blob: f90157fe8f748b8220dfb561bfae7f37c7f56884 [file] [log] [blame]
/* pigz.c -- parallel implementation of gzip
* Copyright (C) 2007-2021 Mark Adler
* Version 2.6 6 Feb 2021 Mark Adler
*/
/*
This software is provided 'as-is', without any express or implied
warranty. In no event will the author be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Mark Adler
madler@alumni.caltech.edu
*/
/* Version history:
1.0 17 Jan 2007 First version, pipe only
1.1 28 Jan 2007 Avoid void * arithmetic (some compilers don't get that)
Add note about requiring zlib 1.2.3
Allow compression level 0 (no compression)
Completely rewrite parallelism -- add a write thread
Use deflateSetDictionary() to make use of history
Tune argument defaults to best performance on four cores
1.2.1 1 Feb 2007 Add long command line options, add all gzip options
Add debugging options
1.2.2 19 Feb 2007 Add list (--list) function
Process file names on command line, write .gz output
Write name and time in gzip header, set output file time
Implement all command line options except --recursive
Add --keep option to prevent deleting input files
Add thread tracing information with -vv used
Copy crc32_combine() from zlib (shared libraries issue)
1.3 25 Feb 2007 Implement --recursive
Expand help to show all options
Show help if no arguments or output piping are provided
Process options in GZIP environment variable
Add progress indicator to write thread if --verbose
1.4 4 Mar 2007 Add --independent to facilitate damaged file recovery
Reallocate jobs for new --blocksize or --processes
Do not delete original if writing to stdout
Allow --processes 1, which does no threading
Add NOTHREAD define to compile without threads
Incorporate license text from zlib in source code
1.5 25 Mar 2007 Reinitialize jobs for new compression level
Copy attributes and owner from input file to output file
Add decompression and testing
Add -lt (or -ltv) to show all entries and proper lengths
Add decompression, testing, listing of LZW (.Z) files
Only generate and show trace log if DEBUG defined
Take "-" argument to mean read file from stdin
1.6 30 Mar 2007 Add zlib stream compression (--zlib), and decompression
1.7 29 Apr 2007 Decompress first entry of a zip file (if deflated)
Avoid empty deflate blocks at end of deflate stream
Show zlib check value (Adler-32) when listing
Don't complain when decompressing empty file
Warn about trailing junk for gzip and zlib streams
Make listings consistent, ignore gzip extra flags
Add zip stream compression (--zip)
1.8 13 May 2007 Document --zip option in help output
2.0 19 Oct 2008 Complete rewrite of thread usage and synchronization
Use polling threads and a pool of memory buffers
Remove direct pthread library use, hide in yarn.c
2.0.1 20 Oct 2008 Check version of zlib at compile time, need >= 1.2.3
2.1 24 Oct 2008 Decompress with read, write, inflate, and check threads
Remove spurious use of ctime_r(), ctime() more portable
Change application of job->calc lock to be a semaphore
Detect size of off_t at run time to select %lu vs. %llu
#define large file support macro even if not __linux__
Remove _LARGEFILE64_SOURCE, _FILE_OFFSET_BITS is enough
Detect file-too-large error and report, blame build
Replace check combination routines with those from zlib
2.1.1 28 Oct 2008 Fix a leak for files with an integer number of blocks
Update for yarn 1.1 (yarn_prefix and yarn_abort)
2.1.2 30 Oct 2008 Work around use of beta zlib in production systems
2.1.3 8 Nov 2008 Don't use zlib combination routines, put back in pigz
2.1.4 9 Nov 2008 Fix bug when decompressing very short files
2.1.5 20 Jul 2009 Added 2008, 2009 to --license statement
Allow numeric parameter immediately after -p or -b
Enforce parameter after -p, -b, -s, before other options
Enforce numeric parameters to have only numeric digits
Try to determine the number of processors for -p default
Fix --suffix short option to be -S to match gzip [Bloch]
Decompress if executable named "unpigz" [Amundsen]
Add a little bit of testing to Makefile
2.1.6 17 Jan 2010 Added pigz.spec to distribution for RPM systems [Brown]
Avoid some compiler warnings
Process symbolic links if piping to stdout [Hoffstätte]
Decompress if executable named "gunzip" [Hoffstätte]
Allow ".tgz" suffix [Chernookiy]
Fix adler32 comparison on .zz files
2.1.7 17 Dec 2011 Avoid unused parameter warning in reenter()
Don't assume 2's complement ints in compress_thread()
Replicate gzip -cdf cat-like behavior
Replicate gzip -- option to suppress option decoding
Test output from make test instead of showing it
Updated pigz.spec to install unpigz, pigz.1 [Obermaier]
Add PIGZ environment variable [Mueller]
Replicate gzip suffix search when decoding or listing
Fix bug in load() to set in_left to zero on end of file
Do not check suffix when input file won't be modified
Decompress to stdout if name is "*cat" [Hayasaka]
Write data descriptor signature to be like Info-ZIP
Update and sort options list in help
Use CC variable for compiler in Makefile
Exit with code 2 if a warning has been issued
Fix thread synchronization problem when tracing
Change macro name MAX to MAX2 to avoid library conflicts
Determine number of processors on HP-UX [Lloyd]
2.2 31 Dec 2011 Check for expansion bound busting (e.g. modified zlib)
Make the "threads" list head global variable volatile
Fix construction and printing of 32-bit check values
Add --rsyncable functionality
2.2.1 1 Jan 2012 Fix bug in --rsyncable buffer management
2.2.2 1 Jan 2012 Fix another bug in --rsyncable buffer management
2.2.3 15 Jan 2012 Remove volatile in yarn.c
Reduce the number of input buffers
Change initial rsyncable hash to comparison value
Improve the efficiency of arriving at a byte boundary
Add thread portability #defines from yarn.c
Have rsyncable compression be independent of threading
Fix bug where constructed dictionaries not being used
2.2.4 11 Mar 2012 Avoid some return value warnings
Improve the portability of printing the off_t type
Check for existence of compress binary before using
Update zlib version checking to 1.2.6 for new functions
Fix bug in zip (-K) output
Fix license in pigz.spec
Remove thread portability #defines in pigz.c
2.2.5 28 Jul 2012 Avoid race condition in free_pool()
Change suffix to .tar when decompressing or listing .tgz
Print name of executable in error messages
Show help properly when the name is unpigz or gunzip
Fix permissions security problem before output is closed
2.3 3 Mar 2013 Don't complain about missing suffix on stdout
Put all global variables in a structure for readability
Do not decompress concatenated zlib streams (just gzip)
Add option for compression level 11 to use zopfli
Fix handling of junk after compressed data
2.3.1 9 Oct 2013 Fix builds of pigzt and pigzn to include zopfli
Add -lm, needed to link log function on some systems
Respect LDFLAGS in Makefile, use CFLAGS consistently
Add memory allocation tracking
Fix casting error in uncompressed length calculation
Update zopfli to Mar 10, 2013 Google state
Support zopfli in single thread case
Add -F, -I, -M, and -O options for zopfli tuning
2.3.2 24 Jan 2015 Change whereis to which in Makefile for portability
Return zero exit code when only warnings are issued
Increase speed of unlzw (Unix compress decompression)
Update zopfli to current google state
Allow larger maximum blocksize (-b), now 512 MiB
Do not require that -d precede -N, -n, -T options
Strip any path from header name for -dN or -dNT
Remove use of PATH_MAX (PATH_MAX is not reliable)
Do not abort on inflate data error, do remaining files
Check gzip header CRC if present
Improve decompression error detection and reporting
2.3.3 24 Jan 2015 Portability improvements
Update copyright years in documentation
2.3.4 1 Oct 2016 Fix an out of bounds access due to invalid LZW input
Add an extra sync marker between independent blocks
Add zlib version for verbose version option (-vV)
Permit named pipes as input (e.g. made by mkfifo())
Fix a bug in -r directory traversal
Add warning for a zip file entry 4 GiB or larger
2.4 26 Dec 2017 Portability improvements
Produce Zip64 format when needed for --zip (>= 4 GiB)
Make -no-name compatible with gzip, add --time option
Add -m as a short option for --no-time
Check run-time zlib version to handle weak linking
Fix a concurrent read bug in --list operation
Process options first, for gzip compatibility
Add --synchronous (-Y) option to force device write
Disallow an empty suffix (e.g. --suffix '')
Return an exit code of 1 if any issues are encountered
Fix sign error in compression reduction percentage
2.5 23 Jan 2021 Add --alias/-A option to set .zip name for stdin input
Add --comment/-C option to add comment in .gz or .zip
Fix a bug that misidentified a multi-entry .zip
Fix a bug that did not emit double syncs for -i -p 1
Fix a bug in yarn that could try to access freed data
Do not delete multi-entry .zip files when extracting
Do not reject .zip entries with bit 11 set
Avoid a possible threads lock-order inversion
Ignore trailing junk after a gzip stream by default
2.6 6 Feb 2021 Add --huffman/-H and --rle/U strategy options
Fix issue when compiling for no threads
Fail silently on a broken pipe
*/
#define VERSION "pigz 2.6"
/* To-do:
- make source portable for Windows, VMS, etc. (see gzip source code)
- make build portable (currently good for Unixish)
*/
/*
pigz compresses using threads to make use of multiple processors and cores.
The input is broken up into 128 KB chunks with each compressed in parallel.
The individual check value for each chunk is also calculated in parallel.
The compressed data is written in order to the output, and a combined check
value is calculated from the individual check values.
The compressed data format generated is in the gzip, zlib, or single-entry
zip format using the deflate compression method. The compression produces
partial raw deflate streams which are concatenated by a single write thread
and wrapped with the appropriate header and trailer, where the trailer
contains the combined check value.
Each partial raw deflate stream is terminated by an empty stored block
(using the Z_SYNC_FLUSH option of zlib), in order to end that partial bit
stream at a byte boundary, unless that partial stream happens to already end
at a byte boundary (the latter requires zlib 1.2.6 or later). Ending on a
byte boundary allows the partial streams to be concatenated simply as
sequences of bytes. This adds a very small four to five byte overhead
(average 3.75 bytes) to the output for each input chunk.
The default input block size is 128K, but can be changed with the -b option.
The number of compress threads is set by default to 8, which can be changed
using the -p option. Specifying -p 1 avoids the use of threads entirely.
pigz will try to determine the number of processors in the machine, in which
case if that number is two or greater, pigz will use that as the default for
-p instead of 8.
The input blocks, while compressed independently, have the last 32K of the
previous block loaded as a preset dictionary to preserve the compression
effectiveness of deflating in a single thread. This can be turned off using
the --independent or -i option, so that the blocks can be decompressed
independently for partial error recovery or for random access.
Decompression can't be parallelized over an arbitrary number of processors
like compression can be, at least not without specially prepared deflate
streams for that purpose. As a result, pigz uses a single thread (the main
thread) for decompression, but will create three other threads for reading,
writing, and check calculation, which can speed up decompression under some
circumstances. Parallel decompression can be turned off by specifying one
process (-dp 1 or -tp 1).
pigz requires zlib 1.2.1 or later to allow setting the dictionary when doing
raw deflate. Since zlib 1.2.3 corrects security vulnerabilities in zlib
version 1.2.1 and 1.2.2, conditionals check for zlib 1.2.3 or later during
the compilation of pigz.c. zlib 1.2.4 includes some improvements to
Z_FULL_FLUSH and deflateSetDictionary() that permit identical output for
pigz with and without threads, which is not possible with zlib 1.2.3. This
may be important for uses of pigz -R where small changes in the contents
should result in small changes in the archive for rsync. Note that due to
the details of how the lower levels of compression result in greater speed,
compression level 3 and below does not permit identical pigz output with and
without threads.
pigz uses the POSIX pthread library for thread control and communication,
through the yarn.h interface to yarn.c. yarn.c can be replaced with
equivalent implementations using other thread libraries. pigz can be
compiled with NOTHREAD #defined to not use threads at all (in which case
pigz will not be able to live up to the "parallel" in its name).
*/
/*
Details of parallel compression implementation:
When doing parallel compression, pigz uses the main thread to read the input
in 'size' sized chunks (see -b), and puts those in a compression job list,
each with a sequence number to keep track of the ordering. If it is not the
first chunk, then that job also points to the previous input buffer, from
which the last 32K will be used as a dictionary (unless -i is specified).
This sets a lower limit of 32K on 'size'.
pigz launches up to 'procs' compression threads (see -p). Each compression
thread continues to look for jobs in the compression list and perform those
jobs until instructed to return. When a job is pulled, the dictionary, if
provided, will be loaded into the deflate engine and then that input buffer
is dropped for reuse. Then the input data is compressed into an output
buffer that grows in size if necessary to hold the compressed data. The job
is then put into the write job list, sorted by the sequence number. The
compress thread however continues to calculate the check value on the input
data, either a CRC-32 or Adler-32, possibly in parallel with the write
thread writing the output data. Once that's done, the compress thread drops
the input buffer and also releases the lock on the check value so that the
write thread can combine it with the previous check values. The compress
thread has then completed that job, and goes to look for another.
All of the compress threads are left running and waiting even after the last
chunk is processed, so that they can support the next input to be compressed
(more than one input file on the command line). Once pigz is done, it will
call all the compress threads home (that'll do pig, that'll do).
Before starting to read the input, the main thread launches the write thread
so that it is ready pick up jobs immediately. The compress thread puts the
write jobs in the list in sequence sorted order, so that the first job in
the list is always has the lowest sequence number. The write thread waits
for the next write job in sequence, and then gets that job. The job still
holds its input buffer, from which the write thread gets the input buffer
length for use in check value combination. Then the write thread drops that
input buffer to allow its reuse. Holding on to the input buffer until the
write thread starts also has the benefit that the read and compress threads
can't get way ahead of the write thread and build up a large backlog of
unwritten compressed data. The write thread will write the compressed data,
drop the output buffer, and then wait for the check value to be unlocked by
the compress thread. Then the write thread combines the check value for this
chunk with the total check value for eventual use in the trailer. If this is
not the last chunk, the write thread then goes back to look for the next
output chunk in sequence. After the last chunk, the write thread returns and
joins the main thread. Unlike the compress threads, a new write thread is
launched for each input stream. The write thread writes the appropriate
header and trailer around the compressed data.
The input and output buffers are reused through their collection in pools.
Each buffer has a use count, which when decremented to zero returns the
buffer to the respective pool. Each input buffer has up to three parallel
uses: as the input for compression, as the data for the check value
calculation, and as a dictionary for compression. Each output buffer has
only one use, which is as the output of compression followed serially as
data to be written. The input pool is limited in the number of buffers, so
that reading does not get way ahead of compression and eat up memory with
more input than can be used. The limit is approximately two times the number
of compression threads. In the case that reading is fast as compared to
compression, that number allows a second set of buffers to be read while the
first set of compressions are being performed. The number of output buffers
is not directly limited, but is indirectly limited by the release of input
buffers to about the same number.
*/
// Portability defines.
#define _FILE_OFFSET_BITS 64 // Use large file functions
#define _LARGE_FILES // Same thing for AIX
#define _XOPEN_SOURCE 700 // For POSIX 2008
// Included headers and what is expected from each.
#include <stdio.h> // fflush(), fprintf(), fputs(), getchar(), putc(),
// puts(), printf(), vasprintf(), stderr, EOF, NULL,
// SEEK_END, size_t, off_t
#include <stdlib.h> // exit(), malloc(), free(), realloc(), atol(), atoi(),
// getenv()
#include <stdarg.h> // va_start(), va_arg(), va_end(), va_list
#include <string.h> // memset(), memchr(), memcpy(), strcmp(), strcpy(),
// strncpy(), strlen(), strcat(), strrchr(),
// strerror()
#include <errno.h> // errno, EEXIST
#include <assert.h> // assert()
#include <time.h> // ctime(), time(), time_t, mktime()
#include <signal.h> // signal(), SIGINT
#include <sys/types.h> // ssize_t
#include <sys/stat.h> // chmod(), stat(), fstat(), lstat(), struct stat,
// S_IFDIR, S_IFLNK, S_IFMT, S_IFREG
#include <sys/time.h> // utimes(), gettimeofday(), struct timeval
#include <unistd.h> // unlink(), _exit(), read(), write(), close(),
// lseek(), isatty(), chown(), fsync()
#include <fcntl.h> // open(), O_CREAT, O_EXCL, O_RDONLY, O_TRUNC,
// O_WRONLY, fcntl(), F_FULLFSYNC
#include <dirent.h> // opendir(), readdir(), closedir(), DIR,
// struct dirent
#include <limits.h> // UINT_MAX, INT_MAX
#if __STDC_VERSION__-0 >= 199901L || __GNUC__-0 >= 3
# include <inttypes.h> // intmax_t, uintmax_t
typedef uintmax_t length_t;
typedef uint32_t crc_t;
#else
typedef unsigned long length_t;
typedef unsigned long crc_t;
#endif
#ifdef PIGZ_DEBUG
# if defined(__APPLE__)
# include <malloc/malloc.h>
# define MALLOC_SIZE(p) malloc_size(p)
# elif defined (__linux)
# include <malloc.h>
# define MALLOC_SIZE(p) malloc_usable_size(p)
# elif defined (_WIN32) || defined(_WIN64)
# include <malloc.h>
# define MALLOC_SIZE(p) _msize(p)
# else
# define MALLOC_SIZE(p) (0)
# endif
#endif
#ifdef __hpux
# include <sys/param.h>
# include <sys/pstat.h>
#endif
#ifndef S_IFLNK
# define S_IFLNK 0
#endif
#ifdef __MINGW32__
# define chown(p,o,g) 0
# define utimes(p,t) 0
# define lstat(p,s) stat(p,s)
# define _exit(s) exit(s)
#endif
#include "zlib.h" // deflateInit2(), deflateReset(), deflate(),
// deflateEnd(), deflateSetDictionary(), crc32(),
// adler32(), inflateBackInit(), inflateBack(),
// inflateBackEnd(), Z_DEFAULT_COMPRESSION,
// Z_DEFAULT_STRATEGY, Z_DEFLATED, Z_NO_FLUSH, Z_NULL,
// Z_OK, Z_SYNC_FLUSH, z_stream
#if !defined(ZLIB_VERNUM) || ZLIB_VERNUM < 0x1230
# error "Need zlib version 1.2.3 or later"
#endif
#ifndef NOTHREAD
# include "yarn.h" // thread, launch(), join(), join_all(), lock,
// new_lock(), possess(), twist(), wait_for(),
// release(), peek_lock(), free_lock(), yarn_name
#endif
#ifndef NOZOPFLI
# include "zopfli/src/zopfli/deflate.h" // ZopfliDeflatePart(),
// ZopfliInitOptions(),
// ZopfliOptions
#endif
#include "try.h" // try, catch, always, throw, drop, punt, ball_t
// For local functions and globals.
#define local static
// Prevent end-of-line conversions on MSDOSish operating systems.
#if defined(MSDOS) || defined(OS2) || defined(_WIN32) || defined(__CYGWIN__)
# include <io.h> // setmode(), O_BINARY, _commit() for _WIN32
# define SET_BINARY_MODE(fd) setmode(fd, O_BINARY)
#else
# define SET_BINARY_MODE(fd)
#endif
// Release an allocated pointer, if allocated, and mark as unallocated.
#define RELEASE(ptr) \
do { \
if ((ptr) != NULL) { \
FREE(ptr); \
ptr = NULL; \
} \
} while (0)
// Sliding dictionary size for deflate.
#define DICT 32768U
// Largest power of 2 that fits in an unsigned int. Used to limit requests to
// zlib functions that use unsigned int lengths.
#define MAXP2 (UINT_MAX - (UINT_MAX >> 1))
/* rsyncable constants -- RSYNCBITS is the number of bits in the mask for
comparison. For random input data, there will be a hit on average every
1<<RSYNCBITS bytes. So for an RSYNCBITS of 12, there will be an average of
one hit every 4096 bytes, resulting in a mean block size of 4096. RSYNCMASK
is the resulting bit mask. RSYNCHIT is what the hash value is compared to
after applying the mask.
The choice of 12 for RSYNCBITS is consistent with the original rsyncable
patch for gzip which also uses a 12-bit mask. This results in a relatively
small hit to compression, on the order of 1.5% to 3%. A mask of 13 bits can
be used instead if a hit of less than 1% to the compression is desired, at
the expense of more blocks transmitted for rsync updates. (Your mileage may
vary.)
This implementation of rsyncable uses a different hash algorithm than what
the gzip rsyncable patch uses in order to provide better performance in
several regards. The algorithm is simply to shift the hash value left one
bit and exclusive-or that with the next byte. This is masked to the number
of hash bits (RSYNCMASK) and compared to all ones except for a zero in the
top bit (RSYNCHIT). This rolling hash has a very small window of 19 bytes
(RSYNCBITS+7). The small window provides the benefit of much more rapid
resynchronization after a change, than does the 4096-byte window of the gzip
rsyncable patch.
The comparison value is chosen to avoid matching any repeated bytes or short
sequences. The gzip rsyncable patch on the other hand uses a sum and zero
for comparison, which results in certain bad behaviors, such as always
matching everywhere in a long sequence of zeros. Such sequences occur
frequently in tar files.
This hash efficiently discards history older than 19 bytes simply by
shifting that data past the top of the mask -- no history needs to be
retained to undo its impact on the hash value, as is needed for a sum.
The choice of the comparison value (RSYNCHIT) has the virtue of avoiding
extremely short blocks. The shortest block is five bytes (RSYNCBITS-7) from
hit to hit, and is unlikely. Whereas with the gzip rsyncable algorithm,
blocks of one byte are not only possible, but in fact are the most likely
block size.
Thanks and acknowledgement to Kevin Day for his experimentation and insights
on rsyncable hash characteristics that led to some of the choices here.
*/
#define RSYNCBITS 12
#define RSYNCMASK ((1U << RSYNCBITS) - 1)
#define RSYNCHIT (RSYNCMASK >> 1)
// Initial pool counts and sizes -- INBUFS is the limit on the number of input
// spaces as a function of the number of processors (used to throttle the
// creation of compression jobs), OUTPOOL is the initial size of the output
// data buffer, chosen to make resizing of the buffer very unlikely and to
// allow prepending with a dictionary for use as an input buffer for zopfli.
#define INBUFS(p) (((p)<<1)+3)
#define OUTPOOL(s) ((s)+((s)>>4)+DICT)
// Input buffer size, and augmentation for re-inserting a central header.
#define BUF 32768
#define CEN 42
#define EXT (BUF + CEN) // provide enough room to unget a header
// Globals (modified by main thread only when it's the only thread).
local struct {
int volatile ret; // pigz return code
char *prog; // name by which pigz was invoked
int ind; // input file descriptor
int outd; // output file descriptor
char *inf; // input file name (allocated)
size_t inz; // input file name allocated size
char *outf; // output file name (allocated)
int verbosity; // 0 = quiet, 1 = normal, 2 = verbose, 3 = trace
int headis; // 1 to store name, 2 to store date, 3 both
int pipeout; // write output to stdout even if file
int keep; // true to prevent deletion of input file
int force; // true to overwrite, compress links, cat
int sync; // true to flush output file
int form; // gzip = 0, zlib = 1, zip = 2 or 3
int magic1; // first byte of possible header when decoding
int recurse; // true to dive down into directory structure
char *sufx; // suffix to use (".gz" or user supplied)
char *name; // name for gzip or zip header
char *alias; // name for zip header when input is stdin
char *comment; // comment for gzip or zip header.
time_t mtime; // time stamp from input file for gzip header
int list; // true to list files instead of compress
int first; // true if we need to print listing header
int decode; // 0 to compress, 1 to decompress, 2 to test
int level; // compression level
int strategy; // compression strategy
#ifndef NOZOPFLI
ZopfliOptions zopts; // zopfli compression options
#endif
int rsync; // true for rsync blocking
int procs; // maximum number of compression threads (>= 1)
int setdict; // true to initialize dictionary in each thread
size_t block; // uncompressed input size per thread (>= 32K)
#ifndef NOTHREAD
crc_t shift; // pre-calculated CRC-32 shift for length block
#endif
// saved gzip/zip header data for decompression, testing, and listing
time_t stamp; // time stamp from gzip header
char *hname; // name from header (allocated)
char *hcomm; // comment from header (allocated)
unsigned long zip_crc; // local header crc
length_t zip_clen; // local header compressed length
length_t zip_ulen; // local header uncompressed length
int zip64; // true if has zip64 extended information
// globals for decompression and listing buffered reading
unsigned char in_buf[EXT]; // input buffer
unsigned char *in_next; // next unused byte in buffer
size_t in_left; // number of unused bytes in buffer
int in_eof; // true if reached end of file on input
int in_short; // true if last read didn't fill buffer
length_t in_tot; // total bytes read from input
length_t out_tot; // total bytes written to output
unsigned long out_check; // check value of output
#ifndef NOTHREAD
// globals for decompression parallel reading
unsigned char in_buf2[EXT]; // second buffer for parallel reads
size_t in_len; // data waiting in next buffer
int in_which; // -1: start, 0: in_buf2, 1: in_buf
lock *load_state; // value = 0 to wait, 1 to read a buffer
thread *load_thread; // load_read() thread for joining
#endif
} g;
// Display a complaint with the program name on stderr.
local int complain(char *fmt, ...) {
va_list ap;
if (g.verbosity > 0) {
fprintf(stderr, "%s: ", g.prog);
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
putc('\n', stderr);
fflush(stderr);
}
g.ret = 1;
return 0;
}
#ifdef PIGZ_DEBUG
// Memory tracking.
#define MAXMEM 131072 // maximum number of tracked pointers
local struct mem_track_s {
size_t num; // current number of allocations
size_t size; // total size of current allocations
size_t tot; // maximum number of allocations
size_t max; // maximum size of allocations
#ifndef NOTHREAD
lock *lock; // lock for access across threads
#endif
size_t have; // number in array (possibly != num)
void *mem[MAXMEM]; // sorted array of allocated pointers
} mem_track;
#ifndef NOTHREAD
# define mem_track_grab(m) possess((m)->lock)
# define mem_track_drop(m) release((m)->lock)
#else
# define mem_track_grab(m)
# define mem_track_drop(m)
#endif
// Return the leftmost insert location of ptr in the sorted list mem->mem[],
// which currently has mem->have elements. If ptr is already in the list, the
// returned value will point to its first occurrence. The return location will
// be one after the last element if ptr is greater than all of the elements.
local size_t search_track(struct mem_track_s *mem, void *ptr) {
ptrdiff_t left = 0;
ptrdiff_t right = mem->have - 1;
while (left <= right) {
ptrdiff_t mid = (left + right) >> 1;
if (mem->mem[mid] < ptr)
left = mid + 1;
else
right = mid - 1;
}
return left;
}
// Insert ptr in the sorted list mem->mem[] and update the memory allocation
// statistics.
local void insert_track(struct mem_track_s *mem, void *ptr) {
mem_track_grab(mem);
assert(mem->have < MAXMEM && "increase MAXMEM in source and try again");
size_t i = search_track(mem, ptr);
if (i < mem->have && mem->mem[i] == ptr)
complain("mem_track: duplicate pointer %p\n", ptr);
memmove(&mem->mem[i + 1], &mem->mem[i],
(mem->have - i) * sizeof(void *));
mem->mem[i] = ptr;
mem->have++;
mem->num++;
mem->size += MALLOC_SIZE(ptr);
if (mem->num > mem->tot)
mem->tot = mem->num;
if (mem->size > mem->max)
mem->max = mem->size;
mem_track_drop(mem);
}
// Find and delete ptr from the sorted list mem->mem[] and update the memory
// allocation statistics.
local void delete_track(struct mem_track_s *mem, void *ptr) {
mem_track_grab(mem);
size_t i = search_track(mem, ptr);
if (i < mem->num && mem->mem[i] == ptr) {
memmove(&mem->mem[i], &mem->mem[i + 1],
(mem->have - (i + 1)) * sizeof(void *));
mem->have--;
}
else
complain("mem_track: missing pointer %p\n", ptr);
mem->num--;
mem->size -= MALLOC_SIZE(ptr);
mem_track_drop(mem);
}
local void *malloc_track(struct mem_track_s *mem, size_t size) {
void *ptr = malloc(size);
if (ptr != NULL)
insert_track(mem, ptr);
return ptr;
}
local void *realloc_track(struct mem_track_s *mem, void *ptr, size_t size) {
if (ptr == NULL)
return malloc_track(mem, size);
delete_track(mem, ptr);
void *got = realloc(ptr, size);
insert_track(mem, got == NULL ? ptr : got);
return got;
}
local void free_track(struct mem_track_s *mem, void *ptr) {
if (ptr != NULL) {
delete_track(mem, ptr);
free(ptr);
}
}
#ifndef NOTHREAD
local void *yarn_malloc(size_t size) {
return malloc_track(&mem_track, size);
}
local void yarn_free(void *ptr) {
free_track(&mem_track, ptr);
}
#endif
local voidpf zlib_alloc(voidpf opaque, uInt items, uInt size) {
return malloc_track(opaque, items * (size_t)size);
}
local void zlib_free(voidpf opaque, voidpf address) {
free_track(opaque, address);
}
#define REALLOC(p, s) realloc_track(&mem_track, p, s)
#define FREE(p) free_track(&mem_track, p)
#define OPAQUE (&mem_track)
#define ZALLOC zlib_alloc
#define ZFREE zlib_free
#else // !PIGZ_DEBUG
#define REALLOC realloc
#define FREE free
#define OPAQUE Z_NULL
#define ZALLOC Z_NULL
#define ZFREE Z_NULL
#endif
// Assured memory allocation.
local void *alloc(void *ptr, size_t size) {
ptr = REALLOC(ptr, size);
if (ptr == NULL)
throw(ENOMEM, "not enough memory");
return ptr;
}
#ifdef PIGZ_DEBUG
// Logging.
// Starting time of day for tracing.
local struct timeval start;
// Trace log.
local struct log {
struct timeval when; // time of entry
char *msg; // message
struct log *next; // next entry
} *log_head, **log_tail = NULL;
#ifndef NOTHREAD
local lock *log_lock = NULL;
#endif
// Maximum log entry length.
#define MAXMSG 256
// Set up log (call from main thread before other threads launched).
local void log_init(void) {
if (log_tail == NULL) {
mem_track.num = 0;
mem_track.size = 0;
mem_track.num = 0;
mem_track.max = 0;
mem_track.have = 0;
#ifndef NOTHREAD
mem_track.lock = new_lock(0);
yarn_mem(yarn_malloc, yarn_free);
log_lock = new_lock(0);
#endif
log_head = NULL;
log_tail = &log_head;
}
}
// Add entry to trace log.
local void log_add(char *fmt, ...) {
struct timeval now;
struct log *me;
va_list ap;
char msg[MAXMSG];
gettimeofday(&now, NULL);
me = alloc(NULL, sizeof(struct log));
me->when = now;
va_start(ap, fmt);
vsnprintf(msg, MAXMSG, fmt, ap);
va_end(ap);
me->msg = alloc(NULL, strlen(msg) + 1);
strcpy(me->msg, msg);
me->next = NULL;
#ifndef NOTHREAD
assert(log_lock != NULL);
possess(log_lock);
#endif
*log_tail = me;
log_tail = &(me->next);
#ifndef NOTHREAD
twist(log_lock, BY, +1);
#endif
}
// Pull entry from trace log and print it, return false if empty.
local int log_show(void) {
struct log *me;
struct timeval diff;
if (log_tail == NULL)
return 0;
#ifndef NOTHREAD
possess(log_lock);
#endif
me = log_head;
if (me == NULL) {
#ifndef NOTHREAD
release(log_lock);
#endif
return 0;
}
log_head = me->next;
if (me->next == NULL)
log_tail = &log_head;
#ifndef NOTHREAD
twist(log_lock, BY, -1);
#endif
diff.tv_usec = me->when.tv_usec - start.tv_usec;
diff.tv_sec = me->when.tv_sec - start.tv_sec;
if (diff.tv_usec < 0) {
diff.tv_usec += 1000000L;
diff.tv_sec--;
}
fprintf(stderr, "trace %ld.%06ld %s\n",
(long)diff.tv_sec, (long)diff.tv_usec, me->msg);
fflush(stderr);
FREE(me->msg);
FREE(me);
return 1;
}
// Release log resources (need to do log_init() to use again).
local void log_free(void) {
struct log *me;
if (log_tail != NULL) {
#ifndef NOTHREAD
possess(log_lock);
#endif
while ((me = log_head) != NULL) {
log_head = me->next;
FREE(me->msg);
FREE(me);
}
#ifndef NOTHREAD
twist(log_lock, TO, 0);
free_lock(log_lock);
log_lock = NULL;
yarn_mem(malloc, free);
free_lock(mem_track.lock);
#endif
log_tail = NULL;
}
}
// Show entries until no more, free log.
local void log_dump(void) {
if (log_tail == NULL)
return;
while (log_show())
;
log_free();
if (mem_track.num || mem_track.size)
complain("memory leak: %zu allocs of %zu bytes total",
mem_track.num, mem_track.size);
if (mem_track.max)
fprintf(stderr, "%zu bytes of memory used in %zu allocs\n",
mem_track.max, mem_track.tot);
}
// Debugging macro.
#define Trace(x) \
do { \
if (g.verbosity > 2) { \
log_add x; \
} \
} while (0)
#else // !PIGZ_DEBUG
#define log_dump()
#define Trace(x)
#endif
// Abort or catch termination signal.
local void cut_short(int sig) {
if (sig == SIGINT) {
Trace(("termination by user"));
}
if (g.outd != -1 && g.outd != 1) {
unlink(g.outf);
RELEASE(g.outf);
g.outd = -1;
}
log_dump();
_exit(sig < 0 ? -sig : EINTR);
}
// Common code for catch block of top routine in the thread.
#define THREADABORT(ball) \
do { \
if ((ball).code != EPIPE) \
complain("abort: %s", (ball).why); \
drop(ball); \
cut_short(-(ball).code); \
} while (0)
// Compute next size up by multiplying by about 2**(1/3) and rounding to the
// next power of 2 if close (three applications results in doubling). If small,
// go up to at least 16, if overflow, go to max size_t value.
local inline size_t grow(size_t size) {
size_t was, top;
int shift;
was = size;
size += size >> 2;
top = size;
for (shift = 0; top > 7; shift++)
top >>= 1;
if (top == 7)
size = (size_t)1 << (shift + 3);
if (size < 16)
size = 16;
if (size <= was)
size = (size_t)0 - 1;
return size;
}
// Copy cpy[0..len-1] to *mem + off, growing *mem if necessary, where *size is
// the allocated size of *mem. Return the number of bytes in the result.
local inline size_t vmemcpy(char **mem, size_t *size, size_t off,
void *cpy, size_t len) {
size_t need;
need = off + len;
if (need < off)
throw(ERANGE, "overflow");
if (need > *size) {
need = grow(need);
if (off == 0) {
RELEASE(*mem);
*size = 0;
}
*mem = alloc(*mem, need);
*size = need;
}
memcpy(*mem + off, cpy, len);
return off + len;
}
// Copy the zero-terminated string cpy to *str + off, growing *str if
// necessary, where *size is the allocated size of *str. Return the length of
// the string plus one.
local inline size_t vstrcpy(char **str, size_t *size, size_t off, void *cpy) {
return vmemcpy(str, size, off, cpy, strlen(cpy) + 1);
}
// Read up to len bytes into buf, repeating read() calls as needed.
local size_t readn(int desc, unsigned char *buf, size_t len) {
ssize_t ret;
size_t got;
got = 0;
while (len) {
ret = read(desc, buf, len);
if (ret < 0)
throw(errno, "read error on %s (%s)", g.inf, strerror(errno));
if (ret == 0)
break;
buf += ret;
len -= (size_t)ret;
got += (size_t)ret;
}
return got;
}
// Write len bytes, repeating write() calls as needed. Return len.
local size_t writen(int desc, void const *buf, size_t len) {
char const *next = buf;
size_t left = len;
while (left) {
size_t const max = SSIZE_MAX;
ssize_t ret = write(desc, next, left > max ? max : left);
if (ret < 1)
throw(errno, "write error on %s (%s)", g.outf, strerror(errno));
next += ret;
left -= (size_t)ret;
}
return len;
}
// Convert Unix time to MS-DOS date and time, assuming the current timezone.
// (You got a better idea?)
local unsigned long time2dos(time_t t) {
struct tm *tm;
unsigned long dos;
if (t == 0)
t = time(NULL);
tm = localtime(&t);
if (tm->tm_year < 80 || tm->tm_year > 207)
return 0;
dos = (unsigned long)(tm->tm_year - 80) << 25;
dos += (unsigned long)(tm->tm_mon + 1) << 21;
dos += (unsigned long)tm->tm_mday << 16;
dos += (unsigned long)tm->tm_hour << 11;
dos += (unsigned long)tm->tm_min << 5;
dos += (unsigned long)(tm->tm_sec + 1) >> 1; // round to even seconds
return dos;
}
// Value type for put() value arguments. All value arguments for put() must be
// cast to this type in order for va_arg() to pull the correct type from the
// argument list.
typedef length_t val_t;
// Write a set of header or trailer values to out, which is a file descriptor.
// The values are specified by a series of arguments in pairs, where the first
// argument in each pair is the number of bytes, and the second argument in
// each pair is the unsigned integer value to write. The first argument in each
// pair must be an int, and the second argument in each pair must be a val_t.
// The arguments are terminated by a single zero (an int). If the number of
// bytes is positive, then the value is written in little-endian order. If the
// number of bytes is negative, then the value is written in big-endian order.
// The total number of bytes written is returned. This makes the long and
// tiresome zip format headers and trailers more readable, maintainable, and
// verifiable.
local unsigned put(int out, ...) {
// compute the total number of bytes
unsigned count = 0;
int n;
va_list ap;
va_start(ap, out);
while ((n = va_arg(ap, int)) != 0) {
va_arg(ap, val_t);
count += (unsigned)abs(n);
}
va_end(ap);
// allocate memory for the data
unsigned char *wrap = alloc(NULL, count);
unsigned char *next = wrap;
// write the requested data to wrap[]
va_start(ap, out);
while ((n = va_arg(ap, int)) != 0) {
val_t val = va_arg(ap, val_t);
if (n < 0) { // big endian
n = -n << 3;
do {
n -= 8;
*next++ = (unsigned char)(val >> n);
} while (n);
}
else // little endian
do {
*next++ = (unsigned char)val;
val >>= 8;
} while (--n);
}
va_end(ap);
// write wrap[] to out and return the number of bytes written
writen(out, wrap, count);
FREE(wrap);
return count;
}
// Low 32-bits set to all ones.
#define LOW32 0xffffffff
// Write a gzip, zlib, or zip header using the information in the globals.
local length_t put_header(void) {
length_t len;
if (g.form > 1) { // zip
// write local header -- we don't know yet whether the lengths will fit
// in 32 bits or not, so we have to assume that they might not and put
// in a Zip64 extra field so that the data descriptor that appears
// after the compressed data is interpreted with 64-bit lengths
len = put(g.outd,
4, (val_t)0x04034b50, // local header signature
2, (val_t)45, // version needed to extract (4.5)
2, (val_t)8, // flags: data descriptor follows data
2, (val_t)8, // deflate
4, (val_t)time2dos(g.mtime),
4, (val_t)0, // crc (not here)
4, (val_t)LOW32, // compressed length (not here)
4, (val_t)LOW32, // uncompressed length (not here)
2, (val_t)(strlen(g.name == NULL ? g.alias : g.name)), // name len
2, (val_t)29, // length of extra field (see below)
0);
// write file name (use g.alias for stdin)
len += writen(g.outd, g.name == NULL ? g.alias : g.name,
strlen(g.name == NULL ? g.alias : g.name));
// write Zip64 and extended timestamp extra field blocks (29 bytes)
len += put(g.outd,
2, (val_t)0x0001, // Zip64 extended information ID
2, (val_t)16, // number of data bytes in this block
8, (val_t)0, // uncompressed length (not here)
8, (val_t)0, // compressed length (not here)
2, (val_t)0x5455, // extended timestamp ID
2, (val_t)5, // number of data bytes in this block
1, (val_t)1, // flag presence of mod time
4, (val_t)g.mtime, // mod time
0);
}
else if (g.form) { // zlib
if (g.comment != NULL)
complain("can't store comment in zlib format -- ignoring");
unsigned head;
head = (0x78 << 8) + // deflate, 32K window
(g.level >= 9 ? 3 << 6 :
g.level == 1 ? 0 << 6:
g.level >= 6 || g.level == Z_DEFAULT_COMPRESSION ? 1 << 6 :
2 << 6); // optional compression level clue
head += 31 - (head % 31); // make it a multiple of 31
len = put(g.outd,
-2, (val_t)head, // zlib format uses big-endian order
0);
}
else { // gzip
len = put(g.outd,
1, (val_t)31,
1, (val_t)139,
1, (val_t)8, // deflate
1, (val_t)((g.name != NULL ? 8 : 0) +
(g.comment != NULL ? 16 : 0)),
4, (val_t)g.mtime,
1, (val_t)(g.level >= 9 ? 2 : g.level == 1 ? 4 : 0),
1, (val_t)3, // unix
0);
if (g.name != NULL)
len += writen(g.outd, g.name, strlen(g.name) + 1);
if (g.comment != NULL)
len += writen(g.outd, g.comment, strlen(g.comment) + 1);
}
return len;
}
// Write a gzip, zlib, or zip trailer.
local void put_trailer(length_t ulen, length_t clen,
unsigned long check, length_t head) {
if (g.form > 1) { // zip
// write Zip64 data descriptor, as promised in the local header
length_t desc = put(g.outd,
4, (val_t)0x08074b50,
4, (val_t)check,
8, (val_t)clen,
8, (val_t)ulen,
0);
// zip64 is true if either the compressed or the uncompressed length
// does not fit in 32 bits, in which case there needs to be a Zip64
// extra block in the central directory entry
int zip64 = ulen >= LOW32 || clen >= LOW32;
// write central file header
length_t cent = put(g.outd,
4, (val_t)0x02014b50, // central header signature
1, (val_t)45, // made by 4.5 for Zip64 V1 end record
1, (val_t)255, // ignore external attributes
2, (val_t)45, // version needed to extract (4.5)
2, (val_t)8, // data descriptor is present
2, (val_t)8, // deflate
4, (val_t)time2dos(g.mtime),
4, (val_t)check, // crc
4, (val_t)(zip64 ? LOW32 : clen), // compressed length
4, (val_t)(zip64 ? LOW32 : ulen), // uncompressed length
2, (val_t)(strlen(g.name == NULL ? g.alias : g.name)), // name len
2, (val_t)(zip64 ? 29 : 9), // extra field size (see below)
2, (val_t)(g.comment == NULL ? 0 : strlen(g.comment)), // comment
2, (val_t)0, // disk number 0
2, (val_t)0, // internal file attributes
4, (val_t)0, // external file attributes (ignored)
4, (val_t)0, // offset of local header
0);
// write file name (use g.alias for stdin)
cent += writen(g.outd, g.name == NULL ? g.alias : g.name,
strlen(g.name == NULL ? g.alias : g.name));
// write Zip64 extra field block (20 bytes)
if (zip64)
cent += put(g.outd,
2, (val_t)0x0001, // Zip64 extended information ID
2, (val_t)16, // number of data bytes in this block
8, (val_t)ulen, // uncompressed length
8, (val_t)clen, // compressed length
0);
// write extended timestamp extra field block (9 bytes)
cent += put(g.outd,
2, (val_t)0x5455, // extended timestamp signature
2, (val_t)5, // number of data bytes in this block
1, (val_t)1, // flag presence of mod time
4, (val_t)g.mtime, // mod time
0);
// write comment, if requested
if (g.comment != NULL)
cent += writen(g.outd, g.comment, strlen(g.comment));
// here zip64 is true if the offset of the central directory does not
// fit in 32 bits, in which case insert the Zip64 end records to
// provide a 64-bit offset
zip64 = head + clen + desc >= LOW32;
if (zip64) {
// write Zip64 end of central directory record and locator
put(g.outd,
4, (val_t)0x06064b50, // Zip64 end of central dir sig
8, (val_t)44, // size of the remainder of this record
2, (val_t)45, // version made by
2, (val_t)45, // version needed to extract
4, (val_t)0, // number of this disk
4, (val_t)0, // disk with start of central directory
8, (val_t)1, // number of entries on this disk
8, (val_t)1, // total number of entries
8, (val_t)cent, // size of central directory
8, (val_t)(head + clen + desc), // central dir offset
4, (val_t)0x07064b50, // Zip64 end locator signature
4, (val_t)0, // disk with Zip64 end of central dir
8, (val_t)(head + clen + desc + cent), // location
4, (val_t)1, // total number of disks
0);
}
// write end of central directory record
put(g.outd,
4, (val_t)0x06054b50, // end of central directory signature
2, (val_t)0, // number of this disk
2, (val_t)0, // disk with start of central directory
2, (val_t)(zip64 ? 0xffff : 1), // entries on this disk
2, (val_t)(zip64 ? 0xffff : 1), // total number of entries
4, (val_t)(zip64 ? LOW32 : cent), // size of central directory
4, (val_t)(zip64 ? LOW32 : head + clen + desc), // offset
2, (val_t)0, // no zip file comment
0);
}
else if (g.form) // zlib
put(g.outd,
-4, (val_t)check, // zlib format uses big-endian order
0);
else // gzip
put(g.outd,
4, (val_t)check,
4, (val_t)ulen,
0);
}
// Compute an Adler-32, allowing a size_t length.
local unsigned long adler32z(unsigned long adler,
unsigned char const *buf, size_t len) {
while (len > UINT_MAX && buf != NULL) {
adler = adler32(adler, buf, UINT_MAX);
buf += UINT_MAX;
len -= UINT_MAX;
}
return adler32(adler, buf, (unsigned)len);
}
// Compute a CRC-32, allowing a size_t length.
local unsigned long crc32z(unsigned long crc,
unsigned char const *buf, size_t len) {
while (len > UINT_MAX && buf != NULL) {
crc = crc32(crc, buf, UINT_MAX);
buf += UINT_MAX;
len -= UINT_MAX;
}
return crc32(crc, buf, (unsigned)len);
}
// Compute check value depending on format.
#define CHECK(a,b,c) (g.form == 1 ? adler32z(a,b,c) : crc32z(a,b,c))
// Return the zlib version as an integer, where each component is interpreted
// as a decimal number and converted to four hexadecimal digits. E.g.
// '1.2.11.1' -> 0x12b1, or return -1 if the string is not a valid version.
local long zlib_vernum(void) {
char const *ver = zlibVersion();
long num = 0;
int left = 4;
int comp = 0;
do {
if (*ver >= '0' && *ver <= '9')
comp = 10 * comp + *ver - '0';
else {
num = (num << 4) + (comp > 0xf ? 0xf : comp);
left--;
if (*ver != '.')
break;
comp = 0;
}
ver++;
} while (left);
return left < 2 ? num << (left << 2) : -1;
}
#ifndef NOTHREAD
// -- threaded portions of pigz --
// -- check value combination routines for parallel calculation --
#define COMB(a,b,c) (g.form == 1 ? adler32_comb(a,b,c) : crc32_comb(a,b,c))
// Combine two crc-32's or two adler-32's (copied from zlib 1.2.3 so that pigz
// can be compatible with older versions of zlib).
// We copy the combination routines from zlib here, in order to avoid linkage
// issues with the zlib 1.2.3 builds on Sun, Ubuntu, and others.
// CRC-32 polynomial, reflected.
#define POLY 0xedb88320
// Return a(x) multiplied by b(x) modulo p(x), where p(x) is the CRC
// polynomial, reflected. For speed, this requires that a not be zero.
local crc_t multmodp(crc_t a, crc_t b) {
crc_t m = (crc_t)1 << 31;
crc_t p = 0;
for (;;) {
if (a & m) {
p ^= b;
if ((a & (m - 1)) == 0)
break;
}
m >>= 1;
b = b & 1 ? (b >> 1) ^ POLY : b >> 1;
}
return p;
}
// Table of x^2^n modulo p(x).
local const crc_t x2n_table[] = {
0x40000000, 0x20000000, 0x08000000, 0x00800000, 0x00008000,
0xedb88320, 0xb1e6b092, 0xa06a2517, 0xed627dae, 0x88d14467,
0xd7bbfe6a, 0xec447f11, 0x8e7ea170, 0x6427800e, 0x4d47bae0,
0x09fe548f, 0x83852d0f, 0x30362f1a, 0x7b5a9cc3, 0x31fec169,
0x9fec022a, 0x6c8dedc4, 0x15d6874d, 0x5fde7a4e, 0xbad90e37,
0x2e4e5eef, 0x4eaba214, 0xa8a472c0, 0x429a969e, 0x148d302a,
0xc40ba6d0, 0xc4e22c3c};
// Return x^(n*2^k) modulo p(x).
local crc_t x2nmodp(size_t n, unsigned k) {
crc_t p = (crc_t)1 << 31; // x^0 == 1
while (n) {
if (n & 1)
p = multmodp(x2n_table[k & 31], p);
n >>= 1;
k++;
}
return p;
}
// This uses the pre-computed g.shift value most of the time. Only the last
// combination requires a new x2nmodp() calculation.
local unsigned long crc32_comb(unsigned long crc1, unsigned long crc2,
size_t len2) {
return multmodp(len2 == g.block ? g.shift : x2nmodp(len2, 3), crc1) ^ crc2;
}
#define BASE 65521U // largest prime smaller than 65536
#define LOW16 0xffff // mask lower 16 bits
local unsigned long adler32_comb(unsigned long adler1, unsigned long adler2,
size_t len2) {
unsigned long sum1;
unsigned long sum2;
unsigned rem;
// the derivation of this formula is left as an exercise for the reader
rem = (unsigned)(len2 % BASE);
sum1 = adler1 & LOW16;
sum2 = (rem * sum1) % BASE;
sum1 += (adler2 & LOW16) + BASE - 1;
sum2 += ((adler1 >> 16) & LOW16) + ((adler2 >> 16) & LOW16) + BASE - rem;
if (sum1 >= BASE) sum1 -= BASE;
if (sum1 >= BASE) sum1 -= BASE;
if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1);
if (sum2 >= BASE) sum2 -= BASE;
return sum1 | (sum2 << 16);
}
// -- pool of spaces for buffer management --
// These routines manage a pool of spaces. Each pool specifies a fixed size
// buffer to be contained in each space. Each space has a use count, which when
// decremented to zero returns the space to the pool. If a space is requested
// from the pool and the pool is empty, a space is immediately created unless a
// specified limit on the number of spaces has been reached. Only if the limit
// is reached will it wait for a space to be returned to the pool. Each space
// knows what pool it belongs to, so that it can be returned.
// A space (one buffer for each space).
struct space {
lock *use; // use count -- return to pool when zero
unsigned char *buf; // buffer of size size
size_t size; // current size of this buffer
size_t len; // for application usage (initially zero)
struct pool *pool; // pool to return to
struct space *next; // for pool linked list
};
// Pool of spaces (one pool for each type needed).
struct pool {
lock *have; // unused spaces available, lock for list
struct space *head; // linked list of available buffers
size_t size; // size of new buffers in this pool
int limit; // number of new spaces allowed, or -1
int made; // number of buffers made
};
// Initialize a pool (pool structure itself provided, not allocated). The limit
// is the maximum number of spaces in the pool, or -1 to indicate no limit,
// i.e., to never wait for a buffer to return to the pool.
local void new_pool(struct pool *pool, size_t size, int limit) {
pool->have = new_lock(0);
pool->head = NULL;
pool->size = size;
pool->limit = limit;
pool->made = 0;
}
// Get a space from a pool. The use count is initially set to one, so there is
// no need to call use_space() for the first use.
local struct space *get_space(struct pool *pool) {
struct space *space;
// if can't create any more, wait for a space to show up
possess(pool->have);
if (pool->limit == 0)
wait_for(pool->have, NOT_TO_BE, 0);
// if a space is available, pull it from the list and return it
if (pool->head != NULL) {
space = pool->head;
pool->head = space->next;
twist(pool->have, BY, -1); // one less in pool
possess(space->use);
twist(space->use, TO, 1); // initially one user
space->len = 0;
return space;
}
// nothing available, don't want to wait, make a new space
assert(pool->limit != 0);
if (pool->limit > 0)
pool->limit--;
pool->made++;
release(pool->have);
space = alloc(NULL, sizeof(struct space));
space->use = new_lock(1); // initially one user
space->buf = alloc(NULL, pool->size);
space->size = pool->size;
space->len = 0;
space->pool = pool; // remember the pool this belongs to
return space;
}
// Increase the size of the buffer in space.
local void grow_space(struct space *space) {
size_t more;
// compute next size up
more = grow(space->size);
if (more == space->size)
throw(ERANGE, "overflow");
// reallocate the buffer
space->buf = alloc(space->buf, more);
space->size = more;
}
// Increment the use count to require one more drop before returning this space
// to the pool.
local void use_space(struct space *space) {
long use;
possess(space->use);
use = peek_lock(space->use);
assert(use != 0);
twist(space->use, BY, +1);
}
// Drop a space, returning it to the pool if the use count is zero.
local void drop_space(struct space *space) {
long use;
struct pool *pool;
if (space == NULL)
return;
possess(space->use);
use = peek_lock(space->use);
assert(use != 0);
twist(space->use, BY, -1);
if (use == 1) {
pool = space->pool;
possess(pool->have);
space->next = pool->head;
pool->head = space;
twist(pool->have, BY, +1);
}
}
// Free the memory and lock resources of a pool. Return number of spaces for
// debugging and resource usage measurement.
local int free_pool(struct pool *pool) {
int count;
struct space *space;
possess(pool->have);
count = 0;
while ((space = pool->head) != NULL) {
pool->head = space->next;
FREE(space->buf);
free_lock(space->use);
FREE(space);
count++;
}
assert(count == pool->made);
release(pool->have);
free_lock(pool->have);
return count;
}
// Input and output buffer pools.
local struct pool in_pool;
local struct pool out_pool;
local struct pool dict_pool;
local struct pool lens_pool;
// -- parallel compression --
// Compress or write job (passed from compress list to write list). If seq is
// equal to -1, compress_thread is instructed to return; if more is false then
// this is the last chunk, which after writing tells write_thread to return.
struct job {
long seq; // sequence number
int more; // true if this is not the last chunk
struct space *in; // input data to compress
struct space *out; // dictionary or resulting compressed data
struct space *lens; // coded list of flush block lengths
unsigned long check; // check value for input data
lock *calc; // released when check calculation complete
struct job *next; // next job in the list (either list)
};
// List of compress jobs (with tail for appending to list).
local lock *compress_have = NULL; // number of compress jobs waiting
local struct job *compress_head, **compress_tail;
// List of write jobs.
local lock *write_first; // lowest sequence number in list
local struct job *write_head;
// Number of compression threads running.
local int cthreads = 0;
// Write thread if running.
local thread *writeth = NULL;
// Setup job lists (call from main thread).
local void setup_jobs(void) {
// set up only if not already set up
if (compress_have != NULL)
return;
// allocate locks and initialize lists
compress_have = new_lock(0);
compress_head = NULL;
compress_tail = &compress_head;
write_first = new_lock(-1);
write_head = NULL;
// initialize buffer pools (initial size for out_pool not critical, since
// buffers will be grown in size if needed -- the initial size chosen to
// make this unlikely, the same for lens_pool)
new_pool(&in_pool, g.block, INBUFS(g.procs));
new_pool(&out_pool, OUTPOOL(g.block), -1);
new_pool(&dict_pool, DICT, -1);
new_pool(&lens_pool, g.block >> (RSYNCBITS - 1), -1);
}
// Command the compress threads to all return, then join them all (call from
// main thread), free all the thread-related resources.
local void finish_jobs(void) {
struct job job;
int caught;
// only do this once
if (compress_have == NULL)
return;
// command all of the extant compress threads to return
possess(compress_have);
job.seq = -1;
job.next = NULL;
compress_head = &job;
compress_tail = &(job.next);
twist(compress_have, BY, +1); // will wake them all up
// join all of the compress threads, verify they all came back
caught = join_all();
Trace(("-- joined %d compress threads", caught));
assert(caught == cthreads);
cthreads = 0;
// free the resources
caught = free_pool(&lens_pool);
Trace(("-- freed %d block lengths buffers", caught));
caught = free_pool(&dict_pool);
Trace(("-- freed %d dictionary buffers", caught));
caught = free_pool(&out_pool);
Trace(("-- freed %d output buffers", caught));
caught = free_pool(&in_pool);
Trace(("-- freed %d input buffers", caught));
free_lock(write_first);
free_lock(compress_have);
compress_have = NULL;
}
// Compress all strm->avail_in bytes at strm->next_in to out->buf, updating
// out->len, grow the size of the buffer (out->size) if necessary. Respect the
// size limitations of the zlib stream data types (size_t may be larger than
// unsigned).
local void deflate_engine(z_stream *strm, struct space *out, int flush) {
size_t room;
do {
room = out->size - out->len;
if (room == 0) {
grow_space(out);
room = out->size - out->len;
}
strm->next_out = out->buf + out->len;
strm->avail_out = room < UINT_MAX ? (unsigned)room : UINT_MAX;
(void)deflate(strm, flush);
out->len = (size_t)(strm->next_out - out->buf);
} while (strm->avail_out == 0);
assert(strm->avail_in == 0);
}
// Get the next compression job from the head of the list, compress and compute
// the check value on the input, and put a job in the write list with the
// results. Keep looking for more jobs, returning when a job is found with a
// sequence number of -1 (leave that job in the list for other incarnations to
// find).
local void compress_thread(void *dummy) {
struct job *job; // job pulled and working on
struct job *here, **prior; // pointers for inserting in write list
unsigned long check; // check value of input
unsigned char *next; // pointer for blocks, check value data
size_t left; // input left to process
size_t len; // remaining bytes to compress/check
#if ZLIB_VERNUM >= 0x1260
int bits; // deflate pending bits
#endif
int ret; // zlib return code
ball_t err; // error information from throw()
(void)dummy;
try {
z_stream strm; // deflate stream
#ifndef NOZOPFLI
struct space *temp = NULL;
// get temporary space for zopfli input
if (g.level > 9)
temp = get_space(&out_pool);
else
#endif
{
// initialize the deflate stream for this thread
strm.zfree = ZFREE;
strm.zalloc = ZALLOC;
strm.opaque = OPAQUE;
ret = deflateInit2(&strm, 6, Z_DEFLATED, -15, 8, g.strategy);
if (ret == Z_MEM_ERROR)
throw(ENOMEM, "not enough memory");
if (ret != Z_OK)
throw(EINVAL, "internal error");
}
// keep looking for work
for (;;) {
// get a job (like I tell my son)
possess(compress_have);
wait_for(compress_have, NOT_TO_BE, 0);
job = compress_head;
assert(job != NULL);
if (job->seq == -1)
break;
compress_head = job->next;
if (job->next == NULL)
compress_tail = &compress_head;
twist(compress_have, BY, -1);
// got a job -- initialize and set the compression level (note that
// if deflateParams() is called immediately after deflateReset(),
// there is no need to initialize input/output for the stream)
Trace(("-- compressing #%ld", job->seq));
#ifndef NOZOPFLI
if (g.level <= 9) {
#endif
(void)deflateReset(&strm);
(void)deflateParams(&strm, g.level, g.strategy);
#ifndef NOZOPFLI
}
else
temp->len = 0;
#endif
// set dictionary if provided, release that input or dictionary
// buffer (not NULL if g.setdict is true and if this is not the
// first work unit)
if (job->out != NULL) {
len = job->out->len;
left = len < DICT ? len : DICT;
#ifndef NOZOPFLI
if (g.level <= 9)
#endif
deflateSetDictionary(&strm, job->out->buf + (len - left),
(unsigned)left);
#ifndef NOZOPFLI
else {
memcpy(temp->buf, job->out->buf + (len - left), left);
temp->len = left;
}
#endif
drop_space(job->out);
}
// set up input and output
job->out = get_space(&out_pool);
#ifndef NOZOPFLI
if (g.level <= 9) {
#endif
strm.next_in = job->in->buf;
strm.next_out = job->out->buf;
#ifndef NOZOPFLI
}
else
memcpy(temp->buf + temp->len, job->in->buf, job->in->len);
#endif
// compress each block, either flushing or finishing
next = job->lens == NULL ? NULL : job->lens->buf;
left = job->in->len;
job->out->len = 0;
do {
// decode next block length from blocks list
len = next == NULL ? 128 : *next++;
if (len < 128) // 64..32831
len = (len << 8) + (*next++) + 64;
else if (len == 128) // end of list
len = left;
else if (len < 192) // 1..63
len &= 0x3f;
else if (len < 224){ // 32832..2129983
len = ((len & 0x1f) << 16) + ((size_t)*next++ << 8);
len += *next++ + 32832U;
}
else { // 2129984..539000895
len = ((len & 0x1f) << 24) + ((size_t)*next++ << 16);
len += (size_t)*next++ << 8;
len += (size_t)*next++ + 2129984UL;
}
left -= len;
#ifndef NOZOPFLI
if (g.level <= 9) {
#endif
// run MAXP2-sized amounts of input through deflate -- this
// loop is needed for those cases where the unsigned type
// is smaller than the size_t type, or when len is close to
// the limit of the size_t type
while (len > MAXP2) {
strm.avail_in = MAXP2;
deflate_engine(&strm, job->out, Z_NO_FLUSH);
len -= MAXP2;
}
// run the last piece through deflate -- end on a byte
// boundary, using a sync marker if necessary, or finish
// the deflate stream if this is the last block
strm.avail_in = (unsigned)len;
if (left || job->more) {
#if ZLIB_VERNUM >= 0x1260
if (zlib_vernum() >= 0x1260) {
deflate_engine(&strm, job->out, Z_BLOCK);
// add enough empty blocks to get to a byte
// boundary
(void)deflatePending(&strm, Z_NULL, &bits);
if ((bits & 1) || !g.setdict)
deflate_engine(&strm, job->out, Z_SYNC_FLUSH);
else if (bits & 7) {
do { // add static empty blocks
bits = deflatePrime(&strm, 10, 2);
assert(bits == Z_OK);
(void)deflatePending(&strm, Z_NULL, &bits);
} while (bits & 7);
deflate_engine(&strm, job->out, Z_BLOCK);
}
}
else
#endif
{
deflate_engine(&strm, job->out, Z_SYNC_FLUSH);
}
if (!g.setdict) // two markers when independent
deflate_engine(&strm, job->out, Z_FULL_FLUSH);
}
else
deflate_engine(&strm, job->out, Z_FINISH);
#ifndef NOZOPFLI
}
else {
// compress len bytes using zopfli, end at byte boundary
unsigned char bits, *out;
size_t outsize;
out = NULL;
outsize = 0;
bits = 0;
ZopfliDeflatePart(&g.zopts, 2, !(left || job->more),
temp->buf, temp->len, temp->len + len,
&bits, &out, &outsize);
assert(job->out->len + outsize + 5 <= job->out->size);
memcpy(job->out->buf + job->out->len, out, outsize);
free(out);
job->out->len += outsize;
if (left || job->more) {
bits &= 7;
if ((bits & 1) || !g.setdict) {
if (bits == 0 || bits > 5)
job->out->buf[job->out->len++] = 0;
job->out->buf[job->out->len++] = 0;
job->out->buf[job->out->len++] = 0;
job->out->buf[job->out->len++] = 0xff;
job->out->buf[job->out->len++] = 0xff;
}
else if (bits) {
do {
job->out->buf[job->out->len - 1] += 2 << bits;
job->out->buf[job->out->len++] = 0;
bits += 2;
} while (bits < 8);
}
if (!g.setdict) { // two markers when independent
job->out->buf[job->out->len++] = 0;
job->out->buf[job->out->len++] = 0;
job->out->buf[job->out->len++] = 0;
job->out->buf[job->out->len++] = 0xff;
job->out->buf[job->out->len++] = 0xff;
}
}
temp->len += len;
}
#endif
} while (left);
drop_space(job->lens);
job->lens = NULL;
Trace(("-- compressed #%ld%s", job->seq,
job->more ? "" : " (last)"));
// reserve input buffer until check value has been calculated
use_space(job->in);
// insert write job in list in sorted order, alert write thread
possess(write_first);
prior = &write_head;
while ((here = *prior) != NULL) {
if (here->seq > job->seq)
break;
prior = &(here->next);
}
job->next = here;
*prior = job;
twist(write_first, TO, write_head->seq);
// calculate the check value in parallel with writing, alert the
// write thread that the calculation is complete, and drop this
// usage of the input buffer
len = job->in->len;
next = job->in->buf;
check = CHECK(0L, Z_NULL, 0);
while (len > MAXP2) {
check = CHECK(check, next, MAXP2);
len -= MAXP2;
next += MAXP2;
}
check = CHECK(check, next, (unsigned)len);
drop_space(job->in);
job->check = check;
Trace(("-- checked #%ld%s", job->seq, job->more ? "" : " (last)"));
possess(job->calc);
twist(job->calc, TO, 1);
// done with that one -- go find another job
}
// found job with seq == -1 -- return to join
release(compress_have);
#ifndef NOZOPFLI
if (g.level > 9)
drop_space(temp);
else
#endif
{
(void)deflateEnd(&strm);
}
}
catch (err) {
THREADABORT(err);
}
}
// Collect the write jobs off of the list in sequence order and write out the
// compressed data until the last chunk is written. Also write the header and
// trailer and combine the individual check values of the input buffers.
local void write_thread(void *dummy) {
long seq; // next sequence number looking for
struct job *job; // job pulled and working on
size_t len; // input length
int more; // true if more chunks to write
length_t head; // header length
length_t ulen; // total uncompressed size (overflow ok)
length_t clen; // total compressed size (overflow ok)
unsigned long check; // check value of uncompressed data
ball_t err; // error information from throw()
(void)dummy;
try {
// build and write header
Trace(("-- write thread running"));
head = put_header();
// process output of compress threads until end of input
ulen = clen = 0;
check = CHECK(0L, Z_NULL, 0);
seq = 0;
do {
// get next write job in order
possess(write_first);
wait_for(write_first, TO_BE, seq);
job = write_head;
write_head = job->next;
twist(write_first, TO, write_head == NULL ? -1 : write_head->seq);
// update lengths, save uncompressed length for COMB
more = job->more;
len = job->in->len;
drop_space(job->in);
ulen += len;
clen += job->out->len;
// write the compressed data and drop the output buffer
Trace(("-- writing #%ld", seq));
writen(g.outd, job->out->buf, job->out->len);
drop_space(job->out);
Trace(("-- wrote #%ld%s", seq, more ? "" : " (last)"));
// wait for check calculation to complete, then combine, once the
// compress thread is done with the input, release it
possess(job->calc);
wait_for(job->calc, TO_BE, 1);
release(job->calc);
check = COMB(check, job->check, len);
Trace(("-- combined #%ld%s", seq, more ? "" : " (last)"));
// free the job
free_lock(job->calc);
FREE(job);
// get the next buffer in sequence
seq++;
} while (more);
// write trailer
put_trailer(ulen, clen, check, head);
// verify no more jobs, prepare for next use
possess(compress_have);
assert(compress_head == NULL && peek_lock(compress_have) == 0);
release(compress_have);
possess(write_first);
assert(write_head == NULL);
twist(write_first, TO, -1);
}
catch (err) {
THREADABORT(err);
}
}
// Encode a hash hit to the block lengths list. hit == 0 ends the list.
local void append_len(struct job *job, size_t len) {
struct space *lens;
assert(len < 539000896UL);
if (job->lens == NULL)
job->lens = get_space(&lens_pool);
lens = job->lens;
if (lens->size < lens->len + 3)
grow_space(lens);
if (len < 64)
lens->buf[lens->len++] = (unsigned char)(len + 128);
else if (len < 32832U) {
len -= 64;
lens->buf[lens->len++] = (unsigned char)(len >> 8);
lens->buf[lens->len++] = (unsigned char)len;
}
else if (len < 2129984UL) {
len -= 32832U;
lens->buf[lens->len++] = (unsigned char)((len >> 16) + 192);
lens->buf[lens->len++] = (unsigned char)(len >> 8);
lens->buf[lens->len++] = (unsigned char)len;
}
else {
len -= 2129984UL;
lens->buf[lens->len++] = (unsigned char)((len >> 24) + 224);
lens->buf[lens->len++] = (unsigned char)(len >> 16);
lens->buf[lens->len++] = (unsigned char)(len >> 8);
lens->buf[lens->len++] = (unsigned char)len;
}
}
// Compress ind to outd, using multiple threads for the compression and check
// value calculations and one other thread for writing the output. Compress
// threads will be launched and left running (waiting actually) to support
// subsequent calls of parallel_compress().
local void parallel_compress(void) {
long seq; // sequence number
struct space *curr; // input data to compress
struct space *next; // input data that follows curr
struct space *hold; // input data that follows next
struct space *dict; // dictionary for next compression
struct job *job; // job for compress, then write
int more; // true if more input to read
unsigned hash; // hash for rsyncable
unsigned char *scan; // next byte to compute hash on
unsigned char *end; // after end of data to compute hash on
unsigned char *last; // position after last hit
size_t left; // last hit in curr to end of curr
size_t len; // for various length computations
// if first time or after an option change, setup the job lists
setup_jobs();
// start write thread
writeth = launch(write_thread, NULL);
// read from input and start compress threads (write thread will pick up
// the output of the compress threads)
seq = 0;
next = get_space(&in_pool);
next->len = readn(g.ind, next->buf, next->size);
hold = NULL;
dict = NULL;
scan = next->buf;
hash = RSYNCHIT;
left = 0;
do {
// create a new job
job = alloc(NULL, sizeof(struct job));
job->calc = new_lock(0);
// update input spaces
curr = next;
next = hold;
hold = NULL;
// get more input if we don't already have some
if (next == NULL) {
next = get_space(&in_pool);
next->len = readn(g.ind, next->buf, next->size);
}
// if rsyncable, generate block lengths and prepare curr for job to
// likely have less than size bytes (up to the last hash hit)
job->lens = NULL;
if (g.rsync && curr->len) {
// compute the hash function starting where we last left off to
// cover either size bytes or to EOF, whichever is less, through
// the data in curr (and in the next loop, through next) -- save
// the block lengths resulting from the hash hits in the job->lens
// list
if (left == 0) {
// scan is in curr
last = curr->buf;
end = curr->buf + curr->len;
while (scan < end) {
hash = ((hash << 1) ^ *scan++) & RSYNCMASK;
if (hash == RSYNCHIT) {
len = (size_t)(scan - last);
append_len(job, len);
last = scan;
}
}
// continue scan in next
left = (size_t)(scan - last);
scan = next->buf;
}
// scan in next for enough bytes to fill curr, or what is available
// in next, whichever is less (if next isn't full, then we're at
// the end of the file) -- the bytes in curr since the last hit,
// stored in left, counts towards the size of the first block
last = next->buf;
len = curr->size - curr->len;
if (len > next->len)
len = next->len;
end = next->buf + len;
while (scan < end) {
hash = ((hash << 1) ^ *scan++) & RSYNCMASK;
if (hash == RSYNCHIT) {
len = (size_t)(scan - last) + left;
left = 0;
append_len(job, len);
last = scan;
}
}
append_len(job, 0);
// create input in curr for job up to last hit or entire buffer if
// no hits at all -- save remainder in next and possibly hold
len = (size_t)((job->lens->len == 1 ? scan : last) - next->buf);
if (len) {
// got hits in next, or no hits in either -- copy to curr
memcpy(curr->buf + curr->len, next->buf, len);
curr->len += len;
memmove(next->buf, next->buf + len, next->len - len);
next->len -= len;
scan -= len;
left = 0;
}
else if (job->lens->len != 1 && left && next->len) {
// had hits in curr, but none in next, and last hit in curr
// wasn't right at the end, so we have input there to save --
// use curr up to the last hit, save the rest, moving next to
// hold
hold = next;
next = get_space(&in_pool);
memcpy(next->buf, curr->buf + (curr->len - left), left);
next->len = left;
curr->len -= left;
}
else {
// else, last match happened to be right at the end of curr, or
// we're at the end of the input compressing the rest
left = 0;
}
}
// compress curr->buf to curr->len -- compress thread will drop curr
job->in = curr;
// set job->more if there is more to compress after curr
more = next->len != 0;
job->more = more;
// provide dictionary for this job, prepare dictionary for next job
job->out = dict;
if (more && g.setdict) {
if (curr->len >= DICT || job->out == NULL) {
dict = curr;
use_space(dict);
}
else {
dict = get_space(&dict_pool);
len = DICT - curr->len;
memcpy(dict->buf, job->out->buf + (job->out->len - len), len);
memcpy(dict->buf + len, curr->buf, curr->len);
dict->len = DICT;
}
}
// preparation of job is complete
job->seq = seq;
Trace(("-- read #%ld%s", seq, more ? "" : " (last)"));
if (++seq < 1)
throw(ERANGE, "overflow");
// start another compress thread if needed
if (cthreads < seq && cthreads < g.procs) {
(void)launch(compress_thread, NULL);
cthreads++;
}
// put job at end of compress list, let all the compressors know
possess(compress_have);
job->next = NULL;
*compress_tail = job;
compress_tail = &(job->next);
twist(compress_have, BY, +1);
} while (more);
drop_space(next);
// wait for the write thread to complete (we leave the compress threads out
// there and waiting in case there is another stream to compress)
join(writeth);
writeth = NULL;
Trace(("-- write thread joined"));
}
#endif
// Repeated code in single_compress to compress available input and write it.
#define DEFLATE_WRITE(flush) \
do { \
do { \
strm->avail_out = out_size; \
strm->next_out = out; \
(void)deflate(strm, flush); \
clen += writen(g.outd, out, out_size - strm->avail_out); \
} while (strm->avail_out == 0); \
assert(strm->avail_in == 0); \
} while (0)
// Do a simple compression in a single thread from ind to outd. If reset is
// true, instead free the memory that was allocated and retained for input,
// output, and deflate.
local void single_compress(int reset) {
size_t got; // amount of data in in[]
size_t more; // amount of data in next[] (0 if eof)
size_t start; // start of data in next[]
size_t have; // bytes in current block for -i
size_t hist; // offset of permitted history
int fresh; // if true, reset compression history
unsigned hash; // hash for rsyncable
unsigned char *scan; // pointer for hash computation
size_t left; // bytes left to compress after hash hit
unsigned long head; // header length
length_t ulen; // total uncompressed size
length_t clen; // total compressed size
unsigned long check; // check value of uncompressed data
static unsigned out_size; // size of output buffer
static unsigned char *in, *next, *out; // reused i/o buffers
static z_stream *strm = NULL; // reused deflate structure
// if requested, just release the allocations and return
if (reset) {
if (strm != NULL) {
(void)deflateEnd(strm);
FREE(strm);
FREE(out);
FREE(next);
FREE(in);
strm = NULL;
}
return;
}
// initialize the deflate structure if this is the first time
if (strm == NULL) {
int ret; // zlib return code
out_size = g.block > MAXP2 ? MAXP2 : (unsigned)g.block;
in = alloc(NULL, g.block + DICT);
next = alloc(NULL, g.block + DICT);
out = alloc(NULL, out_size);
strm = alloc(NULL, sizeof(z_stream));
strm->zfree = ZFREE;
strm->zalloc = ZALLOC;
strm->opaque = OPAQUE;
ret = deflateInit2(strm, 6, Z_DEFLATED, -15, 8, g.strategy);
if (ret == Z_MEM_ERROR)
throw(ENOMEM, "not enough memory");
if (ret != Z_OK)
throw(EINVAL, "internal error");
}
// write header
head = put_header();
// set compression level in case it changed
#ifndef NOZOPFLI
if (g.level <= 9) {
#endif
(void)deflateReset(strm);
(void)deflateParams(strm, g.level, g.strategy);
#ifndef NOZOPFLI
}
#endif
// do raw deflate and calculate check value
got = 0;
more = readn(g.ind, next, g.block);
ulen = more;
start = 0;
hist = 0;
clen = 0;
have = 0;
check = CHECK(0L, Z_NULL, 0);
hash = RSYNCHIT;
do {
// get data to compress, see if there is any more input
if (got == 0) {
scan = in; in = next; next = scan;
strm->next_in = in + start;
got = more;
if (g.level > 9) {
left = start + more - hist;
if (left > DICT)
left = DICT;
memcpy(next, in + ((start + more) - left), left);
start = left;
hist = 0;
}
else
start = 0;
more = readn(g.ind, next + start, g.block);
ulen += more;
}
// if rsyncable, compute hash until a hit or the end of the block
left = 0;
if (g.rsync && got) {
scan = strm->next_in;
left = got;
do {
if (left == 0) {
// went to the end -- if no more or no hit in size bytes,
// then proceed to do a flush or finish with got bytes
if (more == 0 || got == g.block)
break;
// fill in[] with what's left there and as much as possible
// from next[] -- set up to continue hash hit search
if (g.level > 9) {
left = (size_t)(strm->next_in - in) - hist;
if (left > DICT)
left = DICT;
}
memmove(in, strm->next_in - left, left + got);
hist = 0;
strm->next_in = in + left;
scan = in + left + got;
left = more > g.block - got ? g.block - got : more;
memcpy(scan, next + start, left);
got += left;
more -= left;
start += left;
// if that emptied the next buffer, try to refill it
if (more == 0) {
more = readn(g.ind, next, g.block);
ulen += more;
start = 0;
}
}
left--;
hash = ((hash << 1) ^ *scan++) & RSYNCMASK;
} while (hash != RSYNCHIT);
got -= left;
}
// clear history for --independent option
fresh = 0;
if (!g.setdict) {
have += got;
if (have > g.block) {
fresh = 1;
have = got;
}
}
#ifndef NOZOPFLI
if (g.level <= 9) {
#endif
// clear history if requested
if (fresh)
(void)deflateReset(strm);
// compress MAXP2-size chunks in case unsigned type is small
while (got > MAXP2) {
strm->avail_in = MAXP2;
check = CHECK(check, strm->next_in, strm->avail_in);
DEFLATE_WRITE(Z_NO_FLUSH);
got -= MAXP2;
}
// compress the remainder, emit a block, finish if end of input
strm->avail_in = (unsigned)got;
got = left;
check = CHECK(check, strm->next_in, strm->avail_in);
if (more || got) {
#if ZLIB_VERNUM >= 0x1260
if (zlib_vernum() >= 0x1260) {
int bits;
DEFLATE_WRITE(Z_BLOCK);
(void)deflatePending(strm, Z_NULL, &bits);
if ((bits & 1) || !g.setdict)
DEFLATE_WRITE(Z_SYNC_FLUSH);
else if (bits & 7) {
do {
bits = deflatePrime(strm, 10, 2);
assert(bits == Z_OK);
(void)deflatePending(strm, Z_NULL, &bits);
} while (bits & 7);
DEFLATE_WRITE(Z_NO_FLUSH);
}
}
else
DEFLATE_WRITE(Z_SYNC_FLUSH);
#else
DEFLATE_WRITE(Z_SYNC_FLUSH);
#endif
if (!g.setdict) // two markers when independent
DEFLATE_WRITE(Z_FULL_FLUSH);
}
else
DEFLATE_WRITE(Z_FINISH);
#ifndef NOZOPFLI
}
else {
// compress got bytes using zopfli, bring to byte boundary
unsigned char bits, *def;
size_t size, off;
// discard history if requested
off = (size_t)(strm->next_in - in);
if (fresh)
hist = off;
def = NULL;
size = 0;
bits = 0;
ZopfliDeflatePart(&g.zopts, 2, !(more || left),
in + hist, off - hist, (off - hist) + got,
&bits, &def, &size);
bits &= 7;
if (more || left) {
if ((bits & 1) || !g.setdict) {
writen(g.outd, def, size);
if (bits == 0 || bits > 5)
writen(g.outd, (unsigned char *)"\0", 1);
writen(g.outd, (unsigned char *)"\0\0\xff\xff", 4);
}
else {
assert(size > 0);
writen(g.outd, def, size - 1);
if (bits)
do {
def[size - 1] += 2 << bits;
writen(g.outd, def + size - 1, 1);
def[size - 1] = 0;
bits += 2;
} while (bits < 8);
writen(g.outd, def + size - 1, 1);
}
if (!g.setdict) // two markers when independent
writen(g.outd, (unsigned char *)"\0\0\0\xff\xff", 5);
}
else
writen(g.outd, def, size);
free(def);
while (got > MAXP2) {
check = CHECK(check, strm->next_in, MAXP2);
strm->next_in += MAXP2;
got -= MAXP2;
}
check = CHECK(check, strm->next_in, (unsigned)got);
strm->next_in += got;
got = left;
}
#endif
// do until no more input
} while (more || got);
// write trailer
put_trailer(ulen, clen, check, head);
}
// --- decompression ---
#ifndef NOTHREAD
// Parallel read thread. If the state is 1, then read a buffer and set the
// state to 0 when done, if the state is > 1, then end this thread.
local void load_read(void *dummy) {
size_t len;
ball_t err; // error information from throw()
(void)dummy;
Trace(("-- launched decompress read thread"));
try {
do {
possess(g.load_state);
wait_for(g.load_state, NOT_TO_BE, 0);
if (peek_lock(g.load_state) > 1) {
release(g.load_state);
break;
}
g.in_len = len = readn(g.ind, g.in_which ? g.in_buf : g.in_buf2,
BUF);
Trace(("-- decompress read thread read %lu bytes", len));
twist(g.load_state, TO, 0);
} while (len == BUF);
}
catch (err) {
THREADABORT(err);
}
Trace(("-- exited decompress read thread"));
}
// Wait for load_read() to complete the current read operation. If the
// load_read() thread is not active, then return immediately.
local void load_wait(void) {
if (g.in_which == -1)
return;
possess(g.load_state);
wait_for(g.load_state, TO_BE, 0);
release(g.load_state);
}
#endif
// load() is called when the input has been consumed in order to provide more
// input data: load the input buffer with BUF or fewer bytes (fewer if at end
// of file) from the file g.ind, set g.in_next to point to the g.in_left bytes
// read, update g.in_tot, and return g.in_left. g.in_eof is set to true when
// g.in_left has gone to zero and there is no more data left to read.
local size_t load(void) {
// if already detected end of file, do nothing
if (g.in_short) {
g.in_eof = 1;
g.in_left = 0;
return 0;
}
#ifndef NOTHREAD
// if first time in or procs == 1, read a buffer to have something to
// return, otherwise wait for the previous read job to complete
if (g.procs > 1) {
// if first time, fire up the read thread, ask for a read
if (g.in_which == -1) {
g.in_which = 1;
g.load_state = new_lock(1);
g.load_thread = launch(load_read, NULL);
}
// wait for the previously requested read to complete
load_wait();
// set up input buffer with the data just read
g.in_next = g.in_which ? g.in_buf : g.in_buf2;
g.in_left = g.in_len;
// if not at end of file, alert read thread to load next buffer,
// alternate between g.in_buf and g.in_buf2
if (g.in_len == BUF) {
g.in_which = 1 - g.in_which;
possess(g.load_state);
twist(g.load_state, TO, 1);
}
// at end of file -- join read thread (already exited), clean up
else {
join(g.load_thread);
free_lock(g.load_state);
g.in_which = -1;
}
}
else
#endif
{
// don't use threads -- simply read a buffer into g.in_buf
g.in_left = readn(g.ind, g.in_next = g.in_buf, BUF);
}
// note end of file
if (g.in_left < BUF) {
g.in_short = 1;
// if we got bupkis, now is the time to mark eof
if (g.in_left == 0)
g.in_eof = 1;
}
// update the total and return the available bytes
g.in_tot += g.in_left;
return g.in_left;
}
// Terminate the load() operation. Empty buffer, mark end, close file (if not
// stdin), and free the name and comment obtained from the header, if present.
local void load_end(void) {
#ifndef NOTHREAD
// if the read thread is running, then end it
if (g.in_which != -1) {
// wait for the previously requested read to complete and send the
// thread a message to exit
possess(g.load_state);
wait_for(g.load_state, TO_BE, 0);
twist(g.load_state, TO, 2);
// join the thread (which has exited or will very shortly) and clean up
join(g.load_thread);
free_lock(g.load_state);
g.in_which = -1;
}
#endif
g.in_left = 0;
g.in_short = 1;
g.in_eof = 1;
if (g.ind != 0)
close(g.ind);
RELEASE(g.hname);
RELEASE(g.hcomm);
}
// Initialize for reading new input.
local void in_init(void) {
g.in_left = 0;
g.in_eof = 0;
g.in_short = 0;
g.in_tot = 0;
#ifndef NOTHREAD
g.in_which = -1;
#endif
}
// Buffered reading macros for decompression and listing.
#define GET() (g.in_left == 0 && (g.in_eof || load() == 0) ? 0 : \
(g.in_left--, *g.in_next++))
#define GET2() (tmp2 = GET(), tmp2 + ((unsigned)(GET()) << 8))
#define GET4() (tmp4 = GET2(), tmp4 + ((unsigned long)(GET2()) << 16))
#define SKIP(dist) \
do { \
size_t togo = (dist); \
while (togo > g.in_left) { \
togo -= g.in_left; \
if (load() == 0) \
return -3; \
} \
g.in_left -= togo; \
g.in_next += togo; \
} while (0)
// GET(), GET2(), GET4() and SKIP() equivalents, with crc update.
#define GETC() (g.in_left == 0 && (g.in_eof || load() == 0) ? 0 : \
(g.in_left--, crc = crc32z(crc, g.in_next, 1), *g.in_next++))
#define GET2C() (tmp2 = GETC(), tmp2 + ((unsigned)(GETC()) << 8))
#define GET4C() (tmp4 = GET2C(), tmp4 + ((unsigned long)(GET2C()) << 16))
#define SKIPC(dist) \
do { \
size_t togo = (dist); \
while (togo > g.in_left) { \
crc = crc32z(crc, g.in_next, g.in_left); \
togo -= g.in_left; \
if (load() == 0) \
return -3; \
} \
crc = crc32z(crc, g.in_next, togo); \
g.in_left -= togo; \
g.in_next += togo; \
} while (0)
// Get a zero-terminated string into allocated memory, with crc update.
#define GETZC(str) \
do { \
unsigned char *end; \
size_t copy, have, size = 0; \
have = 0; \
do { \
if (g.in_left == 0 && load() == 0) \
return -3; \
end = memchr(g.in_next, 0, g.in_left); \
copy = end == NULL ? g.in_left : (size_t)(end - g.in_next) + 1; \
have = vmemcpy(&str, &size, have, g.in_next, copy); \
g.in_left -= copy; \
g.in_next += copy; \
} while (end == NULL); \
crc = crc32z(crc, (unsigned char *)str, have); \
} while (0)
// Pull LSB order or MSB order integers from an unsigned char buffer.
#define PULL2L(p) ((p)[0] + ((unsigned)((p)[1]) << 8))
#define PULL4L(p) (PULL2L(p) + ((unsigned long)(PULL2L((p) + 2)) << 16))
#define PULL2M(p) (((unsigned)((p)[0]) << 8) + (p)[1])
#define PULL4M(p) (((unsigned long)(PULL2M(p)) << 16) + PULL2M((p) + 2))
// Convert MS-DOS date and time to a Unix time, assuming current timezone.
// (You got a better idea?)
local time_t dos2time(unsigned long dos) {
struct tm tm;
if (dos == 0)
return time(NULL);
tm.tm_year = ((int)(dos >> 25) & 0x7f) + 80;
tm.tm_mon = ((int)(dos >> 21) & 0xf) - 1;
tm.tm_mday = (int)(dos >> 16) & 0x1f;
tm.tm_hour = (int)(dos >> 11) & 0x1f;
tm.tm_min = (int)(dos >> 5) & 0x3f;
tm.tm_sec = (int)(dos << 1) & 0x3e;
tm.tm_isdst = -1; // figure out if DST or not
return mktime(&tm);
}
// Convert an unsigned 32-bit integer to signed, even if long > 32 bits.
local long tolong(unsigned long val) {
return (long)(val & 0x7fffffffUL) - (long)(val & 0x80000000UL);
}
// Process zip extra field to extract zip64 lengths and Unix mod time.
local int read_extra(unsigned len, int save) {
unsigned id, size, tmp2;
unsigned long tmp4;
// process extra blocks
while (len >= 4) {
id = GET2();
size = GET2();
if (g.in_eof)
return -1;
len -= 4;
if (size > len)
break;
len -= size;
if (id == 0x0001) {
// Zip64 Extended Information Extra Field
g.zip64 = 1;
if (g.zip_ulen == LOW32 && size >= 8) {
g.zip_ulen = GET4();
SKIP(4);
size -= 8;
}
if (g.zip_clen == LOW32 && size >= 8) {
g.zip_clen = GET4();
SKIP(4);
size -= 8;
}
}
if (save) {
if ((id == 0x000d || id == 0x5855) && size >= 8) {
// PKWare Unix or Info-ZIP Type 1 Unix block
SKIP(4);
g.stamp = tolong(GET4());
size -= 8;
}
if (id == 0x5455 && size >= 5) {
// Extended Timestamp block
size--;
if (GET() & 1) {
g.stamp = tolong(GET4());
size -= 4;
}
}
}
SKIP(size);
}
SKIP(len);
return 0;
}
// Read a gzip, zip, zlib, or Unix compress header from ind and return the
// compression method in the range 0..257. 8 is deflate, 256 is a zip method
// greater than 255, and 257 is LZW (compress). The only methods decompressed
// by pigz are 8 and 257. On error, return negative: -1 is immediate EOF, -2 is
// not a recognized compressed format (considering only the first two bytes of
// input), -3 is premature EOF within the header, -4 is unexpected header flag
// values, -5 is the zip central directory, and -6 is a failed gzip header crc
// check. If -2 is returned, the input pointer has been reset to the beginning.
// If the return value is not negative, then get_header() sets g.form to
// indicate gzip (0), zlib (1), or zip (2, or 3 if the entry is followed by a
// data descriptor), and the input points to the first byte of compressed data.
local int get_header(int save) {
unsigned magic; // magic header
unsigned method; // compression method
unsigned flags; // header flags
unsigned fname, extra; // name and extra field lengths
unsigned tmp2; // for macro
unsigned long tmp4; // for macro
unsigned long crc; // gzip header crc
// clear return information
if (save) {
g.stamp = 0;
RELEASE(g.hname);
RELEASE(g.hcomm);
}
// see if it's a gzip, zlib, or lzw file
g.magic1 = GET();
if (g.in_eof) {
g.magic1 = -1;
return -1;
}
magic = (unsigned)g.magic1 << 8;
magic += GET();
if (g.in_eof)
return -2;
if (magic % 31 == 0 && (magic & 0x8f20) == 0x0800) {
// it's zlib
g.form = 1;
return 8;
}
if (magic == 0x1f9d) { // it's lzw
g.form = -1;
return 257;
}
if (magic == 0x504b) { // it's zip
magic = GET2(); // the rest of the signature
if (g.in_eof)
return -3;
if (magic == 0x0201 || magic == 0x0806)
return -5; // central header or archive extra
if (magic != 0x0403)
return -4; // not a local header
g.zip64 = 0;
SKIP(2);
flags = GET2();
if (flags & 0xf7f0)
return -4;
method = GET(); // return low byte of method or 256
if (GET() != 0 || flags & 1)
method = 256; // unknown or encrypted
if (save)
g.stamp = dos2time(GET4());
else
SKIP(4);
g.zip_crc = GET4();
g.zip_clen = GET4();
g.zip_ulen = GET4();
fname = GET2();
extra = GET2();
if (save) {
char *next;
if (g.in_eof)
return -3;
next = g.hname = alloc(NULL, fname + 1);
while (fname > g.in_left) {
memcpy(next, g.in_next, g.in_left);
fname -= g.in_left;
next += g.in_left;
if (load() == 0)
return -3;
}
memcpy(next, g.in_next, fname);
g.in_left -= fname;
g.in_next += fname;
next += fname;
*next = 0;
}
else
SKIP(fname);
read_extra(extra, save);
g.form = 2 + ((flags & 8) >> 3);
return g.in_eof ? -3 : (int)method;
}
if (magic != 0x1f8b) { // not gzip
g.in_left++; // return the second byte
g.in_next--;
return -2;
}
// it's gzip -- get method and flags
crc = 0xf6e946c9; // crc of 0x1f 0x8b
method = GETC();
flags = GETC();
if (flags & 0xe0)
return -4;
// get time stamp
if (save)
g.stamp = tolong(GET4C());
else
SKIPC(4);
// skip extra field and OS
SKIPC(2);
// skip extra field, if present
if (flags & 4)
SKIPC(GET2C());
// read file name, if present, into allocated memory
if (flags & 8) {
if (save)
GETZC(g.hname);
else
while (GETC() != 0)
;
}
// read comment, if present, into allocated memory
if (flags & 16) {
if (save)
GETZC(g.hcomm);
else
while (GETC() != 0)
;
}
// check header crc
if ((flags & 2) && GET2() != (crc & 0xffff))
return -6;
// return gzip compression method
g.form = 0;
return g.in_eof ? -3 : (int)method;
}
// Process the remainder of a zip file after the first entry. Return true if
// the next signature is another local file header. If listing verbosely, then
// search the remainder of the zip file for the central file header
// corresponding to the first zip entry, and save the file comment, if any.
local int more_zip_entries(void) {
unsigned long sig;
int ret, n;
unsigned char *first;
unsigned tmp2; // for macro
unsigned long tmp4; // for macro
unsigned char const central[] = {0x50, 0x4b, 1, 2};
sig = GET4();
ret = !g.in_eof && sig == 0x04034b50; // true if another entry follows
if (!g.list || g.verbosity < 2)
return ret;
// if it was a central file header signature, then already four bytes
// into a central directory header -- otherwise search for the next one
n = sig == 0x02014b50 ? 4 : 0; // number of bytes into central header
for (;;) {
// assure that more input is available
if (g.in_left == 0 && load() == 0) // never found it!
return ret;
if (n == 0) {
// look for first byte in central signature
first = memchr(g.in_next, central[0], g.in_left);
if (first == NULL) {
// not found -- go get the next buffer and keep looking
g.in_left = 0;
}
else {
// found -- continue search at next byte
n++;
g.in_left -= first - g.in_next + 1;
g.in_next = first + 1;
}
}
else if (n < 4) {
// look for the remaining bytes in the central signature
if (g.in_next[0] == central[n]) {
n++;
g.in_next++;
g.in_left--;
}
else
n = 0; // mismatch -- restart search with this byte
}
else {
// Now in a suspected central file header, just past the signature.
// Read the rest of the fixed-length portion of the header.
unsigned char head[CEN];
size_t need = CEN, part = 0, len, i;
if (need > g.in_left) { // will only need to do this once
part = g.in_left;
memcpy(head + CEN - need, g.in_next, part);
need -= part;
g.in_left = 0;
if (load() == 0) // never found it!
return ret;
}
memcpy(head + CEN - need, g.in_next, need);
// Determine to sufficient probability that this is the droid we're
// looking for, by checking the CRC and the local header offset.
if (PULL4L(head + 12) == g.out_check && PULL4L(head + 38) == 0) {
// Update the number of bytes consumed from the current buffer.
g.in_next += need;
g.in_left -= need;
// Get the comment length.
len = PULL2L(head + 28);
if (len == 0) // no comment
return ret;
// Skip the file name and extra field.
SKIP(PULL2L(head + 24) + (unsigned long)PULL2L(head + 26));
// Save the comment field.
need = len;
g.hcomm = alloc(NULL, len + 1);
while (need > g.in_left) {
memcpy(g.hcomm + len - need, g.in_next, g.in_left);
need -= g.in_left;
g.in_left = 0;
if (load() == 0) { // premature EOF
RELEASE(g.hcomm);
return ret;
}
}
memcpy(g.hcomm + len - need, g.in_next, need);
g.in_next += need;
g.in_left -= need;
for (i = 0; i < len; i++)
if (g.hcomm[i] == 0)
g.hcomm[i] = ' ';
g.hcomm[len] = 0;
return ret;
}
else {
// Nope, false alarm. Restart the search at the first byte
// after what we thought was the central file header signature.
if (part) {
// Move buffer data up and insert the part of the header
// data read from the previous buffer.
memmove(g.in_next + part, g.in_next, g.in_left);
memcpy(g.in_next, head, part);
g.in_left += part;
}
n = 0;
}
}
}
}
// --- list contents of compressed input (gzip, zlib, or lzw) ---
// Find standard compressed file suffix, return length of suffix.
local size_t compressed_suffix(char *nm) {
size_t len;
len = strlen(nm);
if (len > 4) {
nm += len - 4;
len = 4;
if (strcmp(nm, ".zip") == 0 || strcmp(nm, ".ZIP") == 0 ||
strcmp(nm, ".tgz") == 0)
return 4;
}
if (len > 3) {
nm += len - 3;
len = 3;
if (strcmp(nm, ".gz") == 0 || strcmp(nm, "-gz") == 0 ||
strcmp(nm, ".zz") == 0 || strcmp(nm, "-zz") == 0)
return 3;
}
if (len > 2) {
nm += len - 2;
if (strcmp(nm, ".z") == 0 || strcmp(nm, "-z") == 0 ||
strcmp(nm, "_z") == 0 || strcmp(nm, ".Z") == 0)
return 2;
}
return 0;
}
// Listing file name lengths for -l and -lv.
#define NAMEMAX1 48 // name display limit at verbosity 1
#define NAMEMAX2 16 // name display limit at verbosity 2
// Print gzip, lzw, zlib, or zip file information.
local void show_info(int method, unsigned long check, length_t len, int cont) {
size_t max; // maximum name length for current verbosity
size_t n; // name length without suffix
time_t now; // for getting current year
char mod[26]; // modification time in text
char tag[NAMEMAX1+1]; // header or file name, possibly truncated
// create abbreviated name from header file name or actual file name
max = g.verbosity > 1 ? NAMEMAX2 : NAMEMAX1;
memset(tag, 0, max + 1);
if (cont)
strncpy(tag, "<...>", max + 1);
else if (g.hname == NULL) {
n = strlen(g.inf) - compressed_suffix(g.inf);
memcpy(tag, g.inf, n > max + 1 ? max + 1 : n);
if (strcmp(g.inf + n, ".tgz") == 0 && n < max + 1)
strncpy(tag + n, ".tar", max + 1 - n);
}
else
strncpy(tag, g.hname, max + 1);
if (tag[max])
strcpy(tag + max - 3, "...");
// convert time stamp to text
if (g.stamp) {
strcpy(mod, ctime(&g.stamp));
now = time(NULL);
if (strcmp(mod + 20, ctime(&now) + 20) != 0)
strcpy(mod + 11, mod + 19);
}
else
strcpy(mod + 4, "------ -----");
mod[16] = 0;
// if first time, print header
if (g.first) {
if (g.verbosity > 1)
fputs("method check timestamp ", stdout);
if (g.verbosity > 0)
puts("compressed original reduced name");
g.first = 0;
}
// print information
if (g.verbosity > 1) {
if (g.form == 3 && !g.decode)
printf("zip%3d -------- %s ", method, mod + 4);
else if (g.form > 1)
printf("zip%3d %08lx %s ", method, check, mod + 4);
else if (g.form == 1)
printf("zlib%2d %08lx %s ", method, check, mod + 4);
else if (method == 257)
printf("lzw -------- %s ", mod + 4);
else
printf("gzip%2d %08lx %s ", method, check, mod + 4);
}
if (g.verbosity > 0) {
// compute reduction percent -- allow divide-by-zero, displays as -inf%
double red = 100. * (len - (double)g.in_tot) / len;
if ((g.form == 3 && !g.decode) ||
(method == 8 && g.in_tot > (len + (len >> 10) + 12)) ||
(method == 257 && g.in_tot > len + (len >> 1) + 3))
#if __STDC_VERSION__-0 >= 199901L || __GNUC__-0 >= 3
printf("%10jd %10jd? unk %s\n",
(intmax_t)g.in_tot, (intmax_t)len, tag);
else
printf("%10jd %10jd %6.1f%% %s\n",
(intmax_t)g.in_tot, (intmax_t)len, red, tag);
#else
printf(sizeof(off_t) == sizeof(long) ?
"%10ld %10ld? unk %s\n" : "%10lld %10lld? unk %s\n",
g.in_tot, len, tag);
else
printf(sizeof(off_t) == sizeof(long) ?
"%10ld %10ld %6.1f%% %s\n" : "%10lld %10lld %6.1f%% %s\n",
g.in_tot, len, red, tag);
#endif
}
if (g.verbosity > 1 && g.hcomm != NULL)
puts(g.hcomm);
}
// List content information about the gzip file at ind (only works if the gzip
// file contains a single gzip stream with no junk at the end, and only works
// well if the uncompressed length is less than 4 GB).
local void list_info(void) {
int method; // get_header() return value
size_t n; // available trailer bytes
off_t at; // used to calculate compressed length
unsigned char tail[8]; // trailer containing check and length
unsigned long check; // check value
length_t len; // length from trailer
// initialize input buffer
in_init();
// read header information and position input after header
method = get_header(1);
if (method < 0) {
complain(method == -6 ? "skipping: %s corrupt: header crc error" :
method == -1 ? "skipping: %s empty" :
"skipping: %s unrecognized format", g.inf);
return;
}
#ifndef NOTHREAD
// wait for read thread to complete current read() operation, to permit
// seeking and reading on g.ind here in the main thread
load_wait();
#endif
// list zip file
if (g.form > 1) {
more_zip_entries(); // get first entry comment, if any
g.in_tot = g.zip_clen;
show_info(method, g.zip_crc, g.zip_ulen, 0);
return;
}
// list zlib file
if (g.form == 1) {
at = lseek(g.ind, 0, SEEK_END);
if (at == -1) {
check = 0;
do {
len = g.in_left < 4 ? g.in_left : 4;
g.in_next += g.in_left - len;
while (len--)
check = (check << 8) + *g.in_next++;
} while (load() != 0);
check &= LOW32;
}
else {
g.in_tot = (length_t)at;
lseek(g.ind, -4, SEEK_END);
readn(g.ind, tail, 4);
check = PULL4M(tail);
}
g.in_tot -= 6;
show_info(method, check, 0, 0);
return;
}
// list lzw file
if (method == 257) {
at = lseek(g.ind, 0, SEEK_END);
if (at == -1)
while (load() != 0)
;
else
g.in_tot = (length_t)at;
g.in_tot -= 3;
show_info(method, 0, 0, 0);
return;
}
// skip to end to get trailer (8 bytes), compute compressed length
if (g.in_short) { // whole thing already read
if (g.in_left < 8) {
complain("skipping: %s not a valid gzip file", g.inf);
return;
}
g.in_tot = g.in_left - 8; // compressed size
memcpy(tail, g.in_next + (g.in_left - 8), 8);
}
else if ((at = lseek(g.ind, -8, SEEK_END)) != -1) {
g.in_tot = (length_t)at - g.in_tot + g.in_left; // compressed size
readn(g.ind, tail, 8); // get trailer
}
else { // can't seek
len = g.in_tot - g.in_left; // save header size
do {
n = g.in_left < 8 ? g.in_left : 8;
memcpy(tail, g.in_next + (g.in_left - n), n);
load();
} while (g.in_left == BUF); // read until end
if (g.in_left < 8) {
if (n + g.in_left < 8) {
complain("skipping: %s not a valid gzip file", g.inf);
return;
}
if (g.in_left) {
if (n + g.in_left > 8)
memcpy(tail, tail + n - (8 - g.in_left), 8 - g.in_left);
memcpy(tail + 8 - g.in_left, g.in_next, g.in_left);
}
}
else
memcpy(tail, g.in_next + (g.in_left - 8), 8);
g.in_tot -= len + 8;
}
if (g.in_tot < 2) {
complain("skipping: %s not a valid gzip file", g.inf);
return;
}
// convert trailer to check and uncompressed length (modulo 2^32)
check = PULL4L(tail);
len = PULL4L(tail + 4);
// list information about contents
show_info(method, check, len, 0);
}
// --- copy input to output (when acting like cat) ---
local void cat(void) {
// copy the first header byte read, if any
if (g.magic1 != -1) {
unsigned char buf[1] = {g.magic1};
g.out_tot += writen(g.outd, buf, 1);
}
// copy the remainder of the input to the output
while (g.in_left) {
g.out_tot += writen(g.outd, g.in_next, g.in_left);
g.in_left = 0;
load();
}
}
// --- decompress deflate input ---
// Call-back input function for inflateBack().
local unsigned inb(void *desc, unsigned char **buf) {
(void)desc;
if (g.in_left == 0)
load();
*buf = g.in_next;
unsigned len = g.in_left > UINT_MAX ? UINT_MAX : (unsigned)g.in_left;
g.in_next += len;
g.in_left -= len;
return len;
}
// Output buffers and window for infchk() and unlzw().
#define OUTSIZE 32768U // must be at least 32K for inflateBack() window
local unsigned char out_buf[OUTSIZE];
#ifndef NOTHREAD
// Output data for parallel write and check.
local unsigned char out_copy[OUTSIZE];
local size_t out_len;
// outb threads states.
local lock *outb_write_more = NULL;
local lock *outb_check_more;
// Output write thread.
local void outb_write(void *dummy) {
size_t len;
ball_t err; // error information from throw()
(void)dummy;
Trace(("-- launched decompress write thread"));
try {
do {
possess(outb_write_more);
wait_for(outb_write_more, TO_BE, 1);
len = out_len;
if (len && g.decode == 1)
writen(g.outd, out_copy, len);
Trace(("-- decompress wrote %lu bytes", len));
twist(outb_write_more, TO, 0);
} while (len);
}
catch (err) {
THREADABORT(err);
}
Trace(("-- exited decompress write thread"));
}
// Output check thread.
local void outb_check(void *dummy) {
size_t len;
ball_t err; // error information from throw()
(void)dummy;
Trace(("-- launched decompress check thread"));
try {
do {
possess(outb_check_more);
wait_for(outb_check_more, TO_BE, 1);
len = out_len;
g.out_check = CHECK(g.out_check, out_copy, len);
Trace(("-- decompress checked %lu bytes", len));
twist(outb_check_more, TO, 0);
} while (len);
}
catch (err) {
THREADABORT(err);
}
Trace(("-- exited decompress check thread"));
}
#endif
// Call-back output function for inflateBack(). Wait for the last write and
// check calculation to complete, copy the write buffer, and then alert the
// write and check threads and return for more decompression while that's going
// on (or just write and check if no threads or if proc == 1).
local int outb(void *desc, unsigned char *buf, unsigned len) {
(void)desc;
#ifndef NOTHREAD
static thread *wr, *ch;
if (g.procs > 1) {
// if first time, initialize state and launch threads
if (outb_write_more == NULL) {
outb_write_more = new_lock(0);
outb_check_more = new_lock(0);
wr = launch(outb_write, NULL);
ch = launch(outb_check, NULL);
}
// wait for previous write and check threads to complete
possess(outb_check_more);
wait_for(outb_check_more, TO_BE, 0);
possess(outb_write_more);
wait_for(outb_write_more, TO_BE, 0);
// copy the output and alert the worker bees
out_len = len;
g.out_tot += len;
memcpy(out_copy, buf, len);
twist(outb_write_more, TO, 1);
twist(outb_check_more, TO, 1);
// if requested with len == 0, clean up -- terminate and join write and
// check threads, free lock
if (len == 0 && outb_write_more != NULL) {
join(ch);
join(wr);
free_lock(outb_check_more);
free_lock(outb_write_more);
outb_write_more = NULL;
}
// return for more decompression while last buffer is being written and
// having its check value calculated -- we wait for those to finish the
// next time this function is called
return 0;
}
#endif
// if just one process or no threads, then do it without threads
if (len) {
if (g.decode == 1)
writen(g.outd, buf, len);
g.out_check = CHECK(g.out_check, buf, len);
g.out_tot += len;
}
return 0;
}
// Zip file data descriptor signature. This signature may or may not precede
// the CRC and lengths, with either resulting in a valid zip file! There is
// some odd code below that tries to detect and accommodate both cases.
#define SIG 0x08074b50
// Inflate for decompression or testing. Decompress from ind to outd unless
// decode != 1, in which case just test ind, and then also list if list != 0;
// look for and decode multiple, concatenated gzip and/or zlib streams; read
// and check the gzip, zlib, or zip trailer.
local void infchk(void) {
int ret, cont, more;
unsigned long check, len;
z_stream strm;
unsigned tmp2;
unsigned long tmp4;
length_t clen;
cont = more = 0;
do {
// header already read -- set up for decompression
g.in_tot = g.in_left; // track compressed data length
g.out_tot = 0;
g.out_check = CHECK(0L, Z_NULL, 0);
strm.zalloc = ZALLOC;
strm.zfree = ZFREE;
strm.opaque = OPAQUE;
ret = inflateBackInit(&strm, 15, out_buf);
if (ret == Z_MEM_ERROR)
throw(ENOMEM, "not enough memory");
if (ret != Z_OK)
throw(EINVAL, "internal error");
// decompress, compute lengths and check value
strm.avail_in = 0;
strm.next_in = Z_NULL;
ret = inflateBack(&strm, inb, NULL, outb, NULL);
inflateBackEnd(&strm);
if (ret == Z_DATA_ERROR)
throw(EDOM, "%s: corrupted -- invalid deflate data (%s)",
g.inf, strm.msg);
if (ret == Z_BUF_ERROR)
throw(EDOM, "%s: corrupted -- incomplete deflate data", g.inf);
if (ret != Z_STREAM_END)
throw(EINVAL, "internal error");
g.in_left += strm.avail_in;
g.in_next = strm.next_in;
outb(NULL, NULL, 0); // finish off final write and check
// compute compressed data length
clen = g.in_tot - g.in_left;
// read and check trailer
if (g.form > 1) { // zip local trailer (if any)
if (g.form == 3) { // data descriptor follows
// get data descriptor values, assuming no signature
g.zip_crc = GET4();
g.zip_clen = GET4();
g.zip_ulen = GET4(); // ZIP64 -> high clen, not ulen
// deduce whether or not a signature precedes the values
if (g.zip_crc == SIG && // might be the signature
// if the expected CRC is not SIG, then it's a signature
(g.out_check != SIG || // assume signature
// now we're in a very rare case where CRC == SIG -- the
// first four bytes could be the signature or the CRC
(g.zip_clen == SIG && // if not, then no signature
// now we have the first two words are SIG and the
// expected CRC is SIG, so it could be a signature and
// the CRC, or it could be the CRC and a compressed
// length that is *also* SIG (!) -- so check the low 32
// bits of the expected compressed length for SIG
((clen & LOW32) != SIG || // assume signature and CRC
// now the expected CRC *and* the expected low 32 bits
// of the compressed length are SIG -- this is so
// incredibly unlikely, clearly someone is messing with
// us, but we continue ... if the next four bytes are
// not SIG, then there is not a signature -- check those
// bytes, currently in g.zip_ulen:
(g.zip_ulen == SIG && // if not, then no signature
// we have three SIGs in a row in the descriptor, and
// both the expected CRC and the expected clen are SIG
// -- the first one is a signature if we don't expect
// the third word to be SIG, which is either the low 32
// bits of ulen, or if ZIP64, the high 32 bits of clen:
(g.zip64 ? clen >> 32 : g.out_tot) != SIG
// if that last compare was equal, then the expected
// values for the CRC, the low 32 bits of clen, *and*
// the low 32 bits of ulen are all SIG (!!), or in the
// case of ZIP64, even crazier, the CRC and *both*
// 32-bit halves of clen are all SIG (clen > 500
// petabytes!!!) ... we can no longer discriminate the
// hypotheses, so we will assume no signature
))))) {
// first four bytes were actually the descriptor -- shift
// the values down and get another four bytes
g.zip_crc = g.zip_clen;
g.zip_clen = g.zip_ulen;
g.zip_ulen = GET4();
}
// if ZIP64, then ulen is really the high word of clen -- get
// the actual ulen and skip its high word as well (we only
// compare the low 32 bits of the lengths to verify)
if (g.zip64) {
g.zip_ulen = GET4();
(void)GET4();
}
if (g.in_eof)
throw(EDOM, "%s: corrupted entry -- missing trailer",
g.inf);
}
check = g.zip_crc;
if (check != g.out_check)
throw(EDOM, "%s: corrupted entry -- crc32 mismatch", g.inf);
if (g.zip_clen != (clen & LOW32) ||
g.zip_ulen != (g.out_tot & LOW32))
throw(EDOM, "%s: corrupted entry -- length mismatch",
g.inf);
more = more_zip_entries(); // see if more entries, get comment
}
else if (g.form == 1) { // zlib (big-endian) trailer
check = (unsigned long)(GET()) << 24;
check += (unsigned long)(GET()) << 16;
check += (unsigned)(GET()) << 8;
check += GET();
if (g.in_eof)
throw(EDOM, "%s: corrupted -- missing trailer", g.inf);
if (check != g.out_check)
throw(EDOM, "%s: corrupted -- adler32 mismatch", g.inf);
}
else { // gzip trailer
check = GET4();
len = GET4();
if (g.in_eof)
throw(EDOM, "%s: corrupted -- missing trailer", g.inf);
if (check != g.out_check)
throw(EDOM, "%s: corrupted -- crc32 mismatch", g.inf);
if (len != (g.out_tot & LOW32))
throw(EDOM, "%s: corrupted -- length mismatch", g.inf);
}
// show file information if requested
if (g.list) {
g.in_tot = clen;
show_info(8, check, g.out_tot, cont);
cont = 1;
}
// if a gzip entry follows a gzip entry, decompress it (don't replace
// saved header information from first entry)
} while (g.form == 0 && (ret = get_header(0)) == 8);
// gzip -cdf copies junk after gzip stream directly to output
if (g.form == 0 && ret == -2 && g.force && g.pipeout && g.decode != 2 &&
!g.list)
cat();
// check for more entries in zip file
else if (more) {
complain("warning: %s: entries after the first were ignored", g.inf);
g.keep = 1; // don't delete the .zip file
}
// check for non-gzip after gzip stream, or anything after zlib stream
else if ((g.verbosity > 1 && g.form == 0 && ret != -1) ||
(g.form == 1 && (GET(), !g.in_eof)))
complain("warning: %s: trailing junk was ignored", g.inf);
}
// --- decompress Unix compress (LZW) input ---
// Type for accumulating bits. 23 bits will be used to accumulate up to 16-bit
// symbols.
typedef unsigned long bits_t;
#define NOMORE() (g.in_left == 0 && (g.in_eof || load() == 0))
#define NEXT() (g.in_left--, (unsigned)*g.in_next++)
// Decompress a compress (LZW) file from ind to outd. The compress magic header
// (two bytes) has already been read and verified.
local void unlzw(void) {
unsigned bits; // current bits per code (9..16)
unsigned mask; // mask for current bits codes = (1<<bits)-1
bits_t buf; // bit buffer (need 23 bits)
unsigned left; // bits left in buf (0..7 after code pulled)
length_t mark; // offset where last change in bits began
unsigned code; // code, table traversal index
unsigned max; // maximum bits per code for this stream
unsigned flags; // compress flags, then block compress flag
unsigned end; // last valid entry in prefix/suffix tables
unsigned prev; // previous code
unsigned final; // last character written for previous code
unsigned stack; // next position for reversed string
unsigned outcnt; // bytes in output buffer
// memory for unlzw() -- the first 256 entries of prefix[] and suffix[] are
// never used, so could have offset the index but it's faster to waste a
// little memory
uint_least16_t prefix[65536]; // index to LZW prefix string
unsigned char suffix[65536]; // one-character LZW suffix
unsigned char match[65280 + 2]; // buffer for reversed match
// process remainder of compress header -- a flags byte
g.out_tot = 0;
if (NOMORE())
throw(EDOM, "%s: lzw premature end", g.inf);
flags = NEXT();
if (flags & 0x60)
throw(EDOM, "%s: unknown lzw flags set", g.inf);
max = flags & 0x1f;
if (max < 9 || max > 16)
throw(EDOM, "%s: lzw bits out of range", g.inf);
if (max == 9) // 9 doesn't really mean 9
max = 10;
flags &= 0x80; // true if block compress
// mark the start of the compressed data for computing the first flush
mark = g.in_tot - g.in_left;
// clear table, start at nine bits per symbol
bits = 9;
mask = 0x1ff;
end = flags ? 256 : 255;
// set up: get first 9-bit code, which is the first decompressed byte, but
// don't create a table entry until the next code
if (NOMORE()) // no compressed data is ok
return;
buf = NEXT();
if (NOMORE())
throw(EDOM, "%s: lzw premature end", g.inf); // need nine bits
buf += NEXT() << 8;
final = prev = buf & mask; // code
buf >>= bits;
left = 16 - bits;
if (prev > 255)
throw(EDOM, "%s: invalid lzw code", g.inf);
out_buf[0] = (unsigned char)final; // write first decompressed byte
outcnt = 1;
// decode codes
stack = 0;
for (;;) {
// if the table will be full after this, increment the code size
if (end >= mask && bits < max) {
// flush unused input bits and bytes to next 8*bits bit boundary
// (this is a vestigial aspect of the compressed data format
// derived from an implementation that made use of a special VAX
// machine instruction!)
{
unsigned rem = ((g.in_tot - g.in_left) - mark) % bits;
if (rem) {
rem = bits - rem;
if (NOMORE())
break; // end of compressed data
while (rem > g.in_left) {
rem -= g.in_left;
if (load() == 0)
throw(EDOM, "%s: lzw premature end", g.inf);
}
g.in_left -= rem;
g.in_next += rem;
}
}
buf = 0;
left = 0;
// mark this new location for computing the next flush
mark = g.in_tot - g.in_left;
// go to the next number of bits per symbol
bits++;
mask <<= 1;
mask++;
}
// get a code of bits bits
if (NOMORE())
break; // end of compressed data
buf += (bits_t)(NEXT()) << left;
left += 8;
if (left < bits) {
if (NOMORE())
throw(EDOM, "%s: lzw premature end", g.inf);
buf += (bits_t)(NEXT()) << left;
left += 8;
}
code = buf & mask;
buf >>= bits;
left -= bits;
// process clear code (256)
if (code == 256 && flags) {
// flush unused input bits and bytes to next 8*bits bit boundary
{
unsigned rem = ((g.in_tot - g.in_left) - mark) % bits;
if (rem) {
rem = bits - rem;
while (rem > g.in_left) {
rem -= g.in_left;
if (load() == 0)
throw(EDOM, "%s: lzw premature end", g.inf);
}
g.in_left -= rem;
g.in_next += rem;
}
}
buf = 0;
left = 0;
// mark this new location for computing the next flush
mark = g.in_tot - g.in_left;
// go back to nine bits per symbol
bits = 9; // initialize bits and mask
mask = 0x1ff;
end = 255; // empty table
continue; // get next code
}
// special code to reuse last match
{
unsigned temp = code; // save the current code
if (code > end) {
// be picky on the allowed code here, and make sure that the
// code we drop through (prev) will be a valid index so that
// random input does not cause an exception
if (code != end + 1 || prev > end)
throw(EDOM, "%s: invalid lzw code", g.inf);
match[stack++] = (unsigned char)final;
code = prev;
}
// walk through linked list to generate output in reverse order
while (code >= 256) {
match[stack++] = suffix[code];
code = prefix[code];
}
match[stack++] = (unsigned char)code;
final = code;
// link new table entry
if (end < mask) {
end++;
prefix[end] = (uint_least16_t)prev;
suffix[end] = (unsigned char)final;
}
// set previous code for next iteration
prev = temp;
}
// write output in forward order
while (stack > OUTSIZE - outcnt) {
while (outcnt < OUTSIZE)
out_buf[outcnt++] = match[--stack];
g.out_tot += outcnt;
if (g.decode == 1)
writen(g.outd, out_buf, outcnt);
outcnt = 0;
}
do {
out_buf[outcnt++] = match[--stack];
} while (stack);
}
// write any remaining buffered output
g.out_tot += outcnt;
if (outcnt && g.decode == 1)
writen(g.outd, out_buf, outcnt);
}
// --- file processing ---
// Extract file name from path.
local char *justname(char *path) {
char *p;
p = strrchr(path, '/');
return p == NULL ? path : p + 1;
}
// Copy file attributes, from -> to, as best we can. This is best effort, so no
// errors are reported. The mode bits, including suid, sgid, and the sticky bit
// are copied (if allowed), the owner's user id and group id are copied (again
// if allowed), and the access and modify times are copied.
local int copymeta(char *from, char *to) {
struct stat st;
struct timeval times[2];
// get all of from's Unix meta data, return if not a regular file
if (stat(from, &st) != 0 || (st.st_mode & S_IFMT) != S_IFREG)
return -4;
// set to's mode bits, ignore errors
int ret = chmod(to, st.st_mode & 07777);
// copy owner's user and group, ignore errors
ret += chown(to, st.st_uid, st.st_gid);
// copy access and modify times, ignore errors
times[0].tv_sec = st.st_atime;
times[0].tv_usec = 0;
times[1].tv_sec = st.st_mtime;
times[1].tv_usec = 0;
ret += utimes(to, times);
return ret;
}
// Set the access and modify times of fd to t.
local void touch(char *path, time_t t) {
struct timeval times[2];
times[0].tv_sec = t;
times[0].tv_usec = 0;
times[1].tv_sec = t;
times[1].tv_usec = 0;
(void)utimes(path, times);
}
// Request that all data buffered by the operating system for g.outd be written
// to the permanent storage device. If fsync(fd) is used (POSIX), then all of
// the data is sent to the device, but will likely be buffered in volatile
// memory on the device itself, leaving open a window of vulnerability.
// fcntl(fd, F_FULLSYNC) on the other hand, available in macOS only, will
// request and wait for the device to write out its buffered data to permanent
// storage. On Windows, _commit() is used.
local void out_push(void) {
if (g.outd == -1)
return;
#if defined(F_FULLSYNC)
int ret = fcntl(g.outd, F_FULLSYNC);
#elif defined(_WIN32)
int ret = _commit(g.outd);
#else
int ret = fsync(g.outd);
#endif
if (ret == -1)
throw(errno, "sync error on %s (%s)", g.outf, strerror(errno));
}
// Process provided input file, or stdin if path is NULL. process() can call
// itself for recursive directory processing.
local void process(char *path) {
volatile int method = -1; // get_header() return value
size_t len; // length of base name (minus suffix)
struct stat st; // to get file type and mod time
ball_t err; // error information from throw()
// all compressed suffixes for decoding search, in length order
static char *sufs[] = {".z", "-z", "_z", ".Z", ".gz", "-gz", ".zz", "-zz",
".zip", ".ZIP", ".tgz", NULL};
// open input file with name in, descriptor ind -- set name and mtime
if (path == NULL) {
vstrcpy(&g.inf, &g.inz, 0, "<stdin>");
g.ind = 0;
g.name = NULL;
g.mtime = g.headis & 2 ?
(fstat(g.ind, &st) ? time(NULL) : st.st_mtime) : 0;
len = 0;
}
else {
// set input file name (already set if recursed here)
if (path != g.inf)
vstrcpy(&g.inf, &g.inz, 0, path);
len = strlen(g.inf);
// try to stat input file -- if not there and decoding, look for that
// name with compressed suffixes
if (lstat(g.inf, &st)) {
if (errno == ENOENT && (g.list || g.decode)) {
char **sufx = sufs;
do {
if (*sufx == NULL)
break;
vstrcpy(&g.inf, &g.inz, len, *sufx++);
errno = 0;
} while (lstat(g.inf, &st) && errno == ENOENT);
}
#if defined(EOVERFLOW) && defined(EFBIG)
if (errno == EOVERFLOW || errno == EFBIG)
throw(EDOM, "%s too large -- "
"not compiled with large file support", g.inf);
#endif
if (errno) {
g.inf[len] = 0;
complain("skipping: %s does not exist", g.inf);
return;
}
len = strlen(g.inf);
}
// only process regular files or named pipes, but allow symbolic links
// if -f, recurse into directory if -r
if ((st.st_mode & S_IFMT) != S_IFREG &&
(st.st_mode & S_IFMT) != S_IFIFO &&
(st.st_mode & S_IFMT) != S_IFLNK &&
(st.st_mode & S_IFMT) != S_IFDIR) {
complain("skipping: %s is a special file or device", g.inf);
return;
}
if ((st.st_mode & S_IFMT) == S_IFLNK && !g.force && !g.pipeout) {
complain("skipping: %s is a symbolic link", g.inf);
return;
}
if ((st.st_mode & S_IFMT) == S_IFDIR && !g.recurse) {
complain("skipping: %s is a directory", g.inf);
return;
}
// recurse into directory (assumes Unix)
if ((st.st_mode & S_IFMT) == S_IFDIR) {
char *roll = NULL;
size_t size = 0, off = 0, base;
DIR *here;
struct dirent *next;
// accumulate list of entries (need to do this, since readdir()
// behavior not defined if directory modified between calls)
here = opendir(g.inf);
if (here == NULL)
return;
while ((next = readdir(here)) != NULL) {
if (next->d_name[0] == 0 ||
(next->d_name[0] == '.' && (next->d_name[1] == 0 ||
(next->d_name[1] == '.' && next->d_name[2] == 0))))
continue;
off = vstrcpy(&roll, &size, off, next->d_name);
}
closedir(here);
vstrcpy(&roll, &size, off, "");
// run process() for each entry in the directory
base = len && g.inf[len - 1] != (unsigned char)'/' ?
vstrcpy(&g.inf, &g.inz, len, "/") - 1 : len;
for (off = 0; roll[off]; off += strlen(roll + off) + 1) {
vstrcpy(&g.inf, &g.inz, base, roll + off);
process(g.inf);
}
g.inf[len] = 0;
// release list of entries
FREE(roll);
return;
}
// don't compress .gz (or provided suffix) files, unless -f
if (!(g.force || g.list || g.decode) && len >= strlen(g.sufx) &&
strcmp(g.inf + len - strlen(g.sufx), g.sufx) == 0) {
complain("skipping: %s ends with %s", g.inf, g.sufx);
return;
}
// create output file only if input file has compressed suffix
if (g.decode == 1 && !g.pipeout && !g.list) {
size_t suf = compressed_suffix(g.inf);
if (suf == 0) {
complain("skipping: %s does not have compressed suffix",
g.inf);
return;
}
len -= suf;
}
// open input file
g.ind = open(g.inf, O_RDONLY, 0);
if (g.ind < 0)
throw(errno, "read error on %s (%s)", g.inf, strerror(errno));
// prepare gzip header information for compression
g.name = g.headis & 1 ? justname(g.inf) : NULL;
g.mtime = g.headis & 2 ? st.st_mtime : 0;
}
SET_BINARY_MODE(g.ind);
// if decoding or testing, try to read gzip header
if (g.decode) {
in_init();
method = get_header(1);
if (method != 8 && method != 257 &&
// gzip -cdf acts like cat on uncompressed input
!((method == -1 || method == -2) && g.force && g.pipeout &&
g.decode != 2 && !g.list)) {
load_end();
complain(method == -6 ? "skipping: %s corrupt: header crc error" :
method == -1 ? "skipping: %s empty" :
method < 0 ? "skipping: %s unrecognized format" :
"skipping: %s unknown compression method", g.inf);
return;
}
// if requested, test input file (possibly a test list)
if (g.decode == 2) {
try {
if (method == 8)
infchk();
else {
unlzw();
if (g.list) {
g.in_tot -= 3;
show_info(method, 0, g.out_tot, 0);
}
}
}
catch (err) {
if (err.code != EDOM)
punt(err);
complain("skipping: %s", err.why);
drop(err);
outb(NULL, NULL, 0);
}
load_end();
return;
}
}
// if requested, just list information about input file
if (g.list) {
list_info();
load_end();
return;
}
// create output file out, descriptor outd
if (path == NULL || g.pipeout) {
// write to stdout
g.outf = alloc(NULL, strlen("<stdout>") + 1);
strcpy(g.outf, "<stdout>");
g.outd = 1;
if (!g.decode && !g.force && isatty(g.outd))
throw(EINVAL, "trying to write compressed data to a terminal"
" (use -f to force)");
}
else {
char *to = g.inf, *sufx = "";
size_t pre = 0;
// select parts of the output file name
if (g.decode) {
// for -dN or -dNT, use the path from the input file and the name
// from the header, stripping any path in the header name
if ((g.headis & 1) != 0 && g.hname != NULL) {
pre = (size_t)(justname(g.inf) - g.inf);
to = justname(g.hname);
len = strlen(to);
}
// for -d or -dNn, replace abbreviated suffixes
else if (strcmp(to + len, ".tgz") == 0)
sufx = ".tar";
}
else
// add appropriate suffix when compressing
sufx = g.sufx;
// create output file and open to write, overwriting any existing file
// of the same name only if requested with --force or -f
g.outf = alloc(NULL, pre + len + strlen(sufx) + 1);
memcpy(g.outf, g.inf, pre);
memcpy(g.outf + pre, to, len);
strcpy(g.outf + pre + len, sufx);
g.outd = open(g.outf, O_CREAT | O_TRUNC | O_WRONLY |
(g.force ? 0 : O_EXCL), 0600);
// if it exists and wasn't forced, give the user a chance to overwrite
if (g.outd < 0 && errno == EEXIST) {
int overwrite = 0;
if (isatty(0) && g.verbosity) {
// get a response from the user -- the first non-blank
// character has to be a "y" or a "Y" to permit an overwrite
fprintf(stderr, "%s exists -- overwrite (y/n)? ", g.outf);
fflush(stderr);
int ch, first = 1;
do {
ch = getchar();
if (first == 1) {
if (ch == ' ' || ch == '\t')
continue;
if (ch == 'y' || ch == 'Y')
overwrite = 1;
first = 0;
}
} while (ch != EOF && ch != '\n' && ch != '\r');
}
if (!overwrite) {
complain("skipping: %s exists", g.outf);
RELEASE(g.outf);
load_end();
return;
}
g.outd = open(g.outf, O_CREAT | O_TRUNC | O_WRONLY, 0600);
}
// if some other error, give up
if (g.outd < 0)
throw(errno, "write error on %s (%s)", g.outf, strerror(errno));
}
SET_BINARY_MODE(g.outd);
// process ind to outd
if (g.verbosity > 1)
fprintf(stderr, "%s to %s ", g.inf, g.outf);
if (g.decode) {
try {
if (method == 8)
infchk();
else if (method == 257)
unlzw();
else
cat();
}
catch (err) {
if (err.code != EDOM)
punt(err);
complain("skipping: %s", err.why);
drop(err);
outb(NULL, NULL, 0);
if (g.outd != -1 && g.outd != 1) {
close(g.outd);
g.outd = -1;
unlink(g.outf);
RELEASE(g.outf);
}
}
}
#ifndef NOTHREAD
else if (g.procs > 1)
parallel_compress();
#endif
else
single_compress(0);
if (g.verbosity > 1) {
putc('\n', stderr);
fflush(stderr);
}
// finish up, copy attributes, set times, delete original
load_end();
if (g.outd != -1 && g.outd != 1) {
if (g.sync)
out_push(); // push to permanent storage
if (close(g.outd))
throw(errno, "write error on %s (%s)", g.outf, strerror(errno));
g.outd = -1; // now prevent deletion on interrupt
if (g.ind != 0) {
copymeta(g.inf, g.outf);
if (!g.keep)
unlink(g.inf);
}
if (g.decode && (g.headis & 2) != 0 && g.stamp)
touch(g.outf, g.stamp);
}
RELEASE(g.outf);
}
local char *helptext[] = {
"Usage: pigz [options] [files ...]",
" will compress files in place, adding the suffix '.gz'. If no files are",
#ifdef NOTHREAD
" specified, stdin will be compressed to stdout. pigz does what gzip does.",
#else
" specified, stdin will be compressed to stdout. pigz does what gzip does,",
" but spreads the work over multiple processors and cores when compressing.",
#endif
"",
"Options:",
#ifdef NOZOPFLI
" -0 to -9 Compression level",
#else
" -0 to -9, -11 Compression level (level 11, zopfli, is much slower)",
#endif
" --fast, --best Compression levels 1 and 9 respectively",
" -A, --alias xxx Use xxx as the name for any --zip entry from stdin",
" -b, --blocksize mmm Set compression block size to mmmK (default 128K)",
" -c, --stdout Write all processed output to stdout (won't delete)",
" -C, --comment ccc Put comment ccc in the gzip or zip header",
" -d, --decompress Decompress the compressed input",
" -f, --force Force overwrite, compress .gz, links, and to terminal",
#ifndef NOZOPFLI
" -F --first Do iterations first, before block split for -11",
#endif
" -h, --help Display a help screen and quit",
" -H, --huffman Use only Huffman coding for compression",
" -i, --independent Compress blocks independently for damage recovery",
#ifndef NOZOPFLI
" -I, --iterations n Number of iterations for -11 optimization",
" -J, --maxsplits n Maximum number of split blocks for -11",
#endif
" -k, --keep Do not delete original file after processing",
" -K, --zip Compress to PKWare zip (.zip) single entry format",
" -l, --list List the contents of the compressed input",
" -L, --license Display the pigz license and quit",
" -m, --no-time Do not store or restore mod time",
" -M, --time Store or restore mod time",
" -n, --no-name Do not store or restore file name or mod time",
" -N, --name Store or restore file name and mod time",
#ifndef NOZOPFLI
" -O --oneblock Do not split into smaller blocks for -11",
#endif
#ifndef NOTHREAD
" -p, --processes n Allow up to n compression threads (default is the",
" number of online processors, or 8 if unknown)",
#endif
" -q, --quiet Print no messages, even on error",
" -r, --recursive Process the contents of all subdirectories",
" -R, --rsyncable Input-determined block locations for rsync",
" -S, --suffix .sss Use suffix .sss instead of .gz (for compression)",
" -t, --test Test the integrity of the compressed input",
" -U, --rle Use run-length encoding for compression",
#ifdef PIGZ_DEBUG
" -v, --verbose Provide more verbose output (-vv to debug)",
#else
" -v, --verbose Provide more verbose output",
#endif
" -V --version Show the version of pigz",
" -Y --synchronous Force output file write to permanent storage",
" -z, --zlib Compress to zlib (.zz) instead of gzip format",
" -- All arguments after \"--\" are treated as files"
};
// Display the help text above.
local void help(void) {
int n;
if (g.verbosity == 0)
return;
for (n = 0; n < (int)(sizeof(helptext) / sizeof(char *)); n++)
fprintf(stderr, "%s\n", helptext[n]);
fflush(stderr);
exit(0);
}
#ifndef NOTHREAD
// Try to determine the number of processors.
local int nprocs(int n) {
# ifdef _SC_NPROCESSORS_ONLN
n = (int)sysconf(_SC_NPROCESSORS_ONLN);
# else
# ifdef _SC_NPROC_ONLN
n = (int)sysconf(_SC_NPROC_ONLN);
# else
# ifdef __hpux
struct pst_dynamic psd;
if (pstat_getdynamic(&psd, sizeof(psd), (size_t)1, 0) != -1)
n = psd.psd_proc_cnt;
# endif
# endif
# endif
return n;
}
#endif
// Set option defaults.
local void defaults(void) {
g.level = Z_DEFAULT_COMPRESSION;
g.strategy = Z_DEFAULT_STRATEGY;
#ifndef NOZOPFLI
// default zopfli options as set by ZopfliInitOptions():
// verbose = 0
// numiterations = 15
// blocksplitting = 1
// blocksplittinglast = 0
// blocksplittingmax = 15
ZopfliInitOptions(&g.zopts);
#endif
g.block = 131072UL; // 128K
#ifdef NOTHREAD
g.procs = 1;
#else
g.procs = nprocs(8);
g.shift = x2nmodp(g.block, 3);
#endif
g.rsync = 0; // don't do rsync blocking
g.setdict = 1; // initialize dictionary each thread
g.verbosity = 1; // normal message level
g.headis = 3; // store name and time (low bits == 11),
// restore neither (next bits == 00),
// where 01 is name and 10 is time
g.pipeout = 0; // don't force output to stdout
g.sufx = ".gz"; // compressed file suffix
g.comment = NULL; // no comment
g.decode = 0; // compress
g.list = 0; // compress
g.keep = 0; // delete input file once compressed
g.force = 0; // don't overwrite, don't compress links
g.sync = 0; // don't force a flush on output
g.recurse = 0; // don't go into directories
g.form = 0; // use gzip format
}
// Long options conversion to short options.
local char *longopts[][2] = {
{"LZW", "Z"}, {"lzw", "Z"}, {"alias", "A"}, {"ascii", "a"}, {"best", "9"},
{"bits", "Z"}, {"blocksize", "b"}, {"decompress", "d"}, {"fast", "1"},
{"force", "f"}, {"comment", "C"},
#ifndef NOZOPFLI
{"first", "F"}, {"iterations", "I"}, {"maxsplits", "J"}, {"oneblock", "O"},
#endif
{"help", "h"}, {"independent", "i"}, {"keep", "k"}, {"license", "L"},
{"list", "l"}, {"name", "N"}, {"no-name", "n"}, {"no-time", "m"},
{"processes", "p"}, {"quiet", "q"}, {"recursive", "r"}, {"rsyncable", "R"},
{"silent", "q"}, {"stdout", "c"}, {"suffix", "S"}, {"synchronous", "Y"},
{"test", "t"}, {"time", "M"}, {"to-stdout", "c"}, {"uncompress", "d"},
{"verbose", "v"}, {"version", "V"}, {"zip", "K"}, {"zlib", "z"},
{"huffman", "H"}, {"rle", "U"}};
#define NLOPTS (sizeof(longopts) / (sizeof(char *) << 1))
// Either new buffer size, new compression level, or new number of processes.
// Get rid of old buffers and threads to force the creation of new ones with
// the new settings.
local void new_opts(void) {
single_compress(1);
#ifndef NOTHREAD
finish_jobs();
#endif
}
// Verify that arg is only digits, and if so, return the decimal value.
local size_t num(char *arg) {
char *str = arg;
size_t val = 0;
if (*str == 0)
throw(EINVAL, "internal error: empty parameter");
do {
if (*str < '0' || *str > '9' ||
(val && ((~(size_t)0) - (size_t)(*str - '0')) / val < 10))
throw(EINVAL, "invalid numeric parameter: %s", arg);
val = val * 10 + (size_t)(*str - '0');
} while (*++str);
return val;
}
// Process an argument, return true if it is an option (not a filename)
local int option(char *arg) {
static int get = 0; // if not zero, look for option parameter
char bad[3] = "-X"; // for error messages (X is replaced)
// if no argument or dash option, check status of get
if (get && (arg == NULL || *arg == '-')) {
bad[1] = "bpSIJAC"[get - 1];
throw(EINVAL, "missing parameter after %s", bad);
}
if (arg == NULL)
return 1;
// process long option or short options
if (*arg == '-') {
// a single dash will be interpreted as stdin
if (*++arg == 0)
return 0;
// process long option (fall through with equivalent short option)
if (*arg == '-') {
int j;
arg++;
for (j = NLOPTS - 1; j >= 0; j--)
if (strcmp(arg, longopts[j][0]) == 0) {
arg = longopts[j][1];
break;
}
if (j < 0)
throw(EINVAL, "invalid option: %s", arg - 2);
}
// process short options (more than one allowed after dash)
do {
// if looking for a parameter, don't process more single character
// options until we have the parameter
if (get) {
if (get == 3)
throw(EINVAL,
"invalid usage: -S must be followed by space");
if (get == 7)
throw(EINVAL,
"invalid usage: -C must be followed by space");
break; // allow -*nnn to fall to parameter code
}
// process next single character option or compression level
bad[1] = *arg;
switch (*arg) {
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
g.level = *arg - '0';
while (arg[1] >= '0' && arg[1] <= '9') {
if (g.level && (INT_MAX - (arg[1] - '0')) / g.level < 10)
throw(EINVAL, "only levels 0..9 and 11 are allowed");
g.level = g.level * 10 + *++arg - '0';
}
if (g.level == 10 || g.level > 11)
throw(EINVAL, "only levels 0..9 and 11 are allowed");
break;
case 'A': get = 6; break;
case 'C': get = 7; break;
#ifndef NOZOPFLI
case 'F': g.zopts.blocksplittinglast = 1; break;
case 'I': get = 4; break;
case 'H': g.strategy = Z_HUFFMAN_ONLY; break;
case 'J': get = 5; break;
#endif
case 'K': g.form = 2; g.sufx = ".zip"; break;
case 'L':
puts(VERSION);
puts("Copyright (C) 2007-2021 Mark Adler");
puts("Subject to the terms of the zlib license.");
puts("No warranty is provided or implied.");
exit(0);
break; // avoid warning
case 'M': g.headis |= 0xa; break;
case 'N': g.headis = 0xf; break;
#ifndef NOZOPFLI
case 'O': g.zopts.blocksplitting = 0; break;
#endif
case 'R': g.rsync = 1; break;
case 'S': get = 3; break;
// -T defined below as an alternative for -m
case 'V':
puts(VERSION);
if (g.verbosity > 1)
printf("zlib %s\n", zlibVersion());
exit(0);
break; // avoid warning
case 'Y': g.sync = 1; break;
case 'Z':
throw(EINVAL, "invalid option: LZW output not supported: %s",
bad);
break; // avoid warning
case 'a':
throw(EINVAL, "invalid option: no ascii conversion: %s",
bad);
break; // avoid warning
case 'b': get = 1; break;
case 'c': g.pipeout = 1; break;
case 'd': if (!g.decode) g.headis >>= 2; g.decode = 1; break;
case 'f': g.force = 1; break;
case 'h': help(); break;
case 'i': g.setdict = 0; break;
case 'k': g.keep = 1; break;
case 'l': g.list = 1; break;
case 'n': g.headis = 0; break;
case 'T':
case 'm': g.headis &= ~0xa; break;
case 'p': get = 2; break;
case 'q': g.verbosity = 0; break;
case 'r': g.recurse = 1; break;
case 't': g.decode = 2; break;
case 'U': g.strategy = Z_RLE; break;
case 'v': g.verbosity++; break;
case 'z': g.form = 1; g.sufx = ".zz"; break;
default:
throw(EINVAL, "invalid option: %s", bad);
}
} while (*++arg);
if (*arg == 0)
return 1;
}
// process option parameter for -b, -p, -A, -S, -I, or -J
if (get) {
size_t n;
if (get == 1) {
n = num(arg);
g.block = n << 10; // chunk size
#ifndef NOTHREAD
g.shift = x2nmodp(g.block, 3);
#endif
if (g.block < DICT)
throw(EINVAL, "block size too small (must be >= 32K)");
if (n != g.block >> 10 ||
OUTPOOL(g.block) < g.block ||
(ssize_t)OUTPOOL(g.block) < 0 ||
g.block > (1UL << 29)) // limited by append_len()
throw(EINVAL, "block size too large: %s", arg);
}
else if (get == 2) {
n = num(arg);
g.procs = (int)n; // # processes
if (g.procs < 1)
throw(EINVAL, "invalid number of processes: %s", arg);
if ((size_t)g.procs != n || INBUFS(g.procs) < 1)
throw(EINVAL, "too many processes: %s", arg);
#ifdef NOTHREAD
if (g.procs > 1)
throw(EINVAL, "compiled without threads");
#endif
}
else if (get == 3) {
if (*arg == 0)
throw(EINVAL, "suffix cannot be empty");
g.sufx = arg; // gz suffix
}
#ifndef NOZOPFLI
else if (get == 4)
g.zopts.numiterations = (int)num(arg); // optimize iterations
else if (get == 5)
g.zopts.blocksplittingmax = (int)num(arg); // max block splits
else if (get == 6)
g.alias = arg; // zip name for stdin
#endif
else if (get == 7)
g.comment = arg; // header comment
get = 0;
return 1;
}
// neither an option nor parameter
return 0;
}
#ifndef NOTHREAD
// handle error received from yarn function
local void cut_yarn(int err) {
throw(err, "internal threads error");
}
#endif
// Process command line arguments.
int main(int argc, char **argv) {
int n; // general index
int nop; // index before which "-" means stdin
int done; // number of named files processed
size_t k; // program name length
char *opts, *p; // environment default options, marker
ball_t err; // error information from throw()
g.ret = 0;
try {
// initialize globals
g.inf = NULL;
g.inz = 0;
#ifndef NOTHREAD
g.in_which = -1;
#endif
g.alias = "-";
g.outf = NULL;
g.first = 1;
g.hname = NULL;
g.hcomm = NULL;
// save pointer to program name for error messages
p = strrchr(argv[0], '/');
p = p == NULL ? argv[0] : p + 1;
g.prog = *p ? p : "pigz";
// prepare for interrupts and logging
signal(SIGINT, cut_short);
#ifndef NOTHREAD
yarn_prefix = g.prog; // prefix for yarn error messages
yarn_abort = cut_yarn; // call on thread error
#endif
#ifdef PIGZ_DEBUG
gettimeofday(&start, NULL); // starting time for log entries
log_init(); // initialize logging
#endif
// set all options to defaults
defaults();
// check zlib version
if (zlib_vernum() < 0x1230)
throw(EINVAL, "zlib version less than 1.2.3");
// create CRC table, in case zlib compiled with dynamic tables
get_crc_table();
// process user environment variable defaults in GZIP
opts = getenv("GZIP");
if (opts != NULL) {
while (*opts) {
while (*opts == ' ' || *opts == '\t')
opts++;
p = opts;
while (*p && *p != ' ' && *p != '\t')
p++;
n = *p;
*p = 0;
if (!option(opts))
throw(EINVAL, "cannot provide files in "
"GZIP environment variable");
opts = p + (n ? 1 : 0);
}
option(NULL); // check for missing parameter
}
// process user environment variable defaults in PIGZ as well
opts = getenv("PIGZ");
if (opts != NULL) {
while (*opts) {
while (*opts == ' ' || *opts == '\t')
opts++;
p = opts;
while (*p && *p != ' ' && *p != '\t')
p++;
n = *p;
*p = 0;
if (!option(opts))
throw(EINVAL, "cannot provide files in "
"PIGZ environment variable");
opts = p + (n ? 1 : 0);
}
option(NULL); // check for missing parameter
}
// decompress if named "unpigz" or "gunzip", to stdout if "*cat"
if (strcmp(g.prog, "unpigz") == 0 || strcmp(g.prog, "gunzip") == 0) {
if (!g.decode)
g.headis >>= 2;
g.decode = 1;
}
if ((k = strlen(g.prog)) > 2 && strcmp(g.prog + k - 3, "cat") == 0) {
if (!g.decode)
g.headis >>= 2;
g.decode = 1;
g.pipeout = 1;
}
// if no arguments and compressed data to/from terminal, show help
if (argc < 2 && isatty(g.decode ? 0 : 1))
help();
// process all command-line options first
nop = argc;
for (n = 1; n < argc; n++)
if (strcmp(argv[n], "--") == 0) {
nop = n; // after this, "-" is the name "-"
argv[n] = NULL; // remove option
break; // ignore options after "--"
}
else if (option(argv[n])) // process argument
argv[n] = NULL; // remove if option
option(NULL); // check for missing parameter
// process command-line filenames
done = 0;
for (n = 1; n < argc; n++)
if (argv[n] != NULL) {
if (done == 1 && g.pipeout && !g.decode && !g.list &&
g.form > 1)
complain("warning: output will be concatenated zip files"
" -- %s will not be able to extract", g.prog);
process(n < nop && strcmp(argv[n], "-") == 0 ? NULL : argv[n]);
done++;
}
// list stdin or compress stdin to stdout if no file names provided
if (done == 0)
process(NULL);
}
always {
// release resources
RELEASE(g.inf);
g.inz = 0;
new_opts();
}
catch (err) {
THREADABORT(err);
}
// show log (if any)
log_dump();
return g.ret;
}