blob: 1a38c1ef71110e217d3cd13c892c8fedf5dbe83d [file] [log] [blame]
/* NIST Secure Hash Algorithm */
/* heavily modified by Uwe Hollerbach uh@alumni.caltech edu */
/* from Peter C. Gutmann's implementation as found in */
/* Applied Cryptography by Bruce Schneier */
/* NIST's proposed modification to SHA of 7/11/94 may be */
/* activated by defining USE_MODIFIED_SHA */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "sha.h"
#if !defined(LITTLE_ENDIAN) && defined(__ORDER_LITTLE_ENDIAN__)
#define LITTLE_ENDIAN
#endif
/* SHA f()-functions */
#define f1(x,y,z) ((x & y) | (~x & z))
#define f2(x,y,z) (x ^ y ^ z)
#define f3(x,y,z) ((x & y) | (x & z) | (y & z))
#define f4(x,y,z) (x ^ y ^ z)
/* SHA constants */
#define CONST1 0x5a827999L
#define CONST2 0x6ed9eba1L
#define CONST3 0x8f1bbcdcL
#define CONST4 0xca62c1d6L
/* 32-bit rotate */
#define ROT32(x,n) ((x << n) | (x >> (32 - n)))
#define FUNC(n,i) \
temp = ROT32(A,5) + f##n(B,C,D) + E + W[i] + CONST##n; \
E = D; D = C; C = ROT32(B,30); B = A; A = temp
/* do SHA transformation */
static void sha_transform(SHA_INFO *sha_info)
{
int i;
LONG temp, A, B, C, D, E, W[80];
for (i = 0; i < 16; ++i) {
W[i] = sha_info->data[i];
}
for (i = 16; i < 80; ++i) {
W[i] = W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16];
#ifdef USE_MODIFIED_SHA
W[i] = ROT32(W[i], 1);
#endif /* USE_MODIFIED_SHA */
}
A = sha_info->digest[0];
B = sha_info->digest[1];
C = sha_info->digest[2];
D = sha_info->digest[3];
E = sha_info->digest[4];
#ifdef UNROLL_LOOPS
FUNC(1, 0); FUNC(1, 1); FUNC(1, 2); FUNC(1, 3); FUNC(1, 4);
FUNC(1, 5); FUNC(1, 6); FUNC(1, 7); FUNC(1, 8); FUNC(1, 9);
FUNC(1,10); FUNC(1,11); FUNC(1,12); FUNC(1,13); FUNC(1,14);
FUNC(1,15); FUNC(1,16); FUNC(1,17); FUNC(1,18); FUNC(1,19);
FUNC(2,20); FUNC(2,21); FUNC(2,22); FUNC(2,23); FUNC(2,24);
FUNC(2,25); FUNC(2,26); FUNC(2,27); FUNC(2,28); FUNC(2,29);
FUNC(2,30); FUNC(2,31); FUNC(2,32); FUNC(2,33); FUNC(2,34);
FUNC(2,35); FUNC(2,36); FUNC(2,37); FUNC(2,38); FUNC(2,39);
FUNC(3,40); FUNC(3,41); FUNC(3,42); FUNC(3,43); FUNC(3,44);
FUNC(3,45); FUNC(3,46); FUNC(3,47); FUNC(3,48); FUNC(3,49);
FUNC(3,50); FUNC(3,51); FUNC(3,52); FUNC(3,53); FUNC(3,54);
FUNC(3,55); FUNC(3,56); FUNC(3,57); FUNC(3,58); FUNC(3,59);
FUNC(4,60); FUNC(4,61); FUNC(4,62); FUNC(4,63); FUNC(4,64);
FUNC(4,65); FUNC(4,66); FUNC(4,67); FUNC(4,68); FUNC(4,69);
FUNC(4,70); FUNC(4,71); FUNC(4,72); FUNC(4,73); FUNC(4,74);
FUNC(4,75); FUNC(4,76); FUNC(4,77); FUNC(4,78); FUNC(4,79);
#else /* !UNROLL_LOOPS */
for (i = 0; i < 20; ++i) {
FUNC(1,i);
}
for (i = 20; i < 40; ++i) {
FUNC(2,i);
}
for (i = 40; i < 60; ++i) {
FUNC(3,i);
}
for (i = 60; i < 80; ++i) {
FUNC(4,i);
}
#endif /* !UNROLL_LOOPS */
sha_info->digest[0] += A;
sha_info->digest[1] += B;
sha_info->digest[2] += C;
sha_info->digest[3] += D;
sha_info->digest[4] += E;
}
#ifdef LITTLE_ENDIAN
/* change endianness of data */
static void byte_reverse(LONG *buffer, int count)
{
int i;
BYTE ct[4], *cp;
count /= sizeof(LONG);
cp = (BYTE *) buffer;
for (i = 0; i < count; ++i) {
ct[0] = cp[0];
ct[1] = cp[1];
ct[2] = cp[2];
ct[3] = cp[3];
cp[0] = ct[3];
cp[1] = ct[2];
cp[2] = ct[1];
cp[3] = ct[0];
cp += sizeof(LONG);
}
}
#endif /* LITTLE_ENDIAN */
/* initialize the SHA digest */
void sha_init(SHA_INFO *sha_info)
{
sha_info->digest[0] = 0x67452301L;
sha_info->digest[1] = 0xefcdab89L;
sha_info->digest[2] = 0x98badcfeL;
sha_info->digest[3] = 0x10325476L;
sha_info->digest[4] = 0xc3d2e1f0L;
sha_info->count_lo = 0L;
sha_info->count_hi = 0L;
}
/* update the SHA digest */
void sha_update(SHA_INFO *sha_info, BYTE *buffer, int count)
{
if ((sha_info->count_lo + ((LONG) count << 3)) < sha_info->count_lo) {
++sha_info->count_hi;
}
sha_info->count_lo += (LONG) count << 3;
sha_info->count_hi += (LONG) count >> 29;
while (count >= SHA_BLOCKSIZE) {
memcpy(sha_info->data, buffer, SHA_BLOCKSIZE);
#ifdef LITTLE_ENDIAN
byte_reverse(sha_info->data, SHA_BLOCKSIZE);
#endif /* LITTLE_ENDIAN */
sha_transform(sha_info);
buffer += SHA_BLOCKSIZE;
count -= SHA_BLOCKSIZE;
}
memcpy(sha_info->data, buffer, count);
}
/* finish computing the SHA digest */
void sha_final(SHA_INFO *sha_info)
{
int count;
LONG lo_bit_count, hi_bit_count;
lo_bit_count = sha_info->count_lo;
hi_bit_count = sha_info->count_hi;
count = (int) ((lo_bit_count >> 3) & 0x3f);
((BYTE *) sha_info->data)[count++] = 0x80;
if (count > 56) {
memset((BYTE *) &sha_info->data + count, 0, 64 - count);
#ifdef LITTLE_ENDIAN
byte_reverse(sha_info->data, SHA_BLOCKSIZE);
#endif /* LITTLE_ENDIAN */
sha_transform(sha_info);
memset(&sha_info->data, 0, 56);
} else {
memset((BYTE *) &sha_info->data + count, 0, 56 - count);
}
#ifdef LITTLE_ENDIAN
byte_reverse(sha_info->data, SHA_BLOCKSIZE);
#endif /* LITTLE_ENDIAN */
sha_info->data[14] = hi_bit_count;
sha_info->data[15] = lo_bit_count;
sha_transform(sha_info);
}
/* compute the SHA digest of a FILE stream */
#define BLOCK_SIZE 8192
void sha_stream(SHA_INFO *sha_info, FILE *fin)
{
int i;
BYTE data[BLOCK_SIZE];
sha_init(sha_info);
while ((i = fread(data, 1, BLOCK_SIZE, fin)) > 0) {
sha_update(sha_info, data, i);
}
sha_final(sha_info);
}
/* print a SHA digest */
void sha_print(SHA_INFO *sha_info)
{
printf("%08" PRIx32 " %08" PRIx32 " %08" PRIx32
" %08" PRIx32 " %08" PRIx32 "\n",
sha_info->digest[0], sha_info->digest[1], sha_info->digest[2],
sha_info->digest[3], sha_info->digest[4]);
}