBitsize uint8 = uint8(reflect.TypeOf(int(0)).Bits())
uintBitsize uint8 = uint8(reflect.TypeOf(uint(0)).Bits())
bsAll0x00 = []byte{0, 0, 0, 0, 0, 0, 0, 0}
bsAll0xff = []byte{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}
)
type binaryUnmarshaler interface {
UnmarshalBinary(data []byte) error
}
type binaryMarshaler interface {
MarshalBinary() (data []byte, err error)
}
// MapBySlice represents a slice which should be encoded as a map in the stream.
// The slice contains a sequence of key-value pairs.
type MapBySlice interface {
MapBySlice()
}
// WARNING: DO NOT USE DIRECTLY. EXPORTED FOR GODOC BENEFIT. WILL BE REMOVED.
//
// BasicHandle encapsulates the common options and extension functions.
type BasicHandle struct {
extHandle
EncodeOptions
DecodeOptions
}
// Handle is the interface for a specific encoding format.
//
// Typically, a Handle is pre-configured before first time use,
// and not modified while in use. Such a pre-configured Handle
// is safe for concurrent access.
type Handle interface {
writeExt() bool
getBasicHandle() *BasicHandle
newEncDriver(w encWriter) encDriver
newDecDriver(r decReader) decDriver
}
// RawExt represents raw unprocessed extension data.
type RawExt struct {
Tag byte
Data []byte
}
type extTypeTagFn struct {
rtid uintptr
rt reflect.Type
tag byte
encFn func(reflect.Value) ([]byte, error)
decFn func(reflect.Value, []byte) error
}
type extHandle []*extTypeTagFn
// AddExt registers an encode and decode function for a reflect.Type.
// Note that the type must be a named type, and specifically not
// a pointer or Interface. An error is returned if that is not honored.
//
// To Deregister an ext, call AddExt with 0 tag, nil encfn and nil decfn.
func (o *extHandle) AddExt(
rt reflect.Type,
tag byte,
encfn func(reflect.Value) ([]byte, error),
decfn func(reflect.Value, []byte) error,
) (err error) {
// o is a pointer, because we may need to initialize it
if rt.PkgPath() == "" || rt.Kind() == reflect.Interface {
err = fmt.Errorf("codec.Handle.AddExt: Takes named type, especially not a pointer or interface: %T",
reflect.Zero(rt).Interface())
return
}
// o cannot be nil, since it is always embedded in a Handle.
// if nil, let it panic.
// if o == nil {
// err = errors.New("codec.Handle.AddExt: extHandle cannot be a nil pointer.")
// return
// }
rtid := reflect.ValueOf(rt).Pointer()
for _, v := range *o {
if v.rtid == rtid {
v.tag, v.encFn, v.decFn = tag, encfn, decfn
return
}
}
*o = append(*o, &extTypeTagFn{rtid, rt, tag, encfn, decfn})
return
}
func (o extHandle) getExt(rtid uintptr) *extTypeTagFn {
for _, v := range o {
if v.rtid == rtid {
return v
}
}
return nil
}
func (o extHandle) getExtForTag(tag byte) *extTypeTagFn {
for _, v := range o {
if v.tag == tag {
return v
}
}
return nil
}
func (o extHandle) getDecodeExtForTag(tag byte) (
rv reflect.Value, fn func(reflect.Value, []byte) error) {
if x := o.getExtForTag(tag); x != nil {
// ext is only registered for base
rv = reflect.New(x.rt).Elem()
fn = x.decFn
}
return
}
func (o extHandle) getDecodeExt(rtid uintptr) (tag byte, fn func(reflect.Value, []byte) error) {
if x := o.getExt(rtid); x != nil {
tag = x.tag
fn = x.decFn
}
return
}
func (o extHandle) getEncodeExt(rtid uintptr) (tag byte, fn func(reflect.Value) ([]byte, error)) {
if x := o.getExt(rtid); x != nil {
tag = x.tag
fn = x.encFn
}
return
}
type structFieldInfo struct {
encName string // encode name
// only one of 'i' or 'is' can be set. If 'i' is -1, then 'is' has been set.
is []int // (recursive/embedded) field index in struct
i int16 // field index in struct
omitEmpty bool
toArray bool // if field is _struct, is the toArray set?
// tag string // tag
// name string // field name
// encNameBs []byte // encoded name as byte stream
// ikind int // kind of the field as an int i.e. int(reflect.Kind)
}
func parseStructFieldInfo(fname string, stag string) *structFieldInfo {
if fname == "" {
panic("parseStructFieldInfo: No Field Name")
}
si := structFieldInfo{
// name: fname,
encName: fname,
// tag: stag,
}
if stag != "" {
for i, s := range strings.Split(stag, ",") {
if i == 0 {
if s != "" {
si.encName = s
}
} else {
switch s {
case "omitempty":
si.omitEmpty = true
case "toarray":
si.toArray = true
}
}
}
}
// si.encNameBs = []byte(si.encName)
return &si
}
type sfiSortedByEncName []*structFieldInfo
func (p sfiSortedByEncName) Len() int {
return len(p)
}
func (p sfiSortedByEncName) Less(i, j int) bool {
return p[i].encName < p[j].encName
}
func (p sfiSortedByEncName) Swap(i, j int) {
p[i], p[j] = p[j], p[i]
}
// typeInfo keeps information about each type referenced in the encode/decode sequence.
//
// During an encode/decode sequence, we work as below:
// - If base is a built in type, en/decode base value
// - If base is registered as an extension, en/decode base value
// - If type is binary(M/Unm)arshaler, call Binary(M/Unm)arshal method
// - Else decode appropriately based on the reflect.Kind
type typeInfo struct {
sfi []*structFieldInfo // sorted. Used when enc/dec struct to map.
sfip []*structFieldInfo // unsorted. Used when enc/dec struct to array.
rt reflect.Type
rtid uintptr
// baseId gives pointer to the base reflect.Type, after deferencing
// the pointers. E.g. base type of ***time.Time is time.Time.
base reflect.Type
baseId uintptr
baseIndir int8 // number of indirections to get to base
mbs bool // base type (T or *T) is a MapBySlice
m bool // base type (T or *T) is a binaryMarshaler
unm bool // base type (T or *T) is a binaryUnmarshaler
mIndir int8 // number of indirections to get to binaryMarshaler type
unmIndir int8 // number of indirections to get to binaryUnmarshaler type
toArray bool // whether this (struct) type should be encoded as an array
}
func (ti *typeInfo) indexForEncName(name string) int {
//tisfi := ti.sfi
const binarySearchThreshold = 16
if sfilen := len(ti.sfi); sfilen < binarySearchThreshold {
// linear search. faster than binary search in my testing up to 16-field structs.
for i, si := range ti.sfi {
if si.encName == name {
return i
}
}
} else {
// binary search. adapted from sort/search.go.
h, i, j := 0, 0, sfilen
for i < j {
h = i + (j-i)/2
if ti.sfi[h].encName < name {
i = h + 1
} else {
j = h
}
}
if i < sfilen && ti.sfi[i].encName == name {
return i
}
}
return -1
}
func getTypeInfo(rtid uintptr, rt reflect.Type) (pti *typeInfo) {
var ok bool
cachedTypeInfoMutex.RLock()
pti, ok = cachedTypeInfo[rtid]
cachedTypeInfoMutex.RUnlock()
if ok {
return
}
cachedTypeInfoMutex.Lock()
defer cachedTypeInfoMutex.Unlock()
if pti, ok = cachedTypeInfo[rtid]; ok {
return
}
ti := typeInfo{rt: rt, rtid: rtid}
pti = &ti
var indir int8
if ok, indir = implementsIntf(rt, binaryMarshalerTyp); ok {
ti.m, ti.mIndir = true, indir
}
if ok, indir = implementsIntf(rt, binaryUnmarshalerTyp); ok {
ti.unm, ti.unmIndir = true, indir
}
if ok, _ = implementsIntf(rt, mapBySliceTyp); ok {
ti.mbs = true
}
pt := rt
var ptIndir int8
// for ; pt.Kind() == reflect.Ptr; pt, ptIndir = pt.Elem(), ptIndir+1 { }
for pt.Kind() == reflect.Ptr {
pt = pt.Elem()
ptIndir++
}
if ptIndir == 0 {
ti.base = rt
ti.baseId = rtid
} else {
ti.base = pt
ti.baseId = reflect.ValueOf(pt).Pointer()
ti.baseIndir = ptIndir
}
if rt.Kind() == reflect.Struct {
var siInfo *structFieldInfo
if f, ok := rt.FieldByName(structInfoFieldName); ok {
siInfo = parseStructFieldInfo(structInfoFieldName, f.Tag.Get(structTagName))
ti.toArray = siInfo.toArray
}
sfip := make([]*structFieldInfo, 0, rt.NumField())
rgetTypeInfo(rt, nil, make(map[string]bool), &sfip, siInfo)
// // try to put all si close together
// const tryToPutAllStructFieldInfoTogether = true
// if tryToPutAllStructFieldInfoTogether {
// sfip2 := make([]structFieldInfo, len(sfip))
// for i, si := range sfip {
// sfip2[i] = *si
// }
// for i := range sfip {
// sfip[i] = &sfip2[i]
// }
// }
ti.sfip = make([]*structFieldInfo, len(sfip))
ti.sfi = make([]*structFieldInfo, len(sfip))
copy(ti.sfip, sfip)
sort.Sort(sfiSortedByEncName(sfip))
copy(ti.sfi, sfip)
}
// sfi = sfip
cachedTypeInfo[rtid] = pti
return
}
func rgetTypeInfo(rt reflect.Type, indexstack []int, fnameToHastag map[string]bool,
sfi *[]*structFieldInfo, siInfo *structFieldInfo,
) {
// for rt.Kind() == reflect.Ptr {
// // indexstack = append(indexstack, 0)
// rt = rt.Elem()
// }
for j := 0; j < rt.NumField(); j++ {
f := rt.Field(j)
stag := f.Tag.Get(structTagName)
if stag == "-" {
continue
}
if r1, _ := utf8.DecodeRuneInString(f.Name); r1 == utf8.RuneError || !unicode.IsUpper(r1) {
continue
}
// if anonymous and there is no struct tag and its a struct (or pointer to struct), inline it.
if f.Anonymous && stag == "" {
ft := f.Type
for ft.Kind() == reflect.Ptr {
ft = ft.Elem()
}
if ft.Kind() == reflect.Struct {
indexstack2 := append(append(make([]int, 0, len(indexstack)+4), indexstack...), j)
rgetTypeInfo(ft, indexstack2, fnameToHastag, sfi, siInfo)
continue
}
}
// do not let fields with same name in embedded structs override field at higher level.
// this must be done after anonymous check, to allow anonymous field
// still include their child fields
if _, ok := fnameToHastag[f.Name]; ok {
continue
}
si := parseStructFieldInfo(f.Name, stag)
// si.ikind = int(f.Type.Kind())
if len(indexstack) == 0 {
si.i = int16(j)
} else {
si.i = -1
si.is = append(append(make([]int, 0, len(indexstack)+4), indexstack...), j)
}
if siInfo != nil {
if siInfo.omitEmpty {
si.omitEmpty = true
}
}
*sfi = append(*sfi, si)
fnameToHastag[f.Name] = stag != ""
}
}
func panicToErr(err *error) {
if recoverPanicToErr {
if x := recover(); x != nil {
//debug.PrintStack()
panicValToErr(x, err)
}
}
}
func doPanic(tag string, format string, params ...interface{}) {
params2 := make([]interface{}, len(params)+1)
params2[0] = tag
copy(params2[1:], params)
panic(fmt.Errorf("%s: "+format, params2...))
}
func checkOverflowFloat32(f float64, doCheck bool) {
if !doCheck {
return
}
// check overflow (logic adapted from std pkg reflect/value.go OverflowFloat()
f2 := f
if f2 < 0 {
f2 = -f
}
if math.MaxFloat32 < f2 && f2 <= math.MaxFloat64 {
decErr("Overflow float32 value: %v", f2)
}
}
func checkOverflow(ui uint64, i int64, bitsize uint8) {
// check overflow (logic adapted from std pkg reflect/value.go OverflowUint()
if bitsize == 0 {
return
}
if i != 0 {
if trunc := (i << (64 - bitsize)) >> (64 - bitsize); i != trunc {
decErr("Overflow int value: %v", i)
}
}
if ui != 0 {
if trunc := (ui << (64 - bitsize)) >> (64 - bitsize); ui != trunc {
decErr("Overflow uint value: %v", ui)
}
}
}