blob: a5532220fd02daeb445387426efb9c3e029131e7 [file] [log] [blame]
package ebpf
import (
"encoding/binary"
"errors"
"fmt"
"reflect"
"strings"
"github.com/cilium/ebpf/asm"
"github.com/cilium/ebpf/btf"
"github.com/cilium/ebpf/internal"
"github.com/cilium/ebpf/internal/kconfig"
"github.com/cilium/ebpf/internal/sysenc"
)
// CollectionOptions control loading a collection into the kernel.
//
// Maps and Programs are passed to NewMapWithOptions and NewProgramsWithOptions.
type CollectionOptions struct {
Maps MapOptions
Programs ProgramOptions
// MapReplacements takes a set of Maps that will be used instead of
// creating new ones when loading the CollectionSpec.
//
// For each given Map, there must be a corresponding MapSpec in
// CollectionSpec.Maps, and its type, key/value size, max entries and flags
// must match the values of the MapSpec.
//
// The given Maps are Clone()d before being used in the Collection, so the
// caller can Close() them freely when they are no longer needed.
MapReplacements map[string]*Map
}
// CollectionSpec describes a collection.
type CollectionSpec struct {
Maps map[string]*MapSpec
Programs map[string]*ProgramSpec
// Types holds type information about Maps and Programs.
// Modifications to Types are currently undefined behaviour.
Types *btf.Spec
// ByteOrder specifies whether the ELF was compiled for
// big-endian or little-endian architectures.
ByteOrder binary.ByteOrder
}
// Copy returns a recursive copy of the spec.
func (cs *CollectionSpec) Copy() *CollectionSpec {
if cs == nil {
return nil
}
cpy := CollectionSpec{
Maps: make(map[string]*MapSpec, len(cs.Maps)),
Programs: make(map[string]*ProgramSpec, len(cs.Programs)),
ByteOrder: cs.ByteOrder,
Types: cs.Types,
}
for name, spec := range cs.Maps {
cpy.Maps[name] = spec.Copy()
}
for name, spec := range cs.Programs {
cpy.Programs[name] = spec.Copy()
}
return &cpy
}
// RewriteMaps replaces all references to specific maps.
//
// Use this function to use pre-existing maps instead of creating new ones
// when calling NewCollection. Any named maps are removed from CollectionSpec.Maps.
//
// Returns an error if a named map isn't used in at least one program.
//
// Deprecated: Pass CollectionOptions.MapReplacements when loading the Collection
// instead.
func (cs *CollectionSpec) RewriteMaps(maps map[string]*Map) error {
for symbol, m := range maps {
// have we seen a program that uses this symbol / map
seen := false
for progName, progSpec := range cs.Programs {
err := progSpec.Instructions.AssociateMap(symbol, m)
switch {
case err == nil:
seen = true
case errors.Is(err, asm.ErrUnreferencedSymbol):
// Not all programs need to use the map
default:
return fmt.Errorf("program %s: %w", progName, err)
}
}
if !seen {
return fmt.Errorf("map %s not referenced by any programs", symbol)
}
// Prevent NewCollection from creating rewritten maps
delete(cs.Maps, symbol)
}
return nil
}
// MissingConstantsError is returned by [CollectionSpec.RewriteConstants].
type MissingConstantsError struct {
// The constants missing from .rodata.
Constants []string
}
func (m *MissingConstantsError) Error() string {
return fmt.Sprintf("some constants are missing from .rodata: %s", strings.Join(m.Constants, ", "))
}
// RewriteConstants replaces the value of multiple constants.
//
// The constant must be defined like so in the C program:
//
// volatile const type foobar;
// volatile const type foobar = default;
//
// Replacement values must be of the same length as the C sizeof(type).
// If necessary, they are marshalled according to the same rules as
// map values.
//
// From Linux 5.5 the verifier will use constants to eliminate dead code.
//
// Returns an error wrapping [MissingConstantsError] if a constant doesn't exist.
func (cs *CollectionSpec) RewriteConstants(consts map[string]interface{}) error {
replaced := make(map[string]bool)
for name, spec := range cs.Maps {
if !strings.HasPrefix(name, ".rodata") {
continue
}
b, ds, err := spec.dataSection()
if errors.Is(err, errMapNoBTFValue) {
// Data sections without a BTF Datasec are valid, but don't support
// constant replacements.
continue
}
if err != nil {
return fmt.Errorf("map %s: %w", name, err)
}
// MapSpec.Copy() performs a shallow copy. Fully copy the byte slice
// to avoid any changes affecting other copies of the MapSpec.
cpy := make([]byte, len(b))
copy(cpy, b)
for _, v := range ds.Vars {
vname := v.Type.TypeName()
replacement, ok := consts[vname]
if !ok {
continue
}
if _, ok := v.Type.(*btf.Var); !ok {
return fmt.Errorf("section %s: unexpected type %T for variable %s", name, v.Type, vname)
}
if replaced[vname] {
return fmt.Errorf("section %s: duplicate variable %s", name, vname)
}
if int(v.Offset+v.Size) > len(cpy) {
return fmt.Errorf("section %s: offset %d(+%d) for variable %s is out of bounds", name, v.Offset, v.Size, vname)
}
b, err := sysenc.Marshal(replacement, int(v.Size))
if err != nil {
return fmt.Errorf("marshaling constant replacement %s: %w", vname, err)
}
b.CopyTo(cpy[v.Offset : v.Offset+v.Size])
replaced[vname] = true
}
spec.Contents[0] = MapKV{Key: uint32(0), Value: cpy}
}
var missing []string
for c := range consts {
if !replaced[c] {
missing = append(missing, c)
}
}
if len(missing) != 0 {
return fmt.Errorf("rewrite constants: %w", &MissingConstantsError{Constants: missing})
}
return nil
}
// Assign the contents of a CollectionSpec to a struct.
//
// This function is a shortcut to manually checking the presence
// of maps and programs in a CollectionSpec. Consider using bpf2go
// if this sounds useful.
//
// 'to' must be a pointer to a struct. A field of the
// struct is updated with values from Programs or Maps if it
// has an `ebpf` tag and its type is *ProgramSpec or *MapSpec.
// The tag's value specifies the name of the program or map as
// found in the CollectionSpec.
//
// struct {
// Foo *ebpf.ProgramSpec `ebpf:"xdp_foo"`
// Bar *ebpf.MapSpec `ebpf:"bar_map"`
// Ignored int
// }
//
// Returns an error if any of the eBPF objects can't be found, or
// if the same MapSpec or ProgramSpec is assigned multiple times.
func (cs *CollectionSpec) Assign(to interface{}) error {
// Assign() only supports assigning ProgramSpecs and MapSpecs,
// so doesn't load any resources into the kernel.
getValue := func(typ reflect.Type, name string) (interface{}, error) {
switch typ {
case reflect.TypeOf((*ProgramSpec)(nil)):
if p := cs.Programs[name]; p != nil {
return p, nil
}
return nil, fmt.Errorf("missing program %q", name)
case reflect.TypeOf((*MapSpec)(nil)):
if m := cs.Maps[name]; m != nil {
return m, nil
}
return nil, fmt.Errorf("missing map %q", name)
default:
return nil, fmt.Errorf("unsupported type %s", typ)
}
}
return assignValues(to, getValue)
}
// LoadAndAssign loads Maps and Programs into the kernel and assigns them
// to a struct.
//
// Omitting Map/Program.Close() during application shutdown is an error.
// See the package documentation for details around Map and Program lifecycle.
//
// This function is a shortcut to manually checking the presence
// of maps and programs in a CollectionSpec. Consider using bpf2go
// if this sounds useful.
//
// 'to' must be a pointer to a struct. A field of the struct is updated with
// a Program or Map if it has an `ebpf` tag and its type is *Program or *Map.
// The tag's value specifies the name of the program or map as found in the
// CollectionSpec. Before updating the struct, the requested objects and their
// dependent resources are loaded into the kernel and populated with values if
// specified.
//
// struct {
// Foo *ebpf.Program `ebpf:"xdp_foo"`
// Bar *ebpf.Map `ebpf:"bar_map"`
// Ignored int
// }
//
// opts may be nil.
//
// Returns an error if any of the fields can't be found, or
// if the same Map or Program is assigned multiple times.
func (cs *CollectionSpec) LoadAndAssign(to interface{}, opts *CollectionOptions) error {
loader, err := newCollectionLoader(cs, opts)
if err != nil {
return err
}
defer loader.close()
// Support assigning Programs and Maps, lazy-loading the required objects.
assignedMaps := make(map[string]bool)
assignedProgs := make(map[string]bool)
getValue := func(typ reflect.Type, name string) (interface{}, error) {
switch typ {
case reflect.TypeOf((*Program)(nil)):
assignedProgs[name] = true
return loader.loadProgram(name)
case reflect.TypeOf((*Map)(nil)):
assignedMaps[name] = true
return loader.loadMap(name)
default:
return nil, fmt.Errorf("unsupported type %s", typ)
}
}
// Load the Maps and Programs requested by the annotated struct.
if err := assignValues(to, getValue); err != nil {
return err
}
// Populate the requested maps. Has a chance of lazy-loading other dependent maps.
if err := loader.populateDeferredMaps(); err != nil {
return err
}
// Evaluate the loader's objects after all (lazy)loading has taken place.
for n, m := range loader.maps {
switch m.typ {
case ProgramArray:
// Require all lazy-loaded ProgramArrays to be assigned to the given object.
// The kernel empties a ProgramArray once the last user space reference
// to it closes, which leads to failed tail calls. Combined with the library
// closing map fds via GC finalizers this can lead to surprising behaviour.
// Only allow unassigned ProgramArrays when the library hasn't pre-populated
// any entries from static value declarations. At this point, we know the map
// is empty and there's no way for the caller to interact with the map going
// forward.
if !assignedMaps[n] && len(cs.Maps[n].Contents) > 0 {
return fmt.Errorf("ProgramArray %s must be assigned to prevent missed tail calls", n)
}
}
}
// Prevent loader.cleanup() from closing assigned Maps and Programs.
for m := range assignedMaps {
delete(loader.maps, m)
}
for p := range assignedProgs {
delete(loader.programs, p)
}
return nil
}
// Collection is a collection of Programs and Maps associated
// with their symbols
type Collection struct {
Programs map[string]*Program
Maps map[string]*Map
}
// NewCollection creates a Collection from the given spec, creating and
// loading its declared resources into the kernel.
//
// Omitting Collection.Close() during application shutdown is an error.
// See the package documentation for details around Map and Program lifecycle.
func NewCollection(spec *CollectionSpec) (*Collection, error) {
return NewCollectionWithOptions(spec, CollectionOptions{})
}
// NewCollectionWithOptions creates a Collection from the given spec using
// options, creating and loading its declared resources into the kernel.
//
// Omitting Collection.Close() during application shutdown is an error.
// See the package documentation for details around Map and Program lifecycle.
func NewCollectionWithOptions(spec *CollectionSpec, opts CollectionOptions) (*Collection, error) {
loader, err := newCollectionLoader(spec, &opts)
if err != nil {
return nil, err
}
defer loader.close()
// Create maps first, as their fds need to be linked into programs.
for mapName := range spec.Maps {
if _, err := loader.loadMap(mapName); err != nil {
return nil, err
}
}
for progName, prog := range spec.Programs {
if prog.Type == UnspecifiedProgram {
continue
}
if _, err := loader.loadProgram(progName); err != nil {
return nil, err
}
}
// Maps can contain Program and Map stubs, so populate them after
// all Maps and Programs have been successfully loaded.
if err := loader.populateDeferredMaps(); err != nil {
return nil, err
}
// Prevent loader.cleanup from closing maps and programs.
maps, progs := loader.maps, loader.programs
loader.maps, loader.programs = nil, nil
return &Collection{
progs,
maps,
}, nil
}
type collectionLoader struct {
coll *CollectionSpec
opts *CollectionOptions
maps map[string]*Map
programs map[string]*Program
}
func newCollectionLoader(coll *CollectionSpec, opts *CollectionOptions) (*collectionLoader, error) {
if opts == nil {
opts = &CollectionOptions{}
}
// Check for existing MapSpecs in the CollectionSpec for all provided replacement maps.
for name, m := range opts.MapReplacements {
spec, ok := coll.Maps[name]
if !ok {
return nil, fmt.Errorf("replacement map %s not found in CollectionSpec", name)
}
if err := spec.Compatible(m); err != nil {
return nil, fmt.Errorf("using replacement map %s: %w", spec.Name, err)
}
}
return &collectionLoader{
coll,
opts,
make(map[string]*Map),
make(map[string]*Program),
}, nil
}
// close all resources left over in the collectionLoader.
func (cl *collectionLoader) close() {
for _, m := range cl.maps {
m.Close()
}
for _, p := range cl.programs {
p.Close()
}
}
func (cl *collectionLoader) loadMap(mapName string) (*Map, error) {
if m := cl.maps[mapName]; m != nil {
return m, nil
}
mapSpec := cl.coll.Maps[mapName]
if mapSpec == nil {
return nil, fmt.Errorf("missing map %s", mapName)
}
if replaceMap, ok := cl.opts.MapReplacements[mapName]; ok {
// Clone the map to avoid closing user's map later on.
m, err := replaceMap.Clone()
if err != nil {
return nil, err
}
cl.maps[mapName] = m
return m, nil
}
m, err := newMapWithOptions(mapSpec, cl.opts.Maps)
if err != nil {
return nil, fmt.Errorf("map %s: %w", mapName, err)
}
// Finalize 'scalar' maps that don't refer to any other eBPF resources
// potentially pending creation. This is needed for frozen maps like .rodata
// that need to be finalized before invoking the verifier.
if !mapSpec.Type.canStoreMapOrProgram() {
if err := m.finalize(mapSpec); err != nil {
return nil, fmt.Errorf("finalizing map %s: %w", mapName, err)
}
}
cl.maps[mapName] = m
return m, nil
}
func (cl *collectionLoader) loadProgram(progName string) (*Program, error) {
if prog := cl.programs[progName]; prog != nil {
return prog, nil
}
progSpec := cl.coll.Programs[progName]
if progSpec == nil {
return nil, fmt.Errorf("unknown program %s", progName)
}
// Bail out early if we know the kernel is going to reject the program.
// This skips loading map dependencies, saving some cleanup work later.
if progSpec.Type == UnspecifiedProgram {
return nil, fmt.Errorf("cannot load program %s: program type is unspecified", progName)
}
progSpec = progSpec.Copy()
// Rewrite any reference to a valid map in the program's instructions,
// which includes all of its dependencies.
for i := range progSpec.Instructions {
ins := &progSpec.Instructions[i]
if !ins.IsLoadFromMap() || ins.Reference() == "" {
continue
}
// Don't overwrite map loads containing non-zero map fd's,
// they can be manually included by the caller.
// Map FDs/IDs are placed in the lower 32 bits of Constant.
if int32(ins.Constant) > 0 {
continue
}
m, err := cl.loadMap(ins.Reference())
if err != nil {
return nil, fmt.Errorf("program %s: %w", progName, err)
}
if err := ins.AssociateMap(m); err != nil {
return nil, fmt.Errorf("program %s: map %s: %w", progName, ins.Reference(), err)
}
}
prog, err := newProgramWithOptions(progSpec, cl.opts.Programs)
if err != nil {
return nil, fmt.Errorf("program %s: %w", progName, err)
}
cl.programs[progName] = prog
return prog, nil
}
// populateDeferredMaps iterates maps holding programs or other maps and loads
// any dependencies. Populates all maps in cl and freezes them if specified.
func (cl *collectionLoader) populateDeferredMaps() error {
for mapName, m := range cl.maps {
mapSpec, ok := cl.coll.Maps[mapName]
if !ok {
return fmt.Errorf("missing map spec %s", mapName)
}
// Scalar maps without Map or Program references are finalized during
// creation. Don't finalize them again.
if !mapSpec.Type.canStoreMapOrProgram() {
continue
}
mapSpec = mapSpec.Copy()
// MapSpecs that refer to inner maps or programs within the same
// CollectionSpec do so using strings. These strings are used as the key
// to look up the respective object in the Maps or Programs fields.
// Resolve those references to actual Map or Program resources that
// have been loaded into the kernel.
for i, kv := range mapSpec.Contents {
objName, ok := kv.Value.(string)
if !ok {
continue
}
switch t := mapSpec.Type; {
case t.canStoreProgram():
// loadProgram is idempotent and could return an existing Program.
prog, err := cl.loadProgram(objName)
if err != nil {
return fmt.Errorf("loading program %s, for map %s: %w", objName, mapName, err)
}
mapSpec.Contents[i] = MapKV{kv.Key, prog}
case t.canStoreMap():
// loadMap is idempotent and could return an existing Map.
innerMap, err := cl.loadMap(objName)
if err != nil {
return fmt.Errorf("loading inner map %s, for map %s: %w", objName, mapName, err)
}
mapSpec.Contents[i] = MapKV{kv.Key, innerMap}
}
}
// Populate and freeze the map if specified.
if err := m.finalize(mapSpec); err != nil {
return fmt.Errorf("populating map %s: %w", mapName, err)
}
}
return nil
}
// resolveKconfig resolves all variables declared in .kconfig and populates
// m.Contents. Does nothing if the given m.Contents is non-empty.
func resolveKconfig(m *MapSpec) error {
ds, ok := m.Value.(*btf.Datasec)
if !ok {
return errors.New("map value is not a Datasec")
}
type configInfo struct {
offset uint32
typ btf.Type
}
configs := make(map[string]configInfo)
data := make([]byte, ds.Size)
for _, vsi := range ds.Vars {
v := vsi.Type.(*btf.Var)
n := v.TypeName()
switch n {
case "LINUX_KERNEL_VERSION":
if integer, ok := v.Type.(*btf.Int); !ok || integer.Size != 4 {
return fmt.Errorf("variable %s must be a 32 bits integer, got %s", n, v.Type)
}
kv, err := internal.KernelVersion()
if err != nil {
return fmt.Errorf("getting kernel version: %w", err)
}
internal.NativeEndian.PutUint32(data[vsi.Offset:], kv.Kernel())
case "LINUX_HAS_SYSCALL_WRAPPER":
integer, ok := v.Type.(*btf.Int)
if !ok {
return fmt.Errorf("variable %s must be an integer, got %s", n, v.Type)
}
var value uint64 = 1
if err := haveSyscallWrapper(); errors.Is(err, ErrNotSupported) {
value = 0
} else if err != nil {
return fmt.Errorf("unable to derive a value for LINUX_HAS_SYSCALL_WRAPPER: %w", err)
}
if err := kconfig.PutInteger(data[vsi.Offset:], integer, value); err != nil {
return fmt.Errorf("set LINUX_HAS_SYSCALL_WRAPPER: %w", err)
}
default: // Catch CONFIG_*.
configs[n] = configInfo{
offset: vsi.Offset,
typ: v.Type,
}
}
}
// We only parse kconfig file if a CONFIG_* variable was found.
if len(configs) > 0 {
f, err := kconfig.Find()
if err != nil {
return fmt.Errorf("cannot find a kconfig file: %w", err)
}
defer f.Close()
filter := make(map[string]struct{}, len(configs))
for config := range configs {
filter[config] = struct{}{}
}
kernelConfig, err := kconfig.Parse(f, filter)
if err != nil {
return fmt.Errorf("cannot parse kconfig file: %w", err)
}
for n, info := range configs {
value, ok := kernelConfig[n]
if !ok {
return fmt.Errorf("config option %q does not exists for this kernel", n)
}
err := kconfig.PutValue(data[info.offset:], info.typ, value)
if err != nil {
return fmt.Errorf("problem adding value for %s: %w", n, err)
}
}
}
m.Contents = []MapKV{{uint32(0), data}}
return nil
}
// LoadCollection reads an object file and creates and loads its declared
// resources into the kernel.
//
// Omitting Collection.Close() during application shutdown is an error.
// See the package documentation for details around Map and Program lifecycle.
func LoadCollection(file string) (*Collection, error) {
spec, err := LoadCollectionSpec(file)
if err != nil {
return nil, err
}
return NewCollection(spec)
}
// Assign the contents of a Collection to a struct.
//
// This function bridges functionality between bpf2go generated
// code and any functionality better implemented in Collection.
//
// 'to' must be a pointer to a struct. A field of the
// struct is updated with values from Programs or Maps if it
// has an `ebpf` tag and its type is *Program or *Map.
// The tag's value specifies the name of the program or map as
// found in the CollectionSpec.
//
// struct {
// Foo *ebpf.Program `ebpf:"xdp_foo"`
// Bar *ebpf.Map `ebpf:"bar_map"`
// Ignored int
// }
//
// Returns an error if any of the eBPF objects can't be found, or
// if the same Map or Program is assigned multiple times.
//
// Ownership and Close()ing responsibility is transferred to `to`
// for any successful assigns. On error `to` is left in an undefined state.
func (coll *Collection) Assign(to interface{}) error {
assignedMaps := make(map[string]bool)
assignedProgs := make(map[string]bool)
// Assign() only transfers already-loaded Maps and Programs. No extra
// loading is done.
getValue := func(typ reflect.Type, name string) (interface{}, error) {
switch typ {
case reflect.TypeOf((*Program)(nil)):
if p := coll.Programs[name]; p != nil {
assignedProgs[name] = true
return p, nil
}
return nil, fmt.Errorf("missing program %q", name)
case reflect.TypeOf((*Map)(nil)):
if m := coll.Maps[name]; m != nil {
assignedMaps[name] = true
return m, nil
}
return nil, fmt.Errorf("missing map %q", name)
default:
return nil, fmt.Errorf("unsupported type %s", typ)
}
}
if err := assignValues(to, getValue); err != nil {
return err
}
// Finalize ownership transfer
for p := range assignedProgs {
delete(coll.Programs, p)
}
for m := range assignedMaps {
delete(coll.Maps, m)
}
return nil
}
// Close frees all maps and programs associated with the collection.
//
// The collection mustn't be used afterwards.
func (coll *Collection) Close() {
for _, prog := range coll.Programs {
prog.Close()
}
for _, m := range coll.Maps {
m.Close()
}
}
// DetachMap removes the named map from the Collection.
//
// This means that a later call to Close() will not affect this map.
//
// Returns nil if no map of that name exists.
func (coll *Collection) DetachMap(name string) *Map {
m := coll.Maps[name]
delete(coll.Maps, name)
return m
}
// DetachProgram removes the named program from the Collection.
//
// This means that a later call to Close() will not affect this program.
//
// Returns nil if no program of that name exists.
func (coll *Collection) DetachProgram(name string) *Program {
p := coll.Programs[name]
delete(coll.Programs, name)
return p
}
// structField represents a struct field containing the ebpf struct tag.
type structField struct {
reflect.StructField
value reflect.Value
}
// ebpfFields extracts field names tagged with 'ebpf' from a struct type.
// Keep track of visited types to avoid infinite recursion.
func ebpfFields(structVal reflect.Value, visited map[reflect.Type]bool) ([]structField, error) {
if visited == nil {
visited = make(map[reflect.Type]bool)
}
structType := structVal.Type()
if structType.Kind() != reflect.Struct {
return nil, fmt.Errorf("%s is not a struct", structType)
}
if visited[structType] {
return nil, fmt.Errorf("recursion on type %s", structType)
}
fields := make([]structField, 0, structType.NumField())
for i := 0; i < structType.NumField(); i++ {
field := structField{structType.Field(i), structVal.Field(i)}
// If the field is tagged, gather it and move on.
name := field.Tag.Get("ebpf")
if name != "" {
fields = append(fields, field)
continue
}
// If the field does not have an ebpf tag, but is a struct or a pointer
// to a struct, attempt to gather its fields as well.
var v reflect.Value
switch field.Type.Kind() {
case reflect.Ptr:
if field.Type.Elem().Kind() != reflect.Struct {
continue
}
if field.value.IsNil() {
return nil, fmt.Errorf("nil pointer to %s", structType)
}
// Obtain the destination type of the pointer.
v = field.value.Elem()
case reflect.Struct:
// Reference the value's type directly.
v = field.value
default:
continue
}
inner, err := ebpfFields(v, visited)
if err != nil {
return nil, fmt.Errorf("field %s: %w", field.Name, err)
}
fields = append(fields, inner...)
}
return fields, nil
}
// assignValues attempts to populate all fields of 'to' tagged with 'ebpf'.
//
// getValue is called for every tagged field of 'to' and must return the value
// to be assigned to the field with the given typ and name.
func assignValues(to interface{},
getValue func(typ reflect.Type, name string) (interface{}, error)) error {
toValue := reflect.ValueOf(to)
if toValue.Type().Kind() != reflect.Ptr {
return fmt.Errorf("%T is not a pointer to struct", to)
}
if toValue.IsNil() {
return fmt.Errorf("nil pointer to %T", to)
}
fields, err := ebpfFields(toValue.Elem(), nil)
if err != nil {
return err
}
type elem struct {
// Either *Map or *Program
typ reflect.Type
name string
}
assigned := make(map[elem]string)
for _, field := range fields {
// Get string value the field is tagged with.
tag := field.Tag.Get("ebpf")
if strings.Contains(tag, ",") {
return fmt.Errorf("field %s: ebpf tag contains a comma", field.Name)
}
// Check if the eBPF object with the requested
// type and tag was already assigned elsewhere.
e := elem{field.Type, tag}
if af := assigned[e]; af != "" {
return fmt.Errorf("field %s: object %q was already assigned to %s", field.Name, tag, af)
}
// Get the eBPF object referred to by the tag.
value, err := getValue(field.Type, tag)
if err != nil {
return fmt.Errorf("field %s: %w", field.Name, err)
}
if !field.value.CanSet() {
return fmt.Errorf("field %s: can't set value", field.Name)
}
field.value.Set(reflect.ValueOf(value))
assigned[e] = field.Name
}
return nil
}