blob: a23d62af1b6b2dbafa0df104ab685aedb27f4c10 [file] [log] [blame]
/* rpmalloc.c - Memory allocator - Public Domain - 2016-2020 Mattias Jansson
*
* This library provides a cross-platform lock free thread caching malloc implementation in C11.
* The latest source code is always available at
*
* https://github.com/mjansson/rpmalloc
*
* This library is put in the public domain; you can redistribute it and/or modify it without any restrictions.
*
*/
#include "rpmalloc.h"
////////////
///
/// Build time configurable limits
///
//////
#if defined(__clang__)
#pragma clang diagnostic ignored "-Wunused-macros"
#pragma clang diagnostic ignored "-Wunused-function"
#elif defined(__GCC__)
#pragma GCC diagnostic ignored "-Wunused-macros"
#pragma GCC diagnostic ignored "-Wunused-function"
#endif
#ifndef HEAP_ARRAY_SIZE
//! Size of heap hashmap
#define HEAP_ARRAY_SIZE 47
#endif
#ifndef ENABLE_THREAD_CACHE
//! Enable per-thread cache
#define ENABLE_THREAD_CACHE 1
#endif
#ifndef ENABLE_GLOBAL_CACHE
//! Enable global cache shared between all threads, requires thread cache
#define ENABLE_GLOBAL_CACHE 1
#endif
#ifndef ENABLE_VALIDATE_ARGS
//! Enable validation of args to public entry points
#define ENABLE_VALIDATE_ARGS 0
#endif
#ifndef ENABLE_STATISTICS
//! Enable statistics collection
#define ENABLE_STATISTICS 0
#endif
#ifndef ENABLE_ASSERTS
//! Enable asserts
#define ENABLE_ASSERTS 0
#endif
#ifndef ENABLE_OVERRIDE
//! Override standard library malloc/free and new/delete entry points
#define ENABLE_OVERRIDE 0
#endif
#ifndef ENABLE_PRELOAD
//! Support preloading
#define ENABLE_PRELOAD 0
#endif
#ifndef DISABLE_UNMAP
//! Disable unmapping memory pages (also enables unlimited cache)
#define DISABLE_UNMAP 0
#endif
#ifndef ENABLE_UNLIMITED_CACHE
//! Enable unlimited global cache (no unmapping until finalization)
#define ENABLE_UNLIMITED_CACHE 0
#endif
#ifndef ENABLE_ADAPTIVE_THREAD_CACHE
//! Enable adaptive thread cache size based on use heuristics
#define ENABLE_ADAPTIVE_THREAD_CACHE 0
#endif
#ifndef DEFAULT_SPAN_MAP_COUNT
//! Default number of spans to map in call to map more virtual memory (default values yield 4MiB here)
#define DEFAULT_SPAN_MAP_COUNT 64
#endif
#ifndef GLOBAL_CACHE_MULTIPLIER
//! Multiplier for global cache
#define GLOBAL_CACHE_MULTIPLIER 8
#endif
#if DISABLE_UNMAP && !ENABLE_GLOBAL_CACHE
#error Must use global cache if unmap is disabled
#endif
#if DISABLE_UNMAP
#undef ENABLE_UNLIMITED_CACHE
#define ENABLE_UNLIMITED_CACHE 1
#endif
#if !ENABLE_GLOBAL_CACHE
#undef ENABLE_UNLIMITED_CACHE
#define ENABLE_UNLIMITED_CACHE 0
#endif
#if !ENABLE_THREAD_CACHE
#undef ENABLE_ADAPTIVE_THREAD_CACHE
#define ENABLE_ADAPTIVE_THREAD_CACHE 0
#endif
#if defined(_WIN32) || defined(__WIN32__) || defined(_WIN64)
# define PLATFORM_WINDOWS 1
# define PLATFORM_POSIX 0
#else
# define PLATFORM_WINDOWS 0
# define PLATFORM_POSIX 1
#endif
/// Platform and arch specifics
#if defined(_MSC_VER) && !defined(__clang__)
# ifndef FORCEINLINE
# define FORCEINLINE inline __forceinline
# endif
# define _Static_assert static_assert
#else
# ifndef FORCEINLINE
# define FORCEINLINE inline __attribute__((__always_inline__))
# endif
#endif
#if PLATFORM_WINDOWS
# ifndef WIN32_LEAN_AND_MEAN
# define WIN32_LEAN_AND_MEAN
# endif
# include <Windows.h>
# if ENABLE_VALIDATE_ARGS
# include <Intsafe.h>
# endif
#else
# include <unistd.h>
# include <stdio.h>
# include <stdlib.h>
# if defined(__APPLE__)
# include <TargetConditionals.h>
# if !TARGET_OS_IPHONE && !TARGET_OS_SIMULATOR
# include <mach/mach_vm.h>
# include <mach/vm_statistics.h>
# endif
# include <pthread.h>
# endif
# if defined(__HAIKU__)
# include <OS.h>
# include <pthread.h>
# endif
#endif
#include <stdint.h>
#include <string.h>
#include <errno.h>
#if defined(_WIN32) && (!defined(BUILD_DYNAMIC_LINK) || !BUILD_DYNAMIC_LINK)
#include <fibersapi.h>
static DWORD fls_key;
static void NTAPI
_rpmalloc_thread_destructor(void* value) {
if (value)
rpmalloc_thread_finalize();
}
#endif
#if PLATFORM_POSIX
# include <sys/mman.h>
# include <sched.h>
# ifdef __FreeBSD__
# include <sys/sysctl.h>
# define MAP_HUGETLB MAP_ALIGNED_SUPER
# endif
# ifndef MAP_UNINITIALIZED
# define MAP_UNINITIALIZED 0
# endif
#endif
#include <errno.h>
#if ENABLE_ASSERTS
# undef NDEBUG
# if defined(_MSC_VER) && !defined(_DEBUG)
# define _DEBUG
# endif
# include <assert.h>
#else
# undef assert
# define assert(x) do {} while(0)
#endif
#if ENABLE_STATISTICS
# include <stdio.h>
#endif
//////
///
/// Atomic access abstraction (since MSVC does not do C11 yet)
///
//////
#if defined(_MSC_VER) && !defined(__clang__)
typedef volatile long atomic32_t;
typedef volatile long long atomic64_t;
typedef volatile void* atomicptr_t;
static FORCEINLINE int32_t atomic_load32(atomic32_t* src) { return *src; }
static FORCEINLINE void atomic_store32(atomic32_t* dst, int32_t val) { *dst = val; }
static FORCEINLINE int32_t atomic_incr32(atomic32_t* val) { return (int32_t)InterlockedIncrement(val); }
static FORCEINLINE int32_t atomic_decr32(atomic32_t* val) { return (int32_t)InterlockedDecrement(val); }
static FORCEINLINE int32_t atomic_add32(atomic32_t* val, int32_t add) { return (int32_t)InterlockedExchangeAdd(val, add) + add; }
static FORCEINLINE int atomic_cas32_acquire(atomic32_t* dst, int32_t val, int32_t ref) { return (InterlockedCompareExchange(dst, val, ref) == ref) ? 1 : 0; }
static FORCEINLINE void atomic_store32_release(atomic32_t* dst, int32_t val) { *dst = val; }
static FORCEINLINE int64_t atomic_load64(atomic64_t* src) { return *src; }
static FORCEINLINE int64_t atomic_add64(atomic64_t* val, int64_t add) { return (int64_t)InterlockedExchangeAdd64(val, add) + add; }
static FORCEINLINE void* atomic_load_ptr(atomicptr_t* src) { return (void*)*src; }
static FORCEINLINE void atomic_store_ptr(atomicptr_t* dst, void* val) { *dst = val; }
static FORCEINLINE void atomic_store_ptr_release(atomicptr_t* dst, void* val) { *dst = val; }
static FORCEINLINE void* atomic_exchange_ptr_acquire(atomicptr_t* dst, void* val) { return (void*)InterlockedExchangePointer((void* volatile*)dst, val); }
static FORCEINLINE int atomic_cas_ptr(atomicptr_t* dst, void* val, void* ref) { return (InterlockedCompareExchangePointer((void* volatile*)dst, val, ref) == ref) ? 1 : 0; }
#define EXPECTED(x) (x)
#define UNEXPECTED(x) (x)
#else
#include <stdatomic.h>
typedef volatile _Atomic(int32_t) atomic32_t;
typedef volatile _Atomic(int64_t) atomic64_t;
typedef volatile _Atomic(void*) atomicptr_t;
static FORCEINLINE int32_t atomic_load32(atomic32_t* src) { return atomic_load_explicit(src, memory_order_relaxed); }
static FORCEINLINE void atomic_store32(atomic32_t* dst, int32_t val) { atomic_store_explicit(dst, val, memory_order_relaxed); }
static FORCEINLINE int32_t atomic_incr32(atomic32_t* val) { return atomic_fetch_add_explicit(val, 1, memory_order_relaxed) + 1; }
static FORCEINLINE int32_t atomic_decr32(atomic32_t* val) { return atomic_fetch_add_explicit(val, -1, memory_order_relaxed) - 1; }
static FORCEINLINE int32_t atomic_add32(atomic32_t* val, int32_t add) { return atomic_fetch_add_explicit(val, add, memory_order_relaxed) + add; }
static FORCEINLINE int atomic_cas32_acquire(atomic32_t* dst, int32_t val, int32_t ref) { return atomic_compare_exchange_weak_explicit(dst, &ref, val, memory_order_acquire, memory_order_relaxed); }
static FORCEINLINE void atomic_store32_release(atomic32_t* dst, int32_t val) { atomic_store_explicit(dst, val, memory_order_release); }
static FORCEINLINE int64_t atomic_load64(atomic64_t* val) { return atomic_load_explicit(val, memory_order_relaxed); }
static FORCEINLINE int64_t atomic_add64(atomic64_t* val, int64_t add) { return atomic_fetch_add_explicit(val, add, memory_order_relaxed) + add; }
static FORCEINLINE void* atomic_load_ptr(atomicptr_t* src) { return atomic_load_explicit(src, memory_order_relaxed); }
static FORCEINLINE void atomic_store_ptr(atomicptr_t* dst, void* val) { atomic_store_explicit(dst, val, memory_order_relaxed); }
static FORCEINLINE void atomic_store_ptr_release(atomicptr_t* dst, void* val) { atomic_store_explicit(dst, val, memory_order_release); }
static FORCEINLINE void* atomic_exchange_ptr_acquire(atomicptr_t* dst, void* val) { return atomic_exchange_explicit(dst, val, memory_order_acquire); }
static FORCEINLINE int atomic_cas_ptr(atomicptr_t* dst, void* val, void* ref) { return atomic_compare_exchange_weak_explicit(dst, &ref, val, memory_order_relaxed, memory_order_relaxed); }
#define EXPECTED(x) __builtin_expect((x), 1)
#define UNEXPECTED(x) __builtin_expect((x), 0)
#endif
////////////
///
/// Statistics related functions (evaluate to nothing when statistics not enabled)
///
//////
#if ENABLE_STATISTICS
# define _rpmalloc_stat_inc(counter) atomic_incr32(counter)
# define _rpmalloc_stat_dec(counter) atomic_decr32(counter)
# define _rpmalloc_stat_add(counter, value) atomic_add32(counter, (int32_t)(value))
# define _rpmalloc_stat_add64(counter, value) atomic_add64(counter, (int64_t)(value))
# define _rpmalloc_stat_add_peak(counter, value, peak) do { int32_t _cur_count = atomic_add32(counter, (int32_t)(value)); if (_cur_count > (peak)) peak = _cur_count; } while (0)
# define _rpmalloc_stat_sub(counter, value) atomic_add32(counter, -(int32_t)(value))
# define _rpmalloc_stat_inc_alloc(heap, class_idx) do { \
int32_t alloc_current = atomic_incr32(&heap->size_class_use[class_idx].alloc_current); \
if (alloc_current > heap->size_class_use[class_idx].alloc_peak) \
heap->size_class_use[class_idx].alloc_peak = alloc_current; \
atomic_incr32(&heap->size_class_use[class_idx].alloc_total); \
} while(0)
# define _rpmalloc_stat_inc_free(heap, class_idx) do { \
atomic_decr32(&heap->size_class_use[class_idx].alloc_current); \
atomic_incr32(&heap->size_class_use[class_idx].free_total); \
} while(0)
#else
# define _rpmalloc_stat_inc(counter) do {} while(0)
# define _rpmalloc_stat_dec(counter) do {} while(0)
# define _rpmalloc_stat_add(counter, value) do {} while(0)
# define _rpmalloc_stat_add64(counter, value) do {} while(0)
# define _rpmalloc_stat_add_peak(counter, value, peak) do {} while (0)
# define _rpmalloc_stat_sub(counter, value) do {} while(0)
# define _rpmalloc_stat_inc_alloc(heap, class_idx) do {} while(0)
# define _rpmalloc_stat_inc_free(heap, class_idx) do {} while(0)
#endif
///
/// Preconfigured limits and sizes
///
//! Granularity of a small allocation block (must be power of two)
#define SMALL_GRANULARITY 16
//! Small granularity shift count
#define SMALL_GRANULARITY_SHIFT 4
//! Number of small block size classes
#define SMALL_CLASS_COUNT 65
//! Maximum size of a small block
#define SMALL_SIZE_LIMIT (SMALL_GRANULARITY * (SMALL_CLASS_COUNT - 1))
//! Granularity of a medium allocation block
#define MEDIUM_GRANULARITY 512
//! Medium granularity shift count
#define MEDIUM_GRANULARITY_SHIFT 9
//! Number of medium block size classes
#define MEDIUM_CLASS_COUNT 61
//! Total number of small + medium size classes
#define SIZE_CLASS_COUNT (SMALL_CLASS_COUNT + MEDIUM_CLASS_COUNT)
//! Number of large block size classes
#define LARGE_CLASS_COUNT 63
//! Maximum size of a medium block
#define MEDIUM_SIZE_LIMIT (SMALL_SIZE_LIMIT + (MEDIUM_GRANULARITY * MEDIUM_CLASS_COUNT))
//! Maximum size of a large block
#define LARGE_SIZE_LIMIT ((LARGE_CLASS_COUNT * _memory_span_size) - SPAN_HEADER_SIZE)
//! Size of a span header (must be a multiple of SMALL_GRANULARITY and a power of two)
#define SPAN_HEADER_SIZE 128
//! Number of spans in thread cache
#define MAX_THREAD_SPAN_CACHE 256
//! Number of spans to transfer between thread and global cache
#define THREAD_SPAN_CACHE_TRANSFER 64
//! Number of spans in thread cache for large spans (must be greater than LARGE_CLASS_COUNT / 2)
#define MAX_THREAD_SPAN_LARGE_CACHE 64
//! Number of spans to transfer between thread and global cache for large spans
#define THREAD_SPAN_LARGE_CACHE_TRANSFER 6
_Static_assert((SMALL_GRANULARITY & (SMALL_GRANULARITY - 1)) == 0, "Small granularity must be power of two");
_Static_assert((SPAN_HEADER_SIZE & (SPAN_HEADER_SIZE - 1)) == 0, "Span header size must be power of two");
#if ENABLE_VALIDATE_ARGS
//! Maximum allocation size to avoid integer overflow
#undef MAX_ALLOC_SIZE
#define MAX_ALLOC_SIZE (((size_t)-1) - _memory_span_size)
#endif
#define pointer_offset(ptr, ofs) (void*)((char*)(ptr) + (ptrdiff_t)(ofs))
#define pointer_diff(first, second) (ptrdiff_t)((const char*)(first) - (const char*)(second))
#define INVALID_POINTER ((void*)((uintptr_t)-1))
#define SIZE_CLASS_LARGE SIZE_CLASS_COUNT
#define SIZE_CLASS_HUGE ((uint32_t)-1)
////////////
///
/// Data types
///
//////
//! A memory heap, per thread
typedef struct heap_t heap_t;
//! Span of memory pages
typedef struct span_t span_t;
//! Span list
typedef struct span_list_t span_list_t;
//! Span active data
typedef struct span_active_t span_active_t;
//! Size class definition
typedef struct size_class_t size_class_t;
//! Global cache
typedef struct global_cache_t global_cache_t;
//! Flag indicating span is the first (master) span of a split superspan
#define SPAN_FLAG_MASTER 1U
//! Flag indicating span is a secondary (sub) span of a split superspan
#define SPAN_FLAG_SUBSPAN 2U
//! Flag indicating span has blocks with increased alignment
#define SPAN_FLAG_ALIGNED_BLOCKS 4U
#if ENABLE_ADAPTIVE_THREAD_CACHE || ENABLE_STATISTICS
struct span_use_t {
//! Current number of spans used (actually used, not in cache)
atomic32_t current;
//! High water mark of spans used
atomic32_t high;
#if ENABLE_STATISTICS
//! Number of spans transitioned to global cache
atomic32_t spans_to_global;
//! Number of spans transitioned from global cache
atomic32_t spans_from_global;
//! Number of spans transitioned to thread cache
atomic32_t spans_to_cache;
//! Number of spans transitioned from thread cache
atomic32_t spans_from_cache;
//! Number of spans transitioned to reserved state
atomic32_t spans_to_reserved;
//! Number of spans transitioned from reserved state
atomic32_t spans_from_reserved;
//! Number of raw memory map calls
atomic32_t spans_map_calls;
#endif
};
typedef struct span_use_t span_use_t;
#endif
#if ENABLE_STATISTICS
struct size_class_use_t {
//! Current number of allocations
atomic32_t alloc_current;
//! Peak number of allocations
int32_t alloc_peak;
//! Total number of allocations
atomic32_t alloc_total;
//! Total number of frees
atomic32_t free_total;
//! Number of spans in use
atomic32_t spans_current;
//! Number of spans transitioned to cache
int32_t spans_peak;
//! Number of spans transitioned to cache
atomic32_t spans_to_cache;
//! Number of spans transitioned from cache
atomic32_t spans_from_cache;
//! Number of spans transitioned from reserved state
atomic32_t spans_from_reserved;
//! Number of spans mapped
atomic32_t spans_map_calls;
int32_t unused;
};
typedef struct size_class_use_t size_class_use_t;
#endif
// A span can either represent a single span of memory pages with size declared by span_map_count configuration variable,
// or a set of spans in a continuous region, a super span. Any reference to the term "span" usually refers to both a single
// span or a super span. A super span can further be divided into multiple spans (or this, super spans), where the first
// (super)span is the master and subsequent (super)spans are subspans. The master span keeps track of how many subspans
// that are still alive and mapped in virtual memory, and once all subspans and master have been unmapped the entire
// superspan region is released and unmapped (on Windows for example, the entire superspan range has to be released
// in the same call to release the virtual memory range, but individual subranges can be decommitted individually
// to reduce physical memory use).
struct span_t {
//! Free list
void* free_list;
//! Total block count of size class
uint32_t block_count;
//! Size class
uint32_t size_class;
//! Index of last block initialized in free list
uint32_t free_list_limit;
//! Number of used blocks remaining when in partial state
uint32_t used_count;
//! Deferred free list
atomicptr_t free_list_deferred;
//! Size of deferred free list, or list of spans when part of a cache list
uint32_t list_size;
//! Size of a block
uint32_t block_size;
//! Flags and counters
uint32_t flags;
//! Number of spans
uint32_t span_count;
//! Total span counter for master spans
uint32_t total_spans;
//! Offset from master span for subspans
uint32_t offset_from_master;
//! Remaining span counter, for master spans
atomic32_t remaining_spans;
//! Alignment offset
uint32_t align_offset;
//! Owning heap
heap_t* heap;
//! Next span
span_t* next;
//! Previous span
span_t* prev;
};
_Static_assert(sizeof(span_t) <= SPAN_HEADER_SIZE, "span size mismatch");
struct span_cache_t {
size_t count;
span_t* span[MAX_THREAD_SPAN_CACHE];
};
typedef struct span_cache_t span_cache_t;
struct span_large_cache_t {
size_t count;
span_t* span[MAX_THREAD_SPAN_LARGE_CACHE];
};
typedef struct span_large_cache_t span_large_cache_t;
struct heap_size_class_t {
//! Free list of active span
void* free_list;
//! Double linked list of partially used spans with free blocks.
// Previous span pointer in head points to tail span of list.
span_t* partial_span;
//! Early level cache of fully free spans
span_t* cache;
};
typedef struct heap_size_class_t heap_size_class_t;
// Control structure for a heap, either a thread heap or a first class heap if enabled
struct heap_t {
//! Owning thread ID
uintptr_t owner_thread;
//! Free lists for each size class
heap_size_class_t size_class[SIZE_CLASS_COUNT];
#if ENABLE_THREAD_CACHE
//! Arrays of fully freed spans, single span
span_cache_t span_cache;
#endif
//! List of deferred free spans (single linked list)
atomicptr_t span_free_deferred;
//! Number of full spans
size_t full_span_count;
//! Mapped but unused spans
span_t* span_reserve;
//! Master span for mapped but unused spans
span_t* span_reserve_master;
//! Number of mapped but unused spans
uint32_t spans_reserved;
//! Child count
atomic32_t child_count;
//! Next heap in id list
heap_t* next_heap;
//! Next heap in orphan list
heap_t* next_orphan;
//! Heap ID
int32_t id;
//! Finalization state flag
int finalize;
//! Master heap owning the memory pages
heap_t* master_heap;
#if ENABLE_THREAD_CACHE
//! Arrays of fully freed spans, large spans with > 1 span count
span_large_cache_t span_large_cache[LARGE_CLASS_COUNT - 1];
#endif
#if RPMALLOC_FIRST_CLASS_HEAPS
//! Double linked list of fully utilized spans with free blocks for each size class.
// Previous span pointer in head points to tail span of list.
span_t* full_span[SIZE_CLASS_COUNT];
//! Double linked list of large and huge spans allocated by this heap
span_t* large_huge_span;
#endif
#if ENABLE_ADAPTIVE_THREAD_CACHE || ENABLE_STATISTICS
//! Current and high water mark of spans used per span count
span_use_t span_use[LARGE_CLASS_COUNT];
#endif
#if ENABLE_STATISTICS
//! Allocation stats per size class
size_class_use_t size_class_use[SIZE_CLASS_COUNT + 1];
//! Number of bytes transitioned thread -> global
atomic64_t thread_to_global;
//! Number of bytes transitioned global -> thread
atomic64_t global_to_thread;
#endif
};
// Size class for defining a block size bucket
struct size_class_t {
//! Size of blocks in this class
uint32_t block_size;
//! Number of blocks in each chunk
uint16_t block_count;
//! Class index this class is merged with
uint16_t class_idx;
};
_Static_assert(sizeof(size_class_t) == 8, "Size class size mismatch");
struct global_cache_t {
//! Cache lock
atomic32_t lock;
//! Cache count
uint32_t count;
//! Cached spans
span_t* span[GLOBAL_CACHE_MULTIPLIER * MAX_THREAD_SPAN_CACHE];
//! Unlimited cache overflow
span_t* overflow;
};
////////////
///
/// Global data
///
//////
//! Default span size (64KiB)
#define _memory_default_span_size (64 * 1024)
#define _memory_default_span_size_shift 16
#define _memory_default_span_mask (~((uintptr_t)(_memory_span_size - 1)))
//! Initialized flag
static int _rpmalloc_initialized;
//! Configuration
static rpmalloc_config_t _memory_config;
//! Memory page size
static size_t _memory_page_size;
//! Shift to divide by page size
static size_t _memory_page_size_shift;
//! Granularity at which memory pages are mapped by OS
static size_t _memory_map_granularity;
#if RPMALLOC_CONFIGURABLE
//! Size of a span of memory pages
static size_t _memory_span_size;
//! Shift to divide by span size
static size_t _memory_span_size_shift;
//! Mask to get to start of a memory span
static uintptr_t _memory_span_mask;
#else
//! Hardwired span size
#define _memory_span_size _memory_default_span_size
#define _memory_span_size_shift _memory_default_span_size_shift
#define _memory_span_mask _memory_default_span_mask
#endif
//! Number of spans to map in each map call
static size_t _memory_span_map_count;
//! Number of spans to release from thread cache to global cache (single spans)
static size_t _memory_span_release_count;
//! Number of spans to release from thread cache to global cache (large multiple spans)
static size_t _memory_span_release_count_large;
//! Global size classes
static size_class_t _memory_size_class[SIZE_CLASS_COUNT];
//! Run-time size limit of medium blocks
static size_t _memory_medium_size_limit;
//! Heap ID counter
static atomic32_t _memory_heap_id;
//! Huge page support
static int _memory_huge_pages;
#if ENABLE_GLOBAL_CACHE
//! Global span cache
static global_cache_t _memory_span_cache[LARGE_CLASS_COUNT];
#endif
//! Global reserved spans
static span_t* _memory_global_reserve;
//! Global reserved count
static size_t _memory_global_reserve_count;
//! Global reserved master
static span_t* _memory_global_reserve_master;
//! All heaps
static heap_t* _memory_heaps[HEAP_ARRAY_SIZE];
//! Used to restrict access to mapping memory for huge pages
static atomic32_t _memory_global_lock;
//! Orphaned heaps
static heap_t* _memory_orphan_heaps;
#if RPMALLOC_FIRST_CLASS_HEAPS
//! Orphaned heaps (first class heaps)
static heap_t* _memory_first_class_orphan_heaps;
#endif
#if ENABLE_STATISTICS
//! Active heap count
static atomic32_t _memory_active_heaps;
//! Number of currently mapped memory pages
static atomic32_t _mapped_pages;
//! Peak number of concurrently mapped memory pages
static int32_t _mapped_pages_peak;
//! Number of mapped master spans
static atomic32_t _master_spans;
//! Number of currently unused spans
static atomic32_t _reserved_spans;
//! Running counter of total number of mapped memory pages since start
static atomic32_t _mapped_total;
//! Running counter of total number of unmapped memory pages since start
static atomic32_t _unmapped_total;
//! Number of currently mapped memory pages in OS calls
static atomic32_t _mapped_pages_os;
//! Number of currently allocated pages in huge allocations
static atomic32_t _huge_pages_current;
//! Peak number of currently allocated pages in huge allocations
static int32_t _huge_pages_peak;
#endif
////////////
///
/// Thread local heap and ID
///
//////
//! Current thread heap
#if (defined(__APPLE__) || defined(__HAIKU__)) && ENABLE_PRELOAD
static pthread_key_t _memory_thread_heap;
#else
# ifdef _MSC_VER
# define _Thread_local __declspec(thread)
# define TLS_MODEL
# else
# define TLS_MODEL __attribute__((tls_model("initial-exec")))
# if !defined(__clang__) && defined(__GNUC__)
# define _Thread_local __thread
# endif
# endif
static _Thread_local heap_t* _memory_thread_heap TLS_MODEL;
#endif
static inline heap_t*
get_thread_heap_raw(void) {
#if (defined(__APPLE__) || defined(__HAIKU__)) && ENABLE_PRELOAD
return pthread_getspecific(_memory_thread_heap);
#else
return _memory_thread_heap;
#endif
}
//! Get the current thread heap
static inline heap_t*
get_thread_heap(void) {
heap_t* heap = get_thread_heap_raw();
#if ENABLE_PRELOAD
if (EXPECTED(heap != 0))
return heap;
rpmalloc_initialize();
return get_thread_heap_raw();
#else
return heap;
#endif
}
//! Fast thread ID
static inline uintptr_t
get_thread_id(void) {
#if defined(_WIN32)
return (uintptr_t)((void*)NtCurrentTeb());
#elif defined(__GNUC__) || defined(__clang__)
uintptr_t tid;
# if defined(__i386__)
__asm__("movl %%gs:0, %0" : "=r" (tid) : : );
# elif defined(__MACH__) && !TARGET_OS_IPHONE && !TARGET_OS_SIMULATOR
__asm__("movq %%gs:0, %0" : "=r" (tid) : : );
# elif defined(__x86_64__)
__asm__("movq %%fs:0, %0" : "=r" (tid) : : );
# elif defined(__arm__)
__asm__ volatile ("mrc p15, 0, %0, c13, c0, 3" : "=r" (tid));
# elif defined(__aarch64__)
__asm__ volatile ("mrs %0, tpidr_el0" : "=r" (tid));
# else
tid = (uintptr_t)((void*)get_thread_heap_raw());
# endif
return tid;
#else
return (uintptr_t)((void*)get_thread_heap_raw());
#endif
}
//! Set the current thread heap
static void
set_thread_heap(heap_t* heap) {
#if (defined(__APPLE__) || defined(__HAIKU__)) && ENABLE_PRELOAD
pthread_setspecific(_memory_thread_heap, heap);
#else
_memory_thread_heap = heap;
#endif
if (heap)
heap->owner_thread = get_thread_id();
}
////////////
///
/// Low level memory map/unmap
///
//////
//! Map more virtual memory
// size is number of bytes to map
// offset receives the offset in bytes from start of mapped region
// returns address to start of mapped region to use
static void*
_rpmalloc_mmap(size_t size, size_t* offset) {
assert(!(size % _memory_page_size));
assert(size >= _memory_page_size);
_rpmalloc_stat_add_peak(&_mapped_pages, (size >> _memory_page_size_shift), _mapped_pages_peak);
_rpmalloc_stat_add(&_mapped_total, (size >> _memory_page_size_shift));
return _memory_config.memory_map(size, offset);
}
//! Unmap virtual memory
// address is the memory address to unmap, as returned from _memory_map
// size is the number of bytes to unmap, which might be less than full region for a partial unmap
// offset is the offset in bytes to the actual mapped region, as set by _memory_map
// release is set to 0 for partial unmap, or size of entire range for a full unmap
static void
_rpmalloc_unmap(void* address, size_t size, size_t offset, size_t release) {
assert(!release || (release >= size));
assert(!release || (release >= _memory_page_size));
if (release) {
assert(!(release % _memory_page_size));
_rpmalloc_stat_sub(&_mapped_pages, (release >> _memory_page_size_shift));
_rpmalloc_stat_add(&_unmapped_total, (release >> _memory_page_size_shift));
}
_memory_config.memory_unmap(address, size, offset, release);
}
//! Default implementation to map new pages to virtual memory
static void*
_rpmalloc_mmap_os(size_t size, size_t* offset) {
//Either size is a heap (a single page) or a (multiple) span - we only need to align spans, and only if larger than map granularity
size_t padding = ((size >= _memory_span_size) && (_memory_span_size > _memory_map_granularity)) ? _memory_span_size : 0;
assert(size >= _memory_page_size);
#if PLATFORM_WINDOWS
//Ok to MEM_COMMIT - according to MSDN, "actual physical pages are not allocated unless/until the virtual addresses are actually accessed"
void* ptr = VirtualAlloc(0, size + padding, (_memory_huge_pages ? MEM_LARGE_PAGES : 0) | MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
if (!ptr) {
assert(ptr && "Failed to map virtual memory block");
return 0;
}
#else
int flags = MAP_PRIVATE | MAP_ANONYMOUS | MAP_UNINITIALIZED;
# if defined(__APPLE__) && !TARGET_OS_IPHONE && !TARGET_OS_SIMULATOR
int fd = (int)VM_MAKE_TAG(240U);
if (_memory_huge_pages)
fd |= VM_FLAGS_SUPERPAGE_SIZE_2MB;
void* ptr = mmap(0, size + padding, PROT_READ | PROT_WRITE, flags, fd, 0);
# elif defined(MAP_HUGETLB)
void* ptr = mmap(0, size + padding, PROT_READ | PROT_WRITE, (_memory_huge_pages ? MAP_HUGETLB : 0) | flags, -1, 0);
# elif defined(MAP_ALIGN)
caddr_t base = (_memory_huge_pages ? (caddr_t)(4 << 20) : 0);
void* ptr = mmap(base, size + padding, PROT_READ | PROT_WRITE, (_memory_huge_pages ? MAP_ALIGN : 0) | flags, -1, 0);
# else
void* ptr = mmap(0, size + padding, PROT_READ | PROT_WRITE, flags, -1, 0);
# endif
if ((ptr == MAP_FAILED) || !ptr) {
assert("Failed to map virtual memory block" == 0);
return 0;
}
#endif
_rpmalloc_stat_add(&_mapped_pages_os, (int32_t)((size + padding) >> _memory_page_size_shift));
if (padding) {
size_t final_padding = padding - ((uintptr_t)ptr & ~_memory_span_mask);
assert(final_padding <= _memory_span_size);
assert(final_padding <= padding);
assert(!(final_padding % 8));
ptr = pointer_offset(ptr, final_padding);
*offset = final_padding >> 3;
}
assert((size < _memory_span_size) || !((uintptr_t)ptr & ~_memory_span_mask));
return ptr;
}
//! Default implementation to unmap pages from virtual memory
static void
_rpmalloc_unmap_os(void* address, size_t size, size_t offset, size_t release) {
assert(release || (offset == 0));
assert(!release || (release >= _memory_page_size));
assert(size >= _memory_page_size);
if (release && offset) {
offset <<= 3;
address = pointer_offset(address, -(int32_t)offset);
if ((release >= _memory_span_size) && (_memory_span_size > _memory_map_granularity)) {
//Padding is always one span size
release += _memory_span_size;
}
}
#if !DISABLE_UNMAP
#if PLATFORM_WINDOWS
if (!VirtualFree(address, release ? 0 : size, release ? MEM_RELEASE : MEM_DECOMMIT)) {
assert(address && "Failed to unmap virtual memory block");
}
#else
if (release) {
if (munmap(address, release)) {
assert("Failed to unmap virtual memory block" == 0);
}
} else {
#if defined(POSIX_MADV_FREE)
if (posix_madvise(address, size, POSIX_MADV_FREE))
#endif
if (posix_madvise(address, size, POSIX_MADV_DONTNEED)) {
assert("Failed to madvise virtual memory block as free" == 0);
}
}
#endif
#endif
if (release)
_rpmalloc_stat_sub(&_mapped_pages_os, release >> _memory_page_size_shift);
}
static void
_rpmalloc_span_mark_as_subspan_unless_master(span_t* master, span_t* subspan, size_t span_count);
//! Use global reserved spans to fulfill a memory map request (reserve size must be checked by caller)
static span_t*
_rpmalloc_global_get_reserved_spans(size_t span_count) {
span_t* span = _memory_global_reserve;
_rpmalloc_span_mark_as_subspan_unless_master(_memory_global_reserve_master, span, span_count);
_memory_global_reserve_count -= span_count;
if (_memory_global_reserve_count)
_memory_global_reserve = (span_t*)pointer_offset(span, span_count << _memory_span_size_shift);
else
_memory_global_reserve = 0;
return span;
}
//! Store the given spans as global reserve (must only be called from within new heap allocation, not thread safe)
static void
_rpmalloc_global_set_reserved_spans(span_t* master, span_t* reserve, size_t reserve_span_count) {
_memory_global_reserve_master = master;
_memory_global_reserve_count = reserve_span_count;
_memory_global_reserve = reserve;
}
////////////
///
/// Span linked list management
///
//////
//! Add a span to double linked list at the head
static void
_rpmalloc_span_double_link_list_add(span_t** head, span_t* span) {
if (*head) {
span->next = *head;
(*head)->prev = span;
} else {
span->next = 0;
}
*head = span;
}
//! Pop head span from double linked list
static void
_rpmalloc_span_double_link_list_pop_head(span_t** head, span_t* span) {
assert(*head == span);
span = *head;
*head = span->next;
}
//! Remove a span from double linked list
static void
_rpmalloc_span_double_link_list_remove(span_t** head, span_t* span) {
assert(*head);
if (*head == span) {
*head = span->next;
} else {
span_t* next_span = span->next;
span_t* prev_span = span->prev;
prev_span->next = next_span;
if (EXPECTED(next_span != 0)) {
next_span->prev = prev_span;
}
}
}
////////////
///
/// Span control
///
//////
static void
_rpmalloc_heap_cache_insert(heap_t* heap, span_t* span);
static void
_rpmalloc_heap_finalize(heap_t* heap);
static void
_rpmalloc_heap_set_reserved_spans(heap_t* heap, span_t* master, span_t* reserve, size_t reserve_span_count);
//! Declare the span to be a subspan and store distance from master span and span count
static void
_rpmalloc_span_mark_as_subspan_unless_master(span_t* master, span_t* subspan, size_t span_count) {
assert((subspan != master) || (subspan->flags & SPAN_FLAG_MASTER));
if (subspan != master) {
subspan->flags = SPAN_FLAG_SUBSPAN;
subspan->offset_from_master = (uint32_t)((uintptr_t)pointer_diff(subspan, master) >> _memory_span_size_shift);
subspan->align_offset = 0;
}
subspan->span_count = (uint32_t)span_count;
}
//! Use reserved spans to fulfill a memory map request (reserve size must be checked by caller)
static span_t*
_rpmalloc_span_map_from_reserve(heap_t* heap, size_t span_count) {
//Update the heap span reserve
span_t* span = heap->span_reserve;
heap->span_reserve = (span_t*)pointer_offset(span, span_count * _memory_span_size);
heap->spans_reserved -= (uint32_t)span_count;
_rpmalloc_span_mark_as_subspan_unless_master(heap->span_reserve_master, span, span_count);
if (span_count <= LARGE_CLASS_COUNT)
_rpmalloc_stat_inc(&heap->span_use[span_count - 1].spans_from_reserved);
return span;
}
//! Get the aligned number of spans to map in based on wanted count, configured mapping granularity and the page size
static size_t
_rpmalloc_span_align_count(size_t span_count) {
size_t request_count = (span_count > _memory_span_map_count) ? span_count : _memory_span_map_count;
if ((_memory_page_size > _memory_span_size) && ((request_count * _memory_span_size) % _memory_page_size))
request_count += _memory_span_map_count - (request_count % _memory_span_map_count);
return request_count;
}
//! Setup a newly mapped span
static void
_rpmalloc_span_initialize(span_t* span, size_t total_span_count, size_t span_count, size_t align_offset) {
span->total_spans = (uint32_t)total_span_count;
span->span_count = (uint32_t)span_count;
span->align_offset = (uint32_t)align_offset;
span->flags = SPAN_FLAG_MASTER;
atomic_store32(&span->remaining_spans, (int32_t)total_span_count);
}
static void
_rpmalloc_span_unmap(span_t* span);
//! Map an aligned set of spans, taking configured mapping granularity and the page size into account
static span_t*
_rpmalloc_span_map_aligned_count(heap_t* heap, size_t span_count) {
//If we already have some, but not enough, reserved spans, release those to heap cache and map a new
//full set of spans. Otherwise we would waste memory if page size > span size (huge pages)
size_t aligned_span_count = _rpmalloc_span_align_count(span_count);
size_t align_offset = 0;
span_t* span = (span_t*)_rpmalloc_mmap(aligned_span_count * _memory_span_size, &align_offset);
if (!span)
return 0;
_rpmalloc_span_initialize(span, aligned_span_count, span_count, align_offset);
_rpmalloc_stat_add(&_reserved_spans, aligned_span_count);
_rpmalloc_stat_inc(&_master_spans);
if (span_count <= LARGE_CLASS_COUNT)
_rpmalloc_stat_inc(&heap->span_use[span_count - 1].spans_map_calls);
if (aligned_span_count > span_count) {
span_t* reserved_spans = (span_t*)pointer_offset(span, span_count * _memory_span_size);
size_t reserved_count = aligned_span_count - span_count;
if (heap->spans_reserved) {
_rpmalloc_span_mark_as_subspan_unless_master(heap->span_reserve_master, heap->span_reserve, heap->spans_reserved);
_rpmalloc_heap_cache_insert(heap, heap->span_reserve);
}
if (reserved_count > DEFAULT_SPAN_MAP_COUNT) {
size_t remain_count = reserved_count - DEFAULT_SPAN_MAP_COUNT;
reserved_count = DEFAULT_SPAN_MAP_COUNT;
span_t* remain_span = (span_t*)pointer_offset(reserved_spans, reserved_count * _memory_span_size);
if (_memory_global_reserve)
_rpmalloc_span_unmap(_memory_global_reserve);
_rpmalloc_global_set_reserved_spans(span, remain_span, remain_count);
}
_rpmalloc_heap_set_reserved_spans(heap, span, reserved_spans, reserved_count);
}
return span;
}
static span_t*
_rpmalloc_global_get_reserved_spans(size_t span_count);
//! Map in memory pages for the given number of spans (or use previously reserved pages)
static span_t*
_rpmalloc_span_map(heap_t* heap, size_t span_count) {
if (span_count <= heap->spans_reserved)
return _rpmalloc_span_map_from_reserve(heap, span_count);
span_t* span = 0;
if (_memory_page_size > _memory_span_size) {
// If huge pages, make sure only one thread maps more memory to avoid bloat
while (!atomic_cas32_acquire(&_memory_global_lock, 1, 0)) {
/* Spin */
}
if (_memory_global_reserve_count >= span_count) {
size_t reserve_count = (!heap->spans_reserved ? DEFAULT_SPAN_MAP_COUNT : span_count);
if (_memory_global_reserve_count < reserve_count)
reserve_count = _memory_global_reserve_count;
span = _rpmalloc_global_get_reserved_spans(reserve_count);
if (span) {
if (reserve_count > span_count) {
span_t* reserved_span = (span_t*)pointer_offset(span, span_count << _memory_span_size_shift);
_rpmalloc_heap_set_reserved_spans(heap, _memory_global_reserve_master, reserved_span, reserve_count - span_count);
}
// Already marked as subspan in _rpmalloc_global_get_reserved_spans
span->span_count = (uint32_t)span_count;
}
}
}
if (!span)
span = _rpmalloc_span_map_aligned_count(heap, span_count);
if (_memory_page_size > _memory_span_size)
atomic_store32_release(&_memory_global_lock, 0);
return span;
}
//! Unmap memory pages for the given number of spans (or mark as unused if no partial unmappings)
static void
_rpmalloc_span_unmap(span_t* span) {
assert((span->flags & SPAN_FLAG_MASTER) || (span->flags & SPAN_FLAG_SUBSPAN));
assert(!(span->flags & SPAN_FLAG_MASTER) || !(span->flags & SPAN_FLAG_SUBSPAN));
int is_master = !!(span->flags & SPAN_FLAG_MASTER);
span_t* master = is_master ? span : ((span_t*)pointer_offset(span, -(intptr_t)((uintptr_t)span->offset_from_master * _memory_span_size)));
assert(is_master || (span->flags & SPAN_FLAG_SUBSPAN));
assert(master->flags & SPAN_FLAG_MASTER);
size_t span_count = span->span_count;
if (!is_master) {
//Directly unmap subspans (unless huge pages, in which case we defer and unmap entire page range with master)
assert(span->align_offset == 0);
if (_memory_span_size >= _memory_page_size) {
_rpmalloc_unmap(span, span_count * _memory_span_size, 0, 0);
_rpmalloc_stat_sub(&_reserved_spans, span_count);
}
} else {
//Special double flag to denote an unmapped master
//It must be kept in memory since span header must be used
span->flags |= SPAN_FLAG_MASTER | SPAN_FLAG_SUBSPAN;
}
if (atomic_add32(&master->remaining_spans, -(int32_t)span_count) <= 0) {
//Everything unmapped, unmap the master span with release flag to unmap the entire range of the super span
assert(!!(master->flags & SPAN_FLAG_MASTER) && !!(master->flags & SPAN_FLAG_SUBSPAN));
size_t unmap_count = master->span_count;
if (_memory_span_size < _memory_page_size)
unmap_count = master->total_spans;
_rpmalloc_stat_sub(&_reserved_spans, unmap_count);
_rpmalloc_stat_sub(&_master_spans, 1);
_rpmalloc_unmap(master, unmap_count * _memory_span_size, master->align_offset, (size_t)master->total_spans * _memory_span_size);
}
}
//! Move the span (used for small or medium allocations) to the heap thread cache
static void
_rpmalloc_span_release_to_cache(heap_t* heap, span_t* span) {
assert(heap == span->heap);
assert(span->size_class < SIZE_CLASS_COUNT);
#if ENABLE_ADAPTIVE_THREAD_CACHE || ENABLE_STATISTICS
atomic_decr32(&heap->span_use[0].current);
#endif
_rpmalloc_stat_dec(&heap->size_class_use[span->size_class].spans_current);
if (!heap->finalize) {
_rpmalloc_stat_inc(&heap->span_use[0].spans_to_cache);
_rpmalloc_stat_inc(&heap->size_class_use[span->size_class].spans_to_cache);
if (heap->size_class[span->size_class].cache)
_rpmalloc_heap_cache_insert(heap, heap->size_class[span->size_class].cache);
heap->size_class[span->size_class].cache = span;
} else {
_rpmalloc_span_unmap(span);
}
}
//! Initialize a (partial) free list up to next system memory page, while reserving the first block
//! as allocated, returning number of blocks in list
static uint32_t
free_list_partial_init(void** list, void** first_block, void* page_start, void* block_start, uint32_t block_count, uint32_t block_size) {
assert(block_count);
*first_block = block_start;
if (block_count > 1) {
void* free_block = pointer_offset(block_start, block_size);
void* block_end = pointer_offset(block_start, (size_t)block_size * block_count);
//If block size is less than half a memory page, bound init to next memory page boundary
if (block_size < (_memory_page_size >> 1)) {
void* page_end = pointer_offset(page_start, _memory_page_size);
if (page_end < block_end)
block_end = page_end;
}
*list = free_block;
block_count = 2;
void* next_block = pointer_offset(free_block, block_size);
while (next_block < block_end) {
*((void**)free_block) = next_block;
free_block = next_block;
++block_count;
next_block = pointer_offset(next_block, block_size);
}
*((void**)free_block) = 0;
} else {
*list = 0;
}
return block_count;
}
//! Initialize an unused span (from cache or mapped) to be new active span, putting the initial free list in heap class free list
static void*
_rpmalloc_span_initialize_new(heap_t* heap, span_t* span, uint32_t class_idx) {
assert(span->span_count == 1);
size_class_t* size_class = _memory_size_class + class_idx;
span->size_class = class_idx;
span->heap = heap;
span->flags &= ~SPAN_FLAG_ALIGNED_BLOCKS;
span->block_size = size_class->block_size;
span->block_count = size_class->block_count;
span->free_list = 0;
span->list_size = 0;
atomic_store_ptr_release(&span->free_list_deferred, 0);
//Setup free list. Only initialize one system page worth of free blocks in list
void* block;
span->free_list_limit = free_list_partial_init(&heap->size_class[class_idx].free_list, &block,
span, pointer_offset(span, SPAN_HEADER_SIZE), size_class->block_count, size_class->block_size);
//Link span as partial if there remains blocks to be initialized as free list, or full if fully initialized
if (span->free_list_limit < span->block_count) {
_rpmalloc_span_double_link_list_add(&heap->size_class[class_idx].partial_span, span);
span->used_count = span->free_list_limit;
} else {
#if RPMALLOC_FIRST_CLASS_HEAPS
_rpmalloc_span_double_link_list_add(&heap->full_span[class_idx], span);
#endif
++heap->full_span_count;
span->used_count = span->block_count;
}
return block;
}
static void
_rpmalloc_span_extract_free_list_deferred(span_t* span) {
// We need acquire semantics on the CAS operation since we are interested in the list size
// Refer to _rpmalloc_deallocate_defer_small_or_medium for further comments on this dependency
do {
span->free_list = atomic_exchange_ptr_acquire(&span->free_list_deferred, INVALID_POINTER);
} while (span->free_list == INVALID_POINTER);
span->used_count -= span->list_size;
span->list_size = 0;
atomic_store_ptr_release(&span->free_list_deferred, 0);
}
static int
_rpmalloc_span_is_fully_utilized(span_t* span) {
assert(span->free_list_limit <= span->block_count);
return !span->free_list && (span->free_list_limit >= span->block_count);
}
static int
_rpmalloc_span_finalize(heap_t* heap, size_t iclass, span_t* span, span_t** list_head) {
void* free_list = heap->size_class[iclass].free_list;
span_t* class_span = (span_t*)((uintptr_t)free_list & _memory_span_mask);
if (span == class_span) {
// Adopt the heap class free list back into the span free list
void* block = span->free_list;
void* last_block = 0;
while (block) {
last_block = block;
block = *((void**)block);
}
uint32_t free_count = 0;
block = free_list;
while (block) {
++free_count;
block = *((void**)block);
}
if (last_block) {
*((void**)last_block) = free_list;
} else {
span->free_list = free_list;
}
heap->size_class[iclass].free_list = 0;
span->used_count -= free_count;
}
//If this assert triggers you have memory leaks
assert(span->list_size == span->used_count);
if (span->list_size == span->used_count) {
_rpmalloc_stat_dec(&heap->span_use[0].current);
_rpmalloc_stat_dec(&heap->size_class_use[iclass].spans_current);
// This function only used for spans in double linked lists
if (list_head)
_rpmalloc_span_double_link_list_remove(list_head, span);
_rpmalloc_span_unmap(span);
return 1;
}
return 0;
}
////////////
///
/// Global cache
///
//////
#if ENABLE_GLOBAL_CACHE
//! Finalize a global cache
static void
_rpmalloc_global_cache_finalize(global_cache_t* cache) {
while (!atomic_cas32_acquire(&cache->lock, 1, 0))
/* Spin */;
for (size_t ispan = 0; ispan < cache->count; ++ispan)
_rpmalloc_span_unmap(cache->span[ispan]);
cache->count = 0;
while (cache->overflow) {
span_t* span = cache->overflow;
cache->overflow = span->next;
_rpmalloc_span_unmap(span);
}
atomic_store32_release(&cache->lock, 0);
}
static void
_rpmalloc_global_cache_insert_spans(span_t** span, size_t span_count, size_t count) {
const size_t cache_limit = (span_count == 1) ?
GLOBAL_CACHE_MULTIPLIER * MAX_THREAD_SPAN_CACHE :
GLOBAL_CACHE_MULTIPLIER * (MAX_THREAD_SPAN_LARGE_CACHE - (span_count >> 1));
global_cache_t* cache = &_memory_span_cache[span_count - 1];
size_t insert_count = count;
while (!atomic_cas32_acquire(&cache->lock, 1, 0))
/* Spin */;
if ((cache->count + insert_count) > cache_limit)
insert_count = cache_limit - cache->count;
memcpy(cache->span + cache->count, span, sizeof(span_t*) * insert_count);
cache->count += (uint32_t)insert_count;
#if ENABLE_UNLIMITED_CACHE
while (insert_count < count) {
#else
// Enable unlimited cache if huge pages, or we will leak since it is unlikely that an entire huge page
// will be unmapped, and we're unable to partially decommit a huge page
while ((_memory_page_size > _memory_span_size) && (insert_count < count)) {
#endif
span_t* current_span = span[insert_count++];
current_span->next = cache->overflow;
cache->overflow = current_span;
}
atomic_store32_release(&cache->lock, 0);
for (size_t ispan = insert_count; ispan < count; ++ispan)
_rpmalloc_span_unmap(span[ispan]);
}
static size_t
_rpmalloc_global_cache_extract_spans(span_t** span, size_t span_count, size_t count) {
global_cache_t* cache = &_memory_span_cache[span_count - 1];
size_t extract_count = count;
while (!atomic_cas32_acquire(&cache->lock, 1, 0))
/* Spin */;
if (extract_count > cache->count)
extract_count = cache->count;
memcpy(span, cache->span + (cache->count - extract_count), sizeof(span_t*) * extract_count);
cache->count -= (uint32_t)extract_count;
while ((extract_count < count) && cache->overflow) {
span_t* current_span = cache->overflow;
span[extract_count++] = current_span;
cache->overflow = current_span->next;
}
atomic_store32_release(&cache->lock, 0);
return extract_count;
}
#endif
////////////
///
/// Heap control
///
//////
static void _rpmalloc_deallocate_huge(span_t*);
//! Store the given spans as reserve in the given heap
static void
_rpmalloc_heap_set_reserved_spans(heap_t* heap, span_t* master, span_t* reserve, size_t reserve_span_count) {
heap->span_reserve_master = master;
heap->span_reserve = reserve;
heap->spans_reserved = (uint32_t)reserve_span_count;
}
//! Adopt the deferred span cache list, optionally extracting the first single span for immediate re-use
static void
_rpmalloc_heap_cache_adopt_deferred(heap_t* heap, span_t** single_span) {
span_t* span = (span_t*)((void*)atomic_exchange_ptr_acquire(&heap->span_free_deferred, 0));
while (span) {
span_t* next_span = (span_t*)span->free_list;
assert(span->heap == heap);
if (EXPECTED(span->size_class < SIZE_CLASS_COUNT)) {
assert(heap->full_span_count);
--heap->full_span_count;
#if RPMALLOC_FIRST_CLASS_HEAPS
_rpmalloc_span_double_link_list_remove(&heap->full_span[span->size_class], span);
#endif
if (single_span && !*single_span) {
*single_span = span;
} else {
_rpmalloc_stat_dec(&heap->span_use[0].current);
_rpmalloc_stat_dec(&heap->size_class_use[span->size_class].spans_current);
_rpmalloc_heap_cache_insert(heap, span);
}
} else {
if (span->size_class == SIZE_CLASS_HUGE) {
_rpmalloc_deallocate_huge(span);
} else {
assert(span->size_class == SIZE_CLASS_LARGE);
assert(heap->full_span_count);
--heap->full_span_count;
#if RPMALLOC_FIRST_CLASS_HEAPS
_rpmalloc_span_double_link_list_remove(&heap->large_huge_span, span);
#endif
uint32_t idx = span->span_count - 1;
if (!idx && single_span && !*single_span) {
*single_span = span;
} else {
_rpmalloc_stat_dec(&heap->span_use[idx].current);
_rpmalloc_heap_cache_insert(heap, span);
}
}
}
span = next_span;
}
}
static void
_rpmalloc_heap_unmap(heap_t* heap) {
if (!heap->master_heap) {
if ((heap->finalize > 1) && !atomic_load32(&heap->child_count)) {
span_t* span = (span_t*)((uintptr_t)heap & _memory_span_mask);
_rpmalloc_span_unmap(span);
}
} else {
if (atomic_decr32(&heap->master_heap->child_count) == 0) {
_rpmalloc_heap_unmap(heap->master_heap);
}
}
}
static void
_rpmalloc_heap_global_finalize(heap_t* heap) {
if (heap->finalize++ > 1) {
--heap->finalize;
return;
}
_rpmalloc_heap_finalize(heap);
#if ENABLE_THREAD_CACHE
for (size_t iclass = 0; iclass < LARGE_CLASS_COUNT; ++iclass) {
span_cache_t* span_cache;
if (!iclass)
span_cache = &heap->span_cache;
else
span_cache = (span_cache_t*)(heap->span_large_cache + (iclass - 1));
for (size_t ispan = 0; ispan < span_cache->count; ++ispan)
_rpmalloc_span_unmap(span_cache->span[ispan]);
span_cache->count = 0;
}
#endif
if (heap->full_span_count) {
--heap->finalize;
return;
}
for (size_t iclass = 0; iclass < SIZE_CLASS_COUNT; ++iclass) {
if (heap->size_class[iclass].free_list || heap->size_class[iclass].partial_span) {
--heap->finalize;
return;
}
}
//Heap is now completely free, unmap and remove from heap list
size_t list_idx = heap->id % HEAP_ARRAY_SIZE;
heap_t* list_heap = _memory_heaps[list_idx];
if (list_heap == heap) {
_memory_heaps[list_idx] = heap->next_heap;
} else {
while (list_heap->next_heap != heap)
list_heap = list_heap->next_heap;
list_heap->next_heap = heap->next_heap;
}
_rpmalloc_heap_unmap(heap);
}
//! Insert a single span into thread heap cache, releasing to global cache if overflow
static void
_rpmalloc_heap_cache_insert(heap_t* heap, span_t* span) {
if (UNEXPECTED(heap->finalize != 0)) {
_rpmalloc_span_unmap(span);
_rpmalloc_heap_global_finalize(heap);
return;
}
#if ENABLE_THREAD_CACHE
size_t span_count = span->span_count;
_rpmalloc_stat_inc(&heap->span_use[span_count - 1].spans_to_cache);
if (span_count == 1) {
span_cache_t* span_cache = &heap->span_cache;
span_cache->span[span_cache->count++] = span;
if (span_cache->count == MAX_THREAD_SPAN_CACHE) {
const size_t remain_count = MAX_THREAD_SPAN_CACHE - THREAD_SPAN_CACHE_TRANSFER;
#if ENABLE_GLOBAL_CACHE
_rpmalloc_stat_add64(&heap->thread_to_global, THREAD_SPAN_CACHE_TRANSFER * _memory_span_size);
_rpmalloc_stat_add(&heap->span_use[span_count - 1].spans_to_global, THREAD_SPAN_CACHE_TRANSFER);
_rpmalloc_global_cache_insert_spans(span_cache->span + remain_count, span_count, THREAD_SPAN_CACHE_TRANSFER);
#else
for (size_t ispan = 0; ispan < THREAD_SPAN_CACHE_TRANSFER; ++ispan)
_rpmalloc_span_unmap(span_cache->span[remain_count + ispan]);
#endif
span_cache->count = remain_count;
}
} else {
size_t cache_idx = span_count - 2;
span_large_cache_t* span_cache = heap->span_large_cache + cache_idx;
span_cache->span[span_cache->count++] = span;
const size_t cache_limit = (MAX_THREAD_SPAN_LARGE_CACHE - (span_count >> 1));
if (span_cache->count == cache_limit) {
const size_t transfer_limit = 2 + (cache_limit >> 2);
const size_t transfer_count = (THREAD_SPAN_LARGE_CACHE_TRANSFER <= transfer_limit ? THREAD_SPAN_LARGE_CACHE_TRANSFER : transfer_limit);
const size_t remain_count = cache_limit - transfer_count;
#if ENABLE_GLOBAL_CACHE
_rpmalloc_stat_add64(&heap->thread_to_global, transfer_count * span_count * _memory_span_size);
_rpmalloc_stat_add(&heap->span_use[span_count - 1].spans_to_global, transfer_count);
_rpmalloc_global_cache_insert_spans(span_cache->span + remain_count, span_count, transfer_count);
#else
for (size_t ispan = 0; ispan < transfer_count; ++ispan)
_rpmalloc_span_unmap(span_cache->span[remain_count + ispan]);
#endif
span_cache->count = remain_count;
}
}
#else
(void)sizeof(heap);
_rpmalloc_span_unmap(span);
#endif
}
//! Extract the given number of spans from the different cache levels
static span_t*
_rpmalloc_heap_thread_cache_extract(heap_t* heap, size_t span_count) {
span_t* span = 0;
if (span_count == 1) {
_rpmalloc_heap_cache_adopt_deferred(heap, &span);
if (span)
return span;
}
#if ENABLE_THREAD_CACHE
span_cache_t* span_cache;
if (span_count == 1)
span_cache = &heap->span_cache;
else
span_cache = (span_cache_t*)(heap->span_large_cache + (span_count - 2));
if (span_cache->count) {
_rpmalloc_stat_inc(&heap->span_use[span_count - 1].spans_from_cache);
return span_cache->span[--span_cache->count];
}
#endif
return span;
}
static span_t*
_rpmalloc_heap_reserved_extract(heap_t* heap, size_t span_count) {
if (heap->spans_reserved >= span_count)
return _rpmalloc_span_map(heap, span_count);
return 0;
}
//! Extract a span from the global cache
static span_t*
_rpmalloc_heap_global_cache_extract(heap_t* heap, size_t span_count) {
#if ENABLE_GLOBAL_CACHE
#if ENABLE_THREAD_CACHE
span_cache_t* span_cache;
size_t wanted_count;
if (span_count == 1) {
span_cache = &heap->span_cache;
wanted_count = THREAD_SPAN_CACHE_TRANSFER;
} else {
span_cache = (span_cache_t*)(heap->span_large_cache + (span_count - 2));
wanted_count = THREAD_SPAN_LARGE_CACHE_TRANSFER;
}
span_cache->count = _rpmalloc_global_cache_extract_spans(span_cache->span, span_count, wanted_count);
if (span_cache->count) {
_rpmalloc_stat_add64(&heap->global_to_thread, span_count * span_cache->count * _memory_span_size);
_rpmalloc_stat_add(&heap->span_use[span_count - 1].spans_from_global, span_cache->count);
return span_cache->span[--span_cache->count];
}
#else
span_t* span = 0;
size_t count = _rpmalloc_global_cache_extract_spans(&span, span_count, 1);
if (count) {
_rpmalloc_stat_add64(&heap->global_to_thread, span_count * count * _memory_span_size);
_rpmalloc_stat_add(&heap->span_use[span_count - 1].spans_from_global, count);
return span;
}
#endif
#endif
(void)sizeof(heap);
(void)sizeof(span_count);
return 0;
}
//! Get a span from one of the cache levels (thread cache, reserved, global cache) or fallback to mapping more memory
static span_t*
_rpmalloc_heap_extract_new_span(heap_t* heap, size_t span_count, uint32_t class_idx) {
span_t* span;
#if ENABLE_ADAPTIVE_THREAD_CACHE || ENABLE_STATISTICS
uint32_t idx = (uint32_t)span_count - 1;
uint32_t current_count = (uint32_t)atomic_incr32(&heap->span_use[idx].current);
if (current_count > (uint32_t)atomic_load32(&heap->span_use[idx].high))
atomic_store32(&heap->span_use[idx].high, (int32_t)current_count);
_rpmalloc_stat_add_peak(&heap->size_class_use[class_idx].spans_current, 1, heap->size_class_use[class_idx].spans_peak);
#endif
#if ENABLE_THREAD_CACHE
if (class_idx < SIZE_CLASS_COUNT) {
if (heap->size_class[class_idx].cache) {
span = heap->size_class[class_idx].cache;
span_t* new_cache = 0;
if (heap->span_cache.count)
new_cache = heap->span_cache.span[--heap->span_cache.count];
heap->size_class[class_idx].cache = new_cache;
return span;
}
}
#else
(void)sizeof(class_idx);
#endif
span = _rpmalloc_heap_thread_cache_extract(heap, span_count);
if (EXPECTED(span != 0)) {
_rpmalloc_stat_inc(&heap->size_class_use[class_idx].spans_from_cache);
return span;
}
span = _rpmalloc_heap_reserved_extract(heap, span_count);
if (EXPECTED(span != 0)) {
_rpmalloc_stat_inc(&heap->size_class_use[class_idx].spans_from_reserved);
return span;
}
span = _rpmalloc_heap_global_cache_extract(heap, span_count);
if (EXPECTED(span != 0)) {
_rpmalloc_stat_inc(&heap->size_class_use[class_idx].spans_from_cache);
return span;
}
//Final fallback, map in more virtual memory
span = _rpmalloc_span_map(heap, span_count);
_rpmalloc_stat_inc(&heap->size_class_use[class_idx].spans_map_calls);
return span;
}
static void
_rpmalloc_heap_initialize(heap_t* heap) {
//Get a new heap ID
heap->id = 1 + atomic_incr32(&_memory_heap_id);
//Link in heap in heap ID map
size_t list_idx = heap->id % HEAP_ARRAY_SIZE;
heap->next_heap = _memory_heaps[list_idx];
_memory_heaps[list_idx] = heap;
}
static void
_rpmalloc_heap_orphan(heap_t* heap, int first_class) {
heap->owner_thread = (uintptr_t)-1;
#if RPMALLOC_FIRST_CLASS_HEAPS
heap_t** heap_list = (first_class ? &_memory_first_class_orphan_heaps : &_memory_orphan_heaps);
#else
(void)sizeof(first_class);
heap_t** heap_list = &_memory_orphan_heaps;
#endif
heap->next_orphan = *heap_list;
*heap_list = heap;
}
//! Allocate a new heap from newly mapped memory pages
static heap_t*
_rpmalloc_heap_allocate_new(void) {
// Map in pages for a 16 heaps. If page size is greater than required size for this, map a page and
// use first part for heaps and remaining part for spans for allocations. Adds a lot of complexity,
// but saves a lot of memory on systems where page size > 64 spans (4MiB)
size_t heap_size = sizeof(heap_t);
size_t aligned_heap_size = 16 * ((heap_size + 15) / 16);
size_t request_heap_count = 16;
size_t heap_span_count = ((aligned_heap_size * request_heap_count) + sizeof(span_t) + _memory_span_size - 1) / _memory_span_size;
size_t block_size = _memory_span_size * heap_span_count;
size_t span_count = heap_span_count;
span_t* span = 0;
// If there are global reserved spans, use these first
if (_memory_global_reserve_count >= heap_span_count) {
span = _rpmalloc_global_get_reserved_spans(heap_span_count);
}
if (!span) {
if (_memory_page_size > block_size) {
span_count = _memory_page_size / _memory_span_size;
block_size = _memory_page_size;
// If using huge pages, make sure to grab enough heaps to avoid reallocating a huge page just to serve new heaps
size_t possible_heap_count = (block_size - sizeof(span_t)) / aligned_heap_size;
if (possible_heap_count >= (request_heap_count * 16))
request_heap_count *= 16;
else if (possible_heap_count < request_heap_count)
request_heap_count = possible_heap_count;
heap_span_count = ((aligned_heap_size * request_heap_count) + sizeof(span_t) + _memory_span_size - 1) / _memory_span_size;
}
size_t align_offset = 0;
span = (span_t*)_rpmalloc_mmap(block_size, &align_offset);
if (!span)
return 0;
// Master span will contain the heaps
_rpmalloc_stat_add(&_reserved_spans, span_count);
_rpmalloc_stat_inc(&_master_spans);
_rpmalloc_span_initialize(span, span_count, heap_span_count, align_offset);
}
size_t remain_size = _memory_span_size - sizeof(span_t);
heap_t* heap = (heap_t*)pointer_offset(span, sizeof(span_t));
_rpmalloc_heap_initialize(heap);
// Put extra heaps as orphans
size_t num_heaps = remain_size / aligned_heap_size;
if (num_heaps < request_heap_count)
num_heaps = request_heap_count;
atomic_store32(&heap->child_count, (int32_t)num_heaps - 1);
heap_t* extra_heap = (heap_t*)pointer_offset(heap, aligned_heap_size);
while (num_heaps > 1) {
_rpmalloc_heap_initialize(extra_heap);
extra_heap->master_heap = heap;
_rpmalloc_heap_orphan(extra_heap, 1);
extra_heap = (heap_t*)pointer_offset(extra_heap, aligned_heap_size);
--num_heaps;
}
if (span_count > heap_span_count) {
// Cap reserved spans
size_t remain_count = span_count - heap_span_count;
size_t reserve_count = (remain_count > DEFAULT_SPAN_MAP_COUNT ? DEFAULT_SPAN_MAP_COUNT : remain_count);
span_t* remain_span = (span_t*)pointer_offset(span, heap_span_count * _memory_span_size);
_rpmalloc_heap_set_reserved_spans(heap, span, remain_span, reserve_count);
if (remain_count > reserve_count) {
// Set to global reserved spans
remain_span = (span_t*)pointer_offset(remain_span, reserve_count * _memory_span_size);
reserve_count = remain_count - reserve_count;
_rpmalloc_global_set_reserved_spans(span, remain_span, reserve_count);
}
}
return heap;
}
static heap_t*
_rpmalloc_heap_extract_orphan(heap_t** heap_list) {
heap_t* heap = *heap_list;
*heap_list = (heap ? heap->next_orphan : 0);
return heap;
}
//! Allocate a new heap, potentially reusing a previously orphaned heap
static heap_t*
_rpmalloc_heap_allocate(int first_class) {
heap_t* heap = 0;
while (!atomic_cas32_acquire(&_memory_global_lock, 1, 0))
/* Spin */;
if (first_class == 0)
heap = _rpmalloc_heap_extract_orphan(&_memory_orphan_heaps);
#if RPMALLOC_FIRST_CLASS_HEAPS
if (!heap)
heap = _rpmalloc_heap_extract_orphan(&_memory_first_class_orphan_heaps);
#endif
if (!heap)
heap = _rpmalloc_heap_allocate_new();
atomic_store32_release(&_memory_global_lock, 0);
return heap;
}
static void
_rpmalloc_heap_release(void* heapptr, int first_class) {
heap_t* heap = (heap_t*)heapptr;
if (!heap)
return;
//Release thread cache spans back to global cache
_rpmalloc_heap_cache_adopt_deferred(heap, 0);
#if ENABLE_THREAD_CACHE
for (size_t iclass = 0; iclass < LARGE_CLASS_COUNT; ++iclass) {
span_cache_t* span_cache;
if (!iclass)
span_cache = &heap->span_cache;
else
span_cache = (span_cache_t*)(heap->span_large_cache + (iclass - 1));
if (!span_cache->count)
continue;
#if ENABLE_GLOBAL_CACHE
if (heap->finalize) {
for (size_t ispan = 0; ispan < span_cache->count; ++ispan)
_rpmalloc_span_unmap(span_cache->span[ispan]);
} else {
_rpmalloc_stat_add64(&heap->thread_to_global, span_cache->count * (iclass + 1) * _memory_span_size);
_rpmalloc_stat_add(&heap->span_use[iclass].spans_to_global, span_cache->count);
_rpmalloc_global_cache_insert_spans(span_cache->span, iclass + 1, span_cache->count);
}
#else
for (size_t ispan = 0; ispan < span_cache->count; ++ispan)
_rpmalloc_span_unmap(span_cache->span[ispan]);
#endif
span_cache->count = 0;
}
#endif
if (get_thread_heap_raw() == heap)
set_thread_heap(0);
#if ENABLE_STATISTICS
atomic_decr32(&_memory_active_heaps);
assert(atomic_load32(&_memory_active_heaps) >= 0);
#endif
while (!atomic_cas32_acquire(&_memory_global_lock, 1, 0))
/* Spin */;
_rpmalloc_heap_orphan(heap, first_class);
atomic_store32_release(&_memory_global_lock, 0);
}
static void
_rpmalloc_heap_release_raw(void* heapptr) {
_rpmalloc_heap_release(heapptr, 0);
}
static void
_rpmalloc_heap_finalize(heap_t* heap) {
if (heap->spans_reserved) {
span_t* span = _rpmalloc_span_map(heap, heap->spans_reserved);
_rpmalloc_span_unmap(span);
heap->spans_reserved = 0;
}
_rpmalloc_heap_cache_adopt_deferred(heap, 0);
for (size_t iclass = 0; iclass < SIZE_CLASS_COUNT; ++iclass) {
if (heap->size_class[iclass].cache)
_rpmalloc_span_unmap(heap->size_class[iclass].cache);
heap->size_class[iclass].cache = 0;
span_t* span = heap->size_class[iclass].partial_span;
while (span) {
span_t* next = span->next;
_rpmalloc_span_finalize(heap, iclass, span, &heap->size_class[iclass].partial_span);
span = next;
}
// If class still has a free list it must be a full span
if (heap->size_class[iclass].free_list) {
span_t* class_span = (span_t*)((uintptr_t)heap->size_class[iclass].free_list & _memory_span_mask);
span_t** list = 0;
#if RPMALLOC_FIRST_CLASS_HEAPS
list = &heap->full_span[iclass];
#endif
--heap->full_span_count;
if (!_rpmalloc_span_finalize(heap, iclass, class_span, list)) {
if (list)
_rpmalloc_span_double_link_list_remove(list, class_span);
_rpmalloc_span_double_link_list_add(&heap->size_class[iclass].partial_span, class_span);
}
}
}
#if ENABLE_THREAD_CACHE
for (size_t iclass = 0; iclass < LARGE_CLASS_COUNT; ++iclass) {
span_cache_t* span_cache;
if (!iclass)
span_cache = &heap->span_cache;
else
span_cache = (span_cache_t*)(heap->span_large_cache + (iclass - 1));
for (size_t ispan = 0; ispan < span_cache->count; ++ispan)
_rpmalloc_span_unmap(span_cache->span[ispan]);
span_cache->count = 0;
}
#endif
assert(!atomic_load_ptr(&heap->span_free_deferred));
}
////////////
///
/// Allocation entry points
///
//////
//! Pop first block from a free list
static void*
free_list_pop(void** list) {
void* block = *list;
*list = *((void**)block);
return block;
}
//! Allocate a small/medium sized memory block from the given heap
static void*
_rpmalloc_allocate_from_heap_fallback(heap_t* heap, uint32_t class_idx) {
span_t* span = heap->size_class[class_idx].partial_span;
if (EXPECTED(span != 0)) {
assert(span->block_count == _memory_size_class[span->size_class].block_count);
assert(!_rpmalloc_span_is_fully_utilized(span));
void* block;
if (span->free_list) {
//Swap in free list if not empty
heap->size_class[class_idx].free_list = span->free_list;
span->free_list = 0;
block = free_list_pop(&heap->size_class[class_idx].free_list);
} else {
//If the span did not fully initialize free list, link up another page worth of blocks
void* block_start = pointer_offset(span, SPAN_HEADER_SIZE + ((size_t)span->free_list_limit * span->block_size));
span->free_list_limit += free_list_partial_init(&heap->size_class[class_idx].free_list, &block,
(void*)((uintptr_t)block_start & ~(_memory_page_size - 1)), block_start,
span->block_count - span->free_list_limit, span->block_size);
}
assert(span->free_list_limit <= span->block_count);
span->used_count = span->free_list_limit;
//Swap in deferred free list if present
if (atomic_load_ptr(&span->free_list_deferred))
_rpmalloc_span_extract_free_list_deferred(span);
//If span is still not fully utilized keep it in partial list and early return block
if (!_rpmalloc_span_is_fully_utilized(span))
return block;
//The span is fully utilized, unlink from partial list and add to fully utilized list
_rpmalloc_span_double_link_list_pop_head(&heap->size_class[class_idx].partial_span, span);
#if RPMALLOC_FIRST_CLASS_HEAPS
_rpmalloc_span_double_link_list_add(&heap->full_span[class_idx], span);
#endif
++heap->full_span_count;
return block;
}
//Find a span in one of the cache levels
span = _rpmalloc_heap_extract_new_span(heap, 1, class_idx);
if (EXPECTED(span != 0)) {
//Mark span as owned by this heap and set base data, return first block
return _rpmalloc_span_initialize_new(heap, span, class_idx);
}
return 0;
}
//! Allocate a small sized memory block from the given heap
static void*
_rpmalloc_allocate_small(heap_t* heap, size_t size) {
assert(heap);
//Small sizes have unique size classes
const uint32_t class_idx = (uint32_t)((size + (SMALL_GRANULARITY - 1)) >> SMALL_GRANULARITY_SHIFT);
_rpmalloc_stat_inc_alloc(heap, class_idx);
if (EXPECTED(heap->size_class[class_idx].free_list != 0))
return free_list_pop(&heap->size_class[class_idx].free_list);
return _rpmalloc_allocate_from_heap_fallback(heap, class_idx);
}
//! Allocate a medium sized memory block from the given heap
static void*
_rpmalloc_allocate_medium(heap_t* heap, size_t size) {
assert(heap);
//Calculate the size class index and do a dependent lookup of the final class index (in case of merged classes)
const uint32_t base_idx = (uint32_t)(SMALL_CLASS_COUNT + ((size - (SMALL_SIZE_LIMIT + 1)) >> MEDIUM_GRANULARITY_SHIFT));
const uint32_t class_idx = _memory_size_class[base_idx].class_idx;
_rpmalloc_stat_inc_alloc(heap, class_idx);
if (EXPECTED(heap->size_class[class_idx].free_list != 0))
return free_list_pop(&heap->size_class[class_idx].free_list);
return _rpmalloc_allocate_from_heap_fallback(heap, class_idx);
}
//! Allocate a large sized memory block from the given heap
static void*
_rpmalloc_allocate_large(heap_t* heap, size_t size) {
assert(heap);
//Calculate number of needed max sized spans (including header)
//Since this function is never called if size > LARGE_SIZE_LIMIT
//the span_count is guaranteed to be <= LARGE_CLASS_COUNT
size += SPAN_HEADER_SIZE;
size_t span_count = size >> _memory_span_size_shift;
if (size & (_memory_span_size - 1))
++span_count;
//Find a span in one of the cache levels
span_t* span = _rpmalloc_heap_extract_new_span(heap, span_count, SIZE_CLASS_LARGE);
if (!span)
return span;
//Mark span as owned by this heap and set base data
assert(span->span_count == span_count);
span->size_class = SIZE_CLASS_LARGE;
span->heap = heap;
#if RPMALLOC_FIRST_CLASS_HEAPS
_rpmalloc_span_double_link_list_add(&heap->large_huge_span, span);
#endif
++heap->full_span_count;
return pointer_offset(span, SPAN_HEADER_SIZE);
}
//! Allocate a huge block by mapping memory pages directly
static void*
_rpmalloc_allocate_huge(heap_t* heap, size_t size) {
assert(heap);
size += SPAN_HEADER_SIZE;
size_t num_pages = size >> _memory_page_size_shift;
if (size & (_memory_page_size - 1))
++num_pages;
size_t align_offset = 0;
span_t* span = (span_t*)_rpmalloc_mmap(num_pages * _memory_page_size, &align_offset);
if (!span)
return span;
//Store page count in span_count
span->size_class = SIZE_CLASS_HUGE;
span->span_count = (uint32_t)num_pages;
span->align_offset = (uint32_t)align_offset;
span->heap = heap;
_rpmalloc_stat_add_peak(&_huge_pages_current, num_pages, _huge_pages_peak);
#if RPMALLOC_FIRST_CLASS_HEAPS
_rpmalloc_span_double_link_list_add(&heap->large_huge_span, span);
#endif
++heap->full_span_count;
return pointer_offset(span, SPAN_HEADER_SIZE);
}
//! Allocate a block of the given size
static void*
_rpmalloc_allocate(heap_t* heap, size_t size) {
if (EXPECTED(size <= SMALL_SIZE_LIMIT))
return _rpmalloc_allocate_small(heap, size);
else if (size <= _memory_medium_size_limit)
return _rpmalloc_allocate_medium(heap, size);
else if (size <= LARGE_SIZE_LIMIT)
return _rpmalloc_allocate_large(heap, size);
return _rpmalloc_allocate_huge(heap, size);
}
static void*
_rpmalloc_aligned_allocate(heap_t* heap, size_t alignment, size_t size) {
if (alignment <= SMALL_GRANULARITY)
return _rpmalloc_allocate(heap, size);
#if ENABLE_VALIDATE_ARGS
if ((size + alignment) < size) {
errno = EINVAL;
return 0;
}
if (alignment & (alignment - 1)) {
errno = EINVAL;
return 0;
}
#endif
if ((alignment <= SPAN_HEADER_SIZE) && (size < _memory_medium_size_limit)) {
// If alignment is less or equal to span header size (which is power of two),
// and size aligned to span header size multiples is less than size + alignment,
// then use natural alignment of blocks to provide alignment
size_t multiple_size = size ? (size + (SPAN_HEADER_SIZE - 1)) & ~(uintptr_t)(SPAN_HEADER_SIZE - 1) : SPAN_HEADER_SIZE;
assert(!(multiple_size % SPAN_HEADER_SIZE));
if (multiple_size <= (size + alignment))
return _rpmalloc_allocate(heap, multiple_size);
}
void* ptr = 0;
size_t align_mask = alignment - 1;
if (alignment <= _memory_page_size) {
ptr = _rpmalloc_allocate(heap, size + alignment);
if ((uintptr_t)ptr & align_mask) {
ptr = (void*)(((uintptr_t)ptr & ~(uintptr_t)align_mask) + alignment);
//Mark as having aligned blocks
span_t* span = (span_t*)((uintptr_t)ptr & _memory_span_mask);
span->flags |= SPAN_FLAG_ALIGNED_BLOCKS;
}
return ptr;
}
// Fallback to mapping new pages for this request. Since pointers passed
// to rpfree must be able to reach the start of the span by bitmasking of
// the address with the span size, the returned aligned pointer from this
// function must be with a span size of the start of the mapped area.
// In worst case this requires us to loop and map pages until we get a
// suitable memory address. It also means we can never align to span size
// or greater, since the span header will push alignment more than one
// span size away from span start (thus causing pointer mask to give us
// an invalid span start on free)
if (alignment & align_mask) {
errno = EINVAL;
return 0;
}
if (alignment >= _memory_span_size) {
errno = EINVAL;
return 0;
}
size_t extra_pages = alignment / _memory_page_size;
// Since each span has a header, we will at least need one extra memory page
size_t num_pages = 1 + (size / _memory_page_size);
if (size & (_memory_page_size - 1))
++num_pages;
if (extra_pages > num_pages)
num_pages = 1 + extra_pages;
size_t original_pages = num_pages;
size_t limit_pages = (_memory_span_size / _memory_page_size) * 2;
if (limit_pages < (original_pages * 2))
limit_pages = original_pages * 2;
size_t mapped_size, align_offset;
span_t* span;
retry:
align_offset = 0;
mapped_size = num_pages * _memory_page_size;
span = (span_t*)_rpmalloc_mmap(mapped_size, &align_offset);
if (!span) {
errno = ENOMEM;
return 0;
}
ptr = pointer_offset(span, SPAN_HEADER_SIZE);
if ((uintptr_t)ptr & align_mask)
ptr = (void*)(((uintptr_t)ptr & ~(uintptr_t)align_mask) + alignment);
if (((size_t)pointer_diff(ptr, span) >= _memory_span_size) ||
(pointer_offset(ptr, size) > pointer_offset(span, mapped_size)) ||
(((uintptr_t)ptr & _memory_span_mask) != (uintptr_t)span)) {
_rpmalloc_unmap(span, mapped_size, align_offset, mapped_size);
++num_pages;
if (num_pages > limit_pages) {
errno = EINVAL;
return 0;
}
goto retry;
}
//Store page count in span_count
span->size_class = SIZE_CLASS_HUGE;
span->span_count = (uint32_t)num_pages;
span->align_offset = (uint32_t)align_offset;
span->heap = heap;
_rpmalloc_stat_add_peak(&_huge_pages_current, num_pages, _huge_pages_peak);
#if RPMALLOC_FIRST_CLASS_HEAPS
_rpmalloc_span_double_link_list_add(&heap->large_huge_span, span);
#endif
++heap->full_span_count;
return ptr;
}
////////////
///
/// Deallocation entry points
///
//////
//! Deallocate the given small/medium memory block in the current thread local heap
static void
_rpmalloc_deallocate_direct_small_or_medium(span_t* span, void* block) {
heap_t* heap = span->heap;
assert(heap->owner_thread == get_thread_id() || !heap->owner_thread || heap->finalize);
//Add block to free list
if (UNEXPECTED(_rpmalloc_span_is_fully_utilized(span))) {
span->used_count = span->block_count;
#if RPMALLOC_FIRST_CLASS_HEAPS
_rpmalloc_span_double_link_list_remove(&heap->full_span[span->size_class], span);
#endif
_rpmalloc_span_double_link_list_add(&heap->size_class[span->size_class].partial_span, span);
--heap->full_span_count;
}
--span->used_count;
*((void**)block) = span->free_list;
span->free_list = block;
if (UNEXPECTED(span->used_count == span->list_size)) {
_rpmalloc_span_double_link_list_remove(&heap->size_class[span->size_class].partial_span, span);
_rpmalloc_span_release_to_cache(heap, span);
}
}
static void
_rpmalloc_deallocate_defer_free_span(heap_t* heap, span_t* span) {
//This list does not need ABA protection, no mutable side state
do {
span->free_list = (void*)atomic_load_ptr(&heap->span_free_deferred);
} while (!atomic_cas_ptr(&heap->span_free_deferred, span, span->free_list));
}
//! Put the block in the deferred free list of the owning span
static void
_rpmalloc_deallocate_defer_small_or_medium(span_t* span, void* block) {
// The memory ordering here is a bit tricky, to avoid having to ABA protect
// the deferred free list to avoid desynchronization of list and list size
// we need to have acquire semantics on successful CAS of the pointer to
// guarantee the list_size variable validity + release semantics on pointer store
void* free_list;
do {
free_list = atomic_exchange_ptr_acquire(&span->free_list_deferred, INVALID_POINTER);
} while (free_list == INVALID_POINTER);
*((void**)block) = free_list;
uint32_t free_count = ++span->list_size;
atomic_store_ptr_release(&span->free_list_deferred, block);
if (free_count == span->block_count) {
// Span was completely freed by this block. Due to the INVALID_POINTER spin lock
// no other thread can reach this state simultaneously on this span.
// Safe to move to owner heap deferred cache
_rpmalloc_deallocate_defer_free_span(span->heap, span);
}
}
static void
_rpmalloc_deallocate_small_or_medium(span_t* span, void* p) {
_rpmalloc_stat_inc_free(span->heap, span->size_class);
if (span->flags & SPAN_FLAG_ALIGNED_BLOCKS) {
//Realign pointer to block start
void* blocks_start = pointer_offset(span, SPAN_HEADER_SIZE);
uint32_t block_offset = (uint32_t)pointer_diff(p, blocks_start);
p = pointer_offset(p, -(int32_t)(block_offset % span->block_size));
}
//Check if block belongs to this heap or if deallocation should be deferred
#if RPMALLOC_FIRST_CLASS_HEAPS
int defer = (span->heap->owner_thread && (span->heap->owner_thread != get_thread_id()) && !span->heap->finalize);
#else
int defer = ((span->heap->owner_thread != get_thread_id()) && !span->heap->finalize);
#endif
if (!defer)
_rpmalloc_deallocate_direct_small_or_medium(span, p);
else
_rpmalloc_deallocate_defer_small_or_medium(span, p);
}
//! Deallocate the given large memory block to the current heap
static void
_rpmalloc_deallocate_large(span_t* span) {
assert(span->size_class == SIZE_CLASS_LARGE);
assert(!(span->flags & SPAN_FLAG_MASTER) || !(span->flags & SPAN_FLAG_SUBSPAN));
assert((span->flags & SPAN_FLAG_MASTER) || (span->flags & SPAN_FLAG_SUBSPAN));
//We must always defer (unless finalizing) if from another heap since we cannot touch the list or counters of another heap
#if RPMALLOC_FIRST_CLASS_HEAPS
int defer = (span->heap->owner_thread && (span->heap->owner_thread != get_thread_id()) && !span->heap->finalize);
#else
int defer = ((span->heap->owner_thread != get_thread_id()) && !span->heap->finalize);
#endif
if (defer) {
_rpmalloc_deallocate_defer_free_span(span->heap, span);
return;
}
assert(span->heap->full_span_count);
--span->heap->full_span_count;
#if RPMALLOC_FIRST_CLASS_HEAPS
_rpmalloc_span_double_link_list_remove(&span->heap->large_huge_span, span);
#endif
#if ENABLE_ADAPTIVE_THREAD_CACHE || ENABLE_STATISTICS
//Decrease counter
size_t idx = span->span_count - 1;
atomic_decr32(&span->heap->span_use[idx].current);
#endif
heap_t* heap = get_thread_heap();
assert(heap);
span->heap = heap;
if ((span->span_count > 1) && !heap->finalize && !heap->spans_reserved) {
heap->span_reserve = span;
heap->spans_reserved = span->span_count;
if (span->flags & SPAN_FLAG_MASTER) {
heap->span_reserve_master = span;
} else { //SPAN_FLAG_SUBSPAN
span_t* master = (span_t*)pointer_offset(span, -(intptr_t)((size_t)span->offset_from_master * _memory_span_size));
heap->span_reserve_master = master;
assert(master->flags & SPAN_FLAG_MASTER);
assert(atomic_load32(&master->remaining_spans) >= (int32_t)span->span_count);
}
_rpmalloc_stat_inc(&heap->span_use[idx].spans_to_reserved);
} else {
//Insert into cache list
_rpmalloc_heap_cache_insert(heap, span);
}
}
//! Deallocate the given huge span
static void
_rpmalloc_deallocate_huge(span_t* span) {
assert(span->heap);
#if RPMALLOC_FIRST_CLASS_HEAPS
int defer = (span->heap->owner_thread && (span->heap->owner_thread != get_thread_id()) && !span->heap->finalize);
#else
int defer = ((span->heap->owner_thread != get_thread_id()) && !span->heap->finalize);
#endif
if (defer) {
_rpmalloc_deallocate_defer_free_span(span->heap, span);
return;
}
assert(span->heap->full_span_count);
--span->heap->full_span_count;
#if RPMALLOC_FIRST_CLASS_HEAPS
_rpmalloc_span_double_link_list_remove(&span->heap->large_huge_span, span);
#endif
//Oversized allocation, page count is stored in span_count
size_t num_pages = span->span_count;
_rpmalloc_unmap(span, num_pages * _memory_page_size, span->align_offset, num_pages * _memory_page_size);
_rpmalloc_stat_sub(&_huge_pages_current, num_pages);
}
//! Deallocate the given block
static void
_rpmalloc_deallocate(void* p) {
//Grab the span (always at start of span, using span alignment)
span_t* span = (span_t*)((uintptr_t)p & _memory_span_mask);
if (UNEXPECTED(!span))
return;
if (EXPECTED(span->size_class < SIZE_CLASS_COUNT))
_rpmalloc_deallocate_small_or_medium(span, p);
else if (span->size_class == SIZE_CLASS_LARGE)
_rpmalloc_deallocate_large(span);
else
_rpmalloc_deallocate_huge(span);
}
////////////
///
/// Reallocation entry points
///
//////
static size_t
_rpmalloc_usable_size(void* p);
//! Reallocate the given block to the given size
static void*
_rpmalloc_reallocate(heap_t* heap, void* p, size_t size, size_t oldsize, unsigned int flags) {
if (p) {
//Grab the span using guaranteed span alignment
span_t* span = (span_t*)((uintptr_t)p & _memory_span_mask);
if (EXPECTED(span->size_class < SIZE_CLASS_COUNT)) {
//Small/medium sized block
assert(span->span_count == 1);
void* blocks_start = pointer_offset(span, SPAN_HEADER_SIZE);
uint32_t block_offset = (uint32_t)pointer_diff(p, blocks_start);
uint32_t block_idx = block_offset / span->block_size;
void* block = pointer_offset(blocks_start, (size_t)block_idx * span->block_size);
if (!oldsize)
oldsize = (size_t)((ptrdiff_t)span->block_size - pointer_diff(p, block));
if ((size_t)span->block_size >= size) {
//Still fits in block, never mind trying to save memory, but preserve data if alignment changed
if ((p != block) && !(flags & RPMALLOC_NO_PRESERVE))
memmove(block, p, oldsize);
return block;
}
} else if (span->size_class == SIZE_CLASS_LARGE) {
//Large block
size_t total_size = size + SPAN_HEADER_SIZE;
size_t num_spans = total_size >> _memory_span_size_shift;
if (total_size & (_memory_span_mask - 1))
++num_spans;
size_t current_spans = span->span_count;
void* block = pointer_offset(span, SPAN_HEADER_SIZE);
if (!oldsize)
oldsize = (current_spans * _memory_span_size) - (size_t)pointer_diff(p, block) - SPAN_HEADER_SIZE;
if ((current_spans >= num_spans) && (total_size >= (oldsize / 2))) {
//Still fits in block, never mind trying to save memory, but preserve data if alignment changed
if ((p != block) && !(flags & RPMALLOC_NO_PRESERVE))
memmove(block, p, oldsize);
return block;
}
} else {
//Oversized block
size_t total_size = size + SPAN_HEADER_SIZE;
size_t num_pages = total_size >> _memory_page_size_shift;
if (total_size & (_memory_page_size - 1))
++num_pages;
//Page count is stored in span_count
size_t current_pages = span->span_count;
void* block = pointer_offset(span, SPAN_HEADER_SIZE);
if (!oldsize)
oldsize = (current_pages * _memory_page_size) - (size_t)pointer_diff(p, block) - SPAN_HEADER_SIZE;
if ((current_pages >= num_pages) && (num_pages >= (current_pages / 2))) {
//Still fits in block, never mind trying to save memory, but preserve data if alignment changed
if ((p != block) && !(flags & RPMALLOC_NO_PRESERVE))
memmove(block, p, oldsize);
return block;
}
}
} else {
oldsize = 0;
}
if (!!(flags & RPMALLOC_GROW_OR_FAIL))
return 0;
//Size is greater than block size, need to allocate a new block and deallocate the old
//Avoid hysteresis by overallocating if increase is small (below 37%)
size_t lower_bound = oldsize + (oldsize >> 2) + (oldsize >> 3);
size_t new_size = (size > lower_bound) ? size : ((size > oldsize) ? lower_bound : size);
void* block = _rpmalloc_allocate(heap, new_size);
if (p && block) {
if (!(flags & RPMALLOC_NO_PRESERVE))
memcpy(block, p, oldsize < new_size ? oldsize : new_size);
_rpmalloc_deallocate(p);
}
return block;
}
static void*
_rpmalloc_aligned_reallocate(heap_t* heap, void* ptr, size_t alignment, size_t size, size_t oldsize,
unsigned int flags) {
if (alignment <= SMALL_GRANULARITY)
return _rpmalloc_reallocate(heap, ptr, size, oldsize, flags);
int no_alloc = !!(flags & RPMALLOC_GROW_OR_FAIL);
size_t usablesize = (ptr ? _rpmalloc_usable_size(ptr) : 0);
if ((usablesize >= size) && !((uintptr_t)ptr & (alignment - 1))) {
if (no_alloc || (size >= (usablesize / 2)))
return ptr;
}
// Aligned alloc marks span as having aligned blocks
void* block = (!no_alloc ? _rpmalloc_aligned_allocate(heap, alignment, size) : 0);
if (EXPECTED(block != 0)) {
if (!(flags & RPMALLOC_NO_PRESERVE) && ptr) {
if (!oldsize)
oldsize = usablesize;
memcpy(block, ptr, oldsize < size ? oldsize : size);
}
_rpmalloc_deallocate(ptr);
}
return block;
}
////////////
///
/// Initialization, finalization and utility
///
//////
//! Get the usable size of the given block
static size_t
_rpmalloc_usable_size(void* p) {
//Grab the span using guaranteed span alignment
span_t* span = (span_t*)((uintptr_t)p & _memory_span_mask);
if (span->size_class < SIZE_CLASS_COUNT) {
//Small/medium block
void* blocks_start = pointer_offset(span, SPAN_HEADER_SIZE);
return span->block_size - ((size_t)pointer_diff(p, blocks_start) % span->block_size);
}
if (span->size_class == SIZE_CLASS_LARGE) {
//Large block
size_t current_spans = span->span_count;
return (current_spans * _memory_span_size) - (size_t)pointer_diff(p, span);
}
//Oversized block, page count is stored in span_count
size_t current_pages = span->span_count;
return (current_pages * _memory_page_size) - (size_t)pointer_diff(p, span);
}
//! Adjust and optimize the size class properties for the given class
static void
_rpmalloc_adjust_size_class(size_t iclass) {
size_t block_size = _memory_size_class[iclass].block_size;
size_t block_count = (_memory_span_size - SPAN_HEADER_SIZE) / block_size;
_memory_size_class[iclass].block_count = (uint16_t)block_count;
_memory_size_class[iclass].class_idx = (uint16_t)iclass;
//Check if previous size classes can be merged
if (iclass >= SMALL_CLASS_COUNT) {
size_t prevclass = iclass;
while (prevclass > 0) {
--prevclass;
//A class can be merged if number of pages and number of blocks are equal
if (_memory_size_class[prevclass].block_count == _memory_size_class[iclass].block_count)
memcpy(_memory_size_class + prevclass, _memory_size_class + iclass, sizeof(_memory_size_class[iclass]));
else
break;
}
}
}
//! Initialize the allocator and setup global data
extern inline int
rpmalloc_initialize(void) {
if (_rpmalloc_initialized) {
rpmalloc_thread_initialize();
return 0;
}
return rpmalloc_initialize_config(0);
}
int
rpmalloc_initialize_config(const rpmalloc_config_t* config) {
if (_rpmalloc_initialized) {
rpmalloc_thread_initialize();
return 0;
}
_rpmalloc_initialized = 1;
if (config)
memcpy(&_memory_config, config, sizeof(rpmalloc_config_t));
else
memset(&_memory_config, 0, sizeof(rpmalloc_config_t));
if (!_memory_config.memory_map || !_memory_config.memory_unmap) {
_memory_config.memory_map = _rpmalloc_mmap_os;
_memory_config.memory_unmap = _rpmalloc_unmap_os;
}
#if RPMALLOC_CONFIGURABLE
_memory_page_size = _memory_config.page_size;
#else
_memory_page_size = 0;
#endif
_memory_huge_pages = 0;
_memory_map_granularity = _memory_page_size;
if (!_memory_page_size) {
#if PLATFORM_WINDOWS
SYSTEM_INFO system_info;
memset(&system_info, 0, sizeof(system_info));
GetSystemInfo(&system_info);
_memory_page_size = system_info.dwPageSize;
_memory_map_granularity = system_info.dwAllocationGranularity;
#else
_memory_page_size = (size_t)sysconf(_SC_PAGESIZE);
_memory_map_granularity = _memory_page_size;
if (_memory_config.enable_huge_pages) {
#if defined(__linux__)
size_t huge_page_size = 0;
FILE* meminfo = fopen("/proc/meminfo", "r");
if (meminfo) {
char line[128];
while (!huge_page_size && fgets(line, sizeof(line) - 1, meminfo)) {
line[sizeof(line) - 1] = 0;
if (strstr(line, "Hugepagesize:"))
huge_page_size = (size_t)strtol(line + 13, 0, 10) * 1024;
}
fclose(meminfo);
}
if (huge_page_size) {
_memory_huge_pages = 1;
_memory_page_size = huge_page_size;
_memory_map_granularity = huge_page_size;
}
#elif defined(__FreeBSD__)
int rc;
size_t sz = sizeof(rc);
if (sysctlbyname("vm.pmap.pg_ps_enabled", &rc, &sz, NULL, 0) == 0 && rc == 1) {
_memory_huge_pages = 1;
_memory_page_size = 2 * 1024 * 1024;
_memory_map_granularity = _memory_page_size;
}
#elif defined(__APPLE__)
_memory_huge_pages = 1;
_memory_page_size = 2 * 1024 * 1024;
_memory_map_granularity = _memory_page_size;
#endif
}
#endif
} else {
if (_memory_config.enable_huge_pages)
_memory_huge_pages = 1;
}
#if PLATFORM_WINDOWS
if (_memory_config.enable_huge_pages) {
HANDLE token = 0;
size_t large_page_minimum = GetLargePageMinimum();
if (large_page_minimum)
OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &token);
if (token) {
LUID luid;
if (LookupPrivilegeValue(0, SE_LOCK_MEMORY_NAME, &luid)) {
TOKEN_PRIVILEGES token_privileges;
memset(&token_privileges, 0, sizeof(token_privileges));
token_privileges.PrivilegeCount = 1;
token_privileges.Privileges[0].Luid = luid;
token_privileges.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
if (AdjustTokenPrivileges(token, FALSE, &token_privileges, 0, 0, 0)) {
DWORD err = GetLastError();
if (err == ERROR_SUCCESS) {
_memory_huge_pages = 1;
if (large_page_minimum > _memory_page_size)
_memory_page_size = large_page_minimum;
if (large_page_minimum > _memory_map_granularity)
_memory_map_granularity = large_page_minimum;
}
}
}
CloseHandle(token);
}
}
#endif
size_t min_span_size = 256;
size_t max_page_size;
#if UINTPTR_MAX > 0xFFFFFFFF
max_page_size = 4096ULL * 1024ULL * 1024ULL;
#else
max_page_size = 4 * 1024 * 1024;
#endif
if (_memory_page_size < min_span_size)
_memory_page_size = min_span_size;
if (_memory_page_size > max_page_size)
_memory_page_size = max_page_size;
_memory_page_size_shift = 0;
size_t page_size_bit = _memory_page_size;
while (page_size_bit != 1) {
++_memory_page_size_shift;
page_size_bit >>= 1;
}
_memory_page_size = ((size_t)1 << _memory_page_size_shift);
#if RPMALLOC_CONFIGURABLE
if (!_memory_config.span_size) {
_memory_span_size = _memory_default_span_size;
_memory_span_size_shift = _memory_default_span_size_shift;
_memory_span_mask = _memory_default_span_mask;
} else {
size_t span_size = _memory_config.span_size;
if (span_size > (256 * 1024))
span_size = (256 * 1024);
_memory_span_size = 4096;
_memory_span_size_shift = 12;
while (_memory_span_size < span_size) {
_memory_span_size <<= 1;
++_memory_span_size_shift;
}
_memory_span_mask = ~(uintptr_t)(_memory_span_size - 1);
}
#endif