blob: b791bf483e675aa48872bbe87426986cf9113b5f [file] [log] [blame]
//===- Pass.cpp - Pass infrastructure implementation ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements common pass infrastructure.
//
//===----------------------------------------------------------------------===//
#include "mlir/Pass/Pass.h"
#include "PassDetail.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/Verifier.h"
#include "mlir/Support/FileUtilities.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/CrashRecoveryContext.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/Parallel.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/Threading.h"
#include "llvm/Support/ToolOutputFile.h"
using namespace mlir;
using namespace mlir::detail;
//===----------------------------------------------------------------------===//
// Pass
//===----------------------------------------------------------------------===//
/// Out of line virtual method to ensure vtables and metadata are emitted to a
/// single .o file.
void Pass::anchor() {}
/// Attempt to initialize the options of this pass from the given string.
LogicalResult Pass::initializeOptions(StringRef options) {
return passOptions.parseFromString(options);
}
/// Copy the option values from 'other', which is another instance of this
/// pass.
void Pass::copyOptionValuesFrom(const Pass *other) {
passOptions.copyOptionValuesFrom(other->passOptions);
}
/// Prints out the pass in the textual representation of pipelines. If this is
/// an adaptor pass, print with the op_name(sub_pass,...) format.
void Pass::printAsTextualPipeline(raw_ostream &os) {
// Special case for adaptors to use the 'op_name(sub_passes)' format.
if (auto *adaptor = dyn_cast<OpToOpPassAdaptor>(this)) {
llvm::interleaveComma(adaptor->getPassManagers(), os,
[&](OpPassManager &pm) {
os << pm.getOpName() << "(";
pm.printAsTextualPipeline(os);
os << ")";
});
return;
}
// Otherwise, print the pass argument followed by its options. If the pass
// doesn't have an argument, print the name of the pass to give some indicator
// of what pass was run.
StringRef argument = getArgument();
if (!argument.empty())
os << argument;
else
os << "unknown<" << getName() << ">";
passOptions.print(os);
}
/// Forwarding function to execute this pass.
LogicalResult Pass::run(Operation *op, AnalysisManager am) {
passState.emplace(op, am);
// Instrument before the pass has run.
auto pi = am.getPassInstrumentor();
if (pi)
pi->runBeforePass(this, op);
// Invoke the virtual runOnOperation method.
runOnOperation();
// Invalidate any non preserved analyses.
am.invalidate(passState->preservedAnalyses);
// Instrument after the pass has run.
bool passFailed = passState->irAndPassFailed.getInt();
if (pi) {
if (passFailed)
pi->runAfterPassFailed(this, op);
else
pi->runAfterPass(this, op);
}
// Return if the pass signaled a failure.
return failure(passFailed);
}
//===----------------------------------------------------------------------===//
// Verifier Passes
//===----------------------------------------------------------------------===//
void VerifierPass::runOnOperation() {
if (failed(verify(getOperation())))
signalPassFailure();
markAllAnalysesPreserved();
}
//===----------------------------------------------------------------------===//
// OpPassManagerImpl
//===----------------------------------------------------------------------===//
namespace mlir {
namespace detail {
struct OpPassManagerImpl {
OpPassManagerImpl(OperationName name, bool verifyPasses)
: name(name), verifyPasses(verifyPasses) {}
/// Merge the passes of this pass manager into the one provided.
void mergeInto(OpPassManagerImpl &rhs);
/// Nest a new operation pass manager for the given operation kind under this
/// pass manager.
OpPassManager &nest(const OperationName &nestedName);
OpPassManager &nest(StringRef nestedName) {
return nest(OperationName(nestedName, getContext()));
}
/// Add the given pass to this pass manager. If this pass has a concrete
/// operation type, it must be the same type as this pass manager.
void addPass(std::unique_ptr<Pass> pass);
/// Coalesce adjacent AdaptorPasses into one large adaptor. This runs
/// recursively through the pipeline graph.
void coalesceAdjacentAdaptorPasses();
/// Split all of AdaptorPasses such that each adaptor only contains one leaf
/// pass.
void splitAdaptorPasses();
/// Return an instance of the context.
MLIRContext *getContext() const {
return name.getAbstractOperation()->dialect.getContext();
}
/// The name of the operation that passes of this pass manager operate on.
OperationName name;
/// Flag that specifies if the IR should be verified after each pass has run.
bool verifyPasses : 1;
/// The set of passes to run as part of this pass manager.
std::vector<std::unique_ptr<Pass>> passes;
};
} // end namespace detail
} // end namespace mlir
void OpPassManagerImpl::mergeInto(OpPassManagerImpl &rhs) {
assert(name == rhs.name && "merging unrelated pass managers");
for (auto &pass : passes)
rhs.passes.push_back(std::move(pass));
passes.clear();
}
OpPassManager &OpPassManagerImpl::nest(const OperationName &nestedName) {
OpPassManager nested(nestedName, verifyPasses);
auto *adaptor = new OpToOpPassAdaptor(std::move(nested));
addPass(std::unique_ptr<Pass>(adaptor));
return adaptor->getPassManagers().front();
}
void OpPassManagerImpl::addPass(std::unique_ptr<Pass> pass) {
// If this pass runs on a different operation than this pass manager, then
// implicitly nest a pass manager for this operation.
auto passOpName = pass->getOpName();
if (passOpName && passOpName != name.getStringRef())
return nest(*passOpName).addPass(std::move(pass));
passes.emplace_back(std::move(pass));
if (verifyPasses)
passes.emplace_back(std::make_unique<VerifierPass>());
}
void OpPassManagerImpl::coalesceAdjacentAdaptorPasses() {
// Bail out early if there are no adaptor passes.
if (llvm::none_of(passes, [](std::unique_ptr<Pass> &pass) {
return isa<OpToOpPassAdaptor>(pass.get());
}))
return;
// Walk the pass list and merge adjacent adaptors.
OpToOpPassAdaptor *lastAdaptor = nullptr;
for (auto it = passes.begin(), e = passes.end(); it != e; ++it) {
// Check to see if this pass is an adaptor.
if (auto *currentAdaptor = dyn_cast<OpToOpPassAdaptor>(it->get())) {
// If it is the first adaptor in a possible chain, remember it and
// continue.
if (!lastAdaptor) {
lastAdaptor = currentAdaptor;
continue;
}
// Otherwise, merge into the existing adaptor and delete the current one.
currentAdaptor->mergeInto(*lastAdaptor);
it->reset();
// If the verifier is enabled, then next pass is a verifier run so
// drop it. Verifier passes are inserted after every pass, so this one
// would be a duplicate.
if (verifyPasses) {
assert(std::next(it) != e && isa<VerifierPass>(*std::next(it)));
(++it)->reset();
}
} else if (lastAdaptor && !isa<VerifierPass>(*it)) {
// If this pass is not an adaptor and not a verifier pass, then coalesce
// and forget any existing adaptor.
for (auto &pm : lastAdaptor->getPassManagers())
pm.getImpl().coalesceAdjacentAdaptorPasses();
lastAdaptor = nullptr;
}
}
// If there was an adaptor at the end of the manager, coalesce it as well.
if (lastAdaptor) {
for (auto &pm : lastAdaptor->getPassManagers())
pm.getImpl().coalesceAdjacentAdaptorPasses();
}
// Now that the adaptors have been merged, erase the empty slot corresponding
// to the merged adaptors that were nulled-out in the loop above.
llvm::erase_if(passes, std::logical_not<std::unique_ptr<Pass>>());
}
void OpPassManagerImpl::splitAdaptorPasses() {
std::vector<std::unique_ptr<Pass>> oldPasses;
std::swap(passes, oldPasses);
for (std::unique_ptr<Pass> &pass : oldPasses) {
// If this pass isn't an adaptor, move it directly to the new pass list.
auto *currentAdaptor = dyn_cast<OpToOpPassAdaptor>(pass.get());
if (!currentAdaptor) {
passes.push_back(std::move(pass));
continue;
}
// Otherwise, split the adaptors of each manager within the adaptor.
for (OpPassManager &adaptorPM : currentAdaptor->getPassManagers()) {
adaptorPM.getImpl().splitAdaptorPasses();
// Add all non-verifier passes to this pass manager.
for (std::unique_ptr<Pass> &nestedPass : adaptorPM.getImpl().passes) {
if (!isa<VerifierPass>(nestedPass.get()))
nest(adaptorPM.getOpName()).addPass(std::move(nestedPass));
}
}
}
}
//===----------------------------------------------------------------------===//
// OpPassManager
//===----------------------------------------------------------------------===//
OpPassManager::OpPassManager(OperationName name, bool verifyPasses)
: impl(new OpPassManagerImpl(name, verifyPasses)) {
assert(name.getAbstractOperation() &&
"OpPassManager can only operate on registered operations");
assert(name.getAbstractOperation()->hasProperty(
OperationProperty::IsolatedFromAbove) &&
"OpPassManager only supports operating on operations marked as "
"'IsolatedFromAbove'");
}
OpPassManager::OpPassManager(OpPassManager &&rhs) : impl(std::move(rhs.impl)) {}
OpPassManager::OpPassManager(const OpPassManager &rhs) { *this = rhs; }
OpPassManager &OpPassManager::operator=(const OpPassManager &rhs) {
impl.reset(new OpPassManagerImpl(rhs.impl->name, rhs.impl->verifyPasses));
for (auto &pass : rhs.impl->passes)
impl->passes.emplace_back(pass->clone());
return *this;
}
OpPassManager::~OpPassManager() {}
OpPassManager::pass_iterator OpPassManager::begin() {
return impl->passes.begin();
}
OpPassManager::pass_iterator OpPassManager::end() { return impl->passes.end(); }
/// Run all of the passes in this manager over the current operation.
LogicalResult OpPassManager::run(Operation *op, AnalysisManager am) {
// Run each of the held passes.
for (auto &pass : impl->passes)
if (failed(pass->run(op, am)))
return failure();
return success();
}
/// Nest a new operation pass manager for the given operation kind under this
/// pass manager.
OpPassManager &OpPassManager::nest(const OperationName &nestedName) {
return impl->nest(nestedName);
}
OpPassManager &OpPassManager::nest(StringRef nestedName) {
return impl->nest(nestedName);
}
/// Add the given pass to this pass manager. If this pass has a concrete
/// operation type, it must be the same type as this pass manager.
void OpPassManager::addPass(std::unique_ptr<Pass> pass) {
impl->addPass(std::move(pass));
}
/// Returns the number of passes held by this manager.
size_t OpPassManager::size() const { return impl->passes.size(); }
/// Returns the internal implementation instance.
OpPassManagerImpl &OpPassManager::getImpl() { return *impl; }
/// Return an instance of the context.
MLIRContext *OpPassManager::getContext() const { return impl->getContext(); }
/// Return the operation name that this pass manager operates on.
const OperationName &OpPassManager::getOpName() const { return impl->name; }
/// Prints out the given passes as the textual representation of a pipeline.
static void printAsTextualPipeline(ArrayRef<std::unique_ptr<Pass>> passes,
raw_ostream &os) {
// Filter out passes that are not part of the public pipeline.
auto filteredPasses =
llvm::make_filter_range(passes, [](const std::unique_ptr<Pass> &pass) {
return !isa<VerifierPass>(pass);
});
llvm::interleaveComma(filteredPasses, os,
[&](const std::unique_ptr<Pass> &pass) {
pass->printAsTextualPipeline(os);
});
}
/// Prints out the passes of the pass manager as the textual representation
/// of pipelines.
void OpPassManager::printAsTextualPipeline(raw_ostream &os) {
::printAsTextualPipeline(impl->passes, os);
}
//===----------------------------------------------------------------------===//
// OpToOpPassAdaptor
//===----------------------------------------------------------------------===//
/// Utility to run the given operation and analysis manager on a provided op
/// pass manager.
static LogicalResult runPipeline(OpPassManager &pm, Operation *op,
AnalysisManager am) {
// Run the pipeline over the provided operation.
auto result = pm.run(op, am);
// Clear out any computed operation analyses. These analyses won't be used
// any more in this pipeline, and this helps reduce the current working set
// of memory. If preserving these analyses becomes important in the future
// we can re-evaluate this.
am.clear();
return result;
}
/// Find an operation pass manager that can operate on an operation of the given
/// type, or nullptr if one does not exist.
static OpPassManager *findPassManagerFor(MutableArrayRef<OpPassManager> mgrs,
const OperationName &name) {
auto it = llvm::find_if(
mgrs, [&](OpPassManager &mgr) { return mgr.getOpName() == name; });
return it == mgrs.end() ? nullptr : &*it;
}
OpToOpPassAdaptor::OpToOpPassAdaptor(OpPassManager &&mgr) {
mgrs.emplace_back(std::move(mgr));
}
/// Merge the current pass adaptor into given 'rhs'.
void OpToOpPassAdaptor::mergeInto(OpToOpPassAdaptor &rhs) {
for (auto &pm : mgrs) {
// If an existing pass manager exists, then merge the given pass manager
// into it.
if (auto *existingPM = findPassManagerFor(rhs.mgrs, pm.getOpName())) {
pm.getImpl().mergeInto(existingPM->getImpl());
} else {
// Otherwise, add the given pass manager to the list.
rhs.mgrs.emplace_back(std::move(pm));
}
}
mgrs.clear();
// After coalescing, sort the pass managers within rhs by name.
llvm::array_pod_sort(rhs.mgrs.begin(), rhs.mgrs.end(),
[](const OpPassManager *lhs, const OpPassManager *rhs) {
return lhs->getOpName().getStringRef().compare(
rhs->getOpName().getStringRef());
});
}
/// Returns the adaptor pass name.
std::string OpToOpPassAdaptor::getAdaptorName() {
std::string name = "Pipeline Collection : [";
llvm::raw_string_ostream os(name);
llvm::interleaveComma(getPassManagers(), os, [&](OpPassManager &pm) {
os << '\'' << pm.getOpName() << '\'';
});
os << ']';
return os.str();
}
/// Run the held pipeline over all nested operations.
void OpToOpPassAdaptor::runOnOperation() {
if (getContext().isMultithreadingEnabled())
runOnOperationAsyncImpl();
else
runOnOperationImpl();
}
/// Run this pass adaptor synchronously.
void OpToOpPassAdaptor::runOnOperationImpl() {
auto am = getAnalysisManager();
PassInstrumentation::PipelineParentInfo parentInfo = {llvm::get_threadid(),
this};
auto *instrumentor = am.getPassInstrumentor();
for (auto &region : getOperation()->getRegions()) {
for (auto &block : region) {
for (auto &op : block) {
auto *mgr = findPassManagerFor(mgrs, op.getName());
if (!mgr)
continue;
// Run the held pipeline over the current operation.
if (instrumentor)
instrumentor->runBeforePipeline(mgr->getOpName(), parentInfo);
auto result = runPipeline(*mgr, &op, am.slice(&op));
if (instrumentor)
instrumentor->runAfterPipeline(mgr->getOpName(), parentInfo);
if (failed(result))
return signalPassFailure();
}
}
}
}
/// Utility functor that checks if the two ranges of pass managers have a size
/// mismatch.
static bool hasSizeMismatch(ArrayRef<OpPassManager> lhs,
ArrayRef<OpPassManager> rhs) {
return lhs.size() != rhs.size() ||
llvm::any_of(llvm::seq<size_t>(0, lhs.size()),
[&](size_t i) { return lhs[i].size() != rhs[i].size(); });
}
/// Run this pass adaptor synchronously.
void OpToOpPassAdaptor::runOnOperationAsyncImpl() {
AnalysisManager am = getAnalysisManager();
// Create the async executors if they haven't been created, or if the main
// pipeline has changed.
if (asyncExecutors.empty() || hasSizeMismatch(asyncExecutors.front(), mgrs))
asyncExecutors.assign(llvm::hardware_concurrency().compute_thread_count(),
mgrs);
// Run a prepass over the module to collect the operations to execute over.
// This ensures that an analysis manager exists for each operation, as well as
// providing a queue of operations to execute over.
std::vector<std::pair<Operation *, AnalysisManager>> opAMPairs;
for (auto &region : getOperation()->getRegions()) {
for (auto &block : region) {
for (auto &op : block) {
// Add this operation iff the name matches the any of the pass managers.
if (findPassManagerFor(mgrs, op.getName()))
opAMPairs.emplace_back(&op, am.slice(&op));
}
}
}
// A parallel diagnostic handler that provides deterministic diagnostic
// ordering.
ParallelDiagnosticHandler diagHandler(&getContext());
// An index for the current operation/analysis manager pair.
std::atomic<unsigned> opIt(0);
// Get the current thread for this adaptor.
PassInstrumentation::PipelineParentInfo parentInfo = {llvm::get_threadid(),
this};
auto *instrumentor = am.getPassInstrumentor();
// An atomic failure variable for the async executors.
std::atomic<bool> passFailed(false);
llvm::parallelForEach(
asyncExecutors.begin(),
std::next(asyncExecutors.begin(),
std::min(asyncExecutors.size(), opAMPairs.size())),
[&](MutableArrayRef<OpPassManager> pms) {
for (auto e = opAMPairs.size(); !passFailed && opIt < e;) {
// Get the next available operation index.
unsigned nextID = opIt++;
if (nextID >= e)
break;
// Set the order id for this thread in the diagnostic handler.
diagHandler.setOrderIDForThread(nextID);
// Get the pass manager for this operation and execute it.
auto &it = opAMPairs[nextID];
auto *pm = findPassManagerFor(pms, it.first->getName());
assert(pm && "expected valid pass manager for operation");
if (instrumentor)
instrumentor->runBeforePipeline(pm->getOpName(), parentInfo);
auto pipelineResult = runPipeline(*pm, it.first, it.second);
if (instrumentor)
instrumentor->runAfterPipeline(pm->getOpName(), parentInfo);
// Drop this thread from being tracked by the diagnostic handler.
// After this task has finished, the thread may be used outside of
// this pass manager context meaning that we don't want to track
// diagnostics from it anymore.
diagHandler.eraseOrderIDForThread();
// Handle a failed pipeline result.
if (failed(pipelineResult)) {
passFailed = true;
break;
}
}
});
// Signal a failure if any of the executors failed.
if (passFailed)
signalPassFailure();
}
//===----------------------------------------------------------------------===//
// PassCrashReproducer
//===----------------------------------------------------------------------===//
namespace {
/// This class contains all of the context for generating a recovery reproducer.
/// Each recovery context is registered globally to allow for generating
/// reproducers when a signal is raised, such as a segfault.
struct RecoveryReproducerContext {
RecoveryReproducerContext(MutableArrayRef<std::unique_ptr<Pass>> passes,
ModuleOp module, StringRef filename,
bool disableThreads, bool verifyPasses);
~RecoveryReproducerContext();
/// Generate a reproducer with the current context.
LogicalResult generate(std::string &error);
private:
/// This function is invoked in the event of a crash.
static void crashHandler(void *);
/// Register a signal handler to run in the event of a crash.
static void registerSignalHandler();
/// The textual description of the currently executing pipeline.
std::string pipeline;
/// The MLIR module representing the IR before the crash.
OwningModuleRef module;
/// The filename to use when generating the reproducer.
StringRef filename;
/// Various pass manager and context flags.
bool disableThreads;
bool verifyPasses;
/// The current set of active reproducer contexts. This is used in the event
/// of a crash. This is not thread_local as the pass manager may produce any
/// number of child threads. This uses a set to allow for multiple MLIR pass
/// managers to be running at the same time.
static llvm::ManagedStatic<llvm::sys::SmartMutex<true>> reproducerMutex;
static llvm::ManagedStatic<
llvm::SmallSetVector<RecoveryReproducerContext *, 1>>
reproducerSet;
};
} // end anonymous namespace
llvm::ManagedStatic<llvm::sys::SmartMutex<true>>
RecoveryReproducerContext::reproducerMutex;
llvm::ManagedStatic<llvm::SmallSetVector<RecoveryReproducerContext *, 1>>
RecoveryReproducerContext::reproducerSet;
RecoveryReproducerContext::RecoveryReproducerContext(
MutableArrayRef<std::unique_ptr<Pass>> passes, ModuleOp module,
StringRef filename, bool disableThreads, bool verifyPasses)
: module(module.clone()), filename(filename),
disableThreads(disableThreads), verifyPasses(verifyPasses) {
// Grab the textual pipeline being executed..
{
llvm::raw_string_ostream pipelineOS(pipeline);
::printAsTextualPipeline(passes, pipelineOS);
}
// Make sure that the handler is registered, and update the current context.
llvm::sys::SmartScopedLock<true> producerLock(*reproducerMutex);
registerSignalHandler();
reproducerSet->insert(this);
}
RecoveryReproducerContext::~RecoveryReproducerContext() {
llvm::sys::SmartScopedLock<true> producerLock(*reproducerMutex);
reproducerSet->remove(this);
}
LogicalResult RecoveryReproducerContext::generate(std::string &error) {
std::unique_ptr<llvm::ToolOutputFile> outputFile =
mlir::openOutputFile(filename, &error);
if (!outputFile)
return failure();
auto &outputOS = outputFile->os();
// Output the current pass manager configuration.
outputOS << "// configuration: -pass-pipeline='" << pipeline << "'";
if (disableThreads)
outputOS << " -mlir-disable-threading";
// TODO: Should this also be configured with a pass manager flag?
outputOS << "\n// note: verifyPasses=" << (verifyPasses ? "true" : "false")
<< "\n";
// Output the .mlir module.
module->print(outputOS);
outputFile->keep();
return success();
}
void RecoveryReproducerContext::crashHandler(void *) {
// Walk the current stack of contexts and generate a reproducer for each one.
// We can't know for certain which one was the cause, so we need to generate
// a reproducer for all of them.
std::string ignored;
for (RecoveryReproducerContext *context : *reproducerSet)
context->generate(ignored);
}
void RecoveryReproducerContext::registerSignalHandler() {
// Ensure that the handler is only registered once.
static bool registered =
(llvm::sys::AddSignalHandler(crashHandler, nullptr), false);
(void)registered;
}
/// Run the pass manager with crash recover enabled.
LogicalResult PassManager::runWithCrashRecovery(ModuleOp module,
AnalysisManager am) {
// If this isn't a local producer, run all of the passes in recovery mode.
if (!localReproducer)
return runWithCrashRecovery(impl->passes, module, am);
// Split the passes within adaptors to ensure that each pass can be run in
// isolation.
impl->splitAdaptorPasses();
// If this is a local producer, run each of the passes individually. If the
// verifier is enabled, each pass will have a verifier after. This is included
// in the recovery run.
unsigned stride = impl->verifyPasses ? 2 : 1;
MutableArrayRef<std::unique_ptr<Pass>> passes = impl->passes;
for (unsigned i = 0, e = passes.size(); i != e; i += stride) {
if (failed(runWithCrashRecovery(passes.slice(i, stride), module, am)))
return failure();
}
return success();
}
/// Run the given passes with crash recover enabled.
LogicalResult
PassManager::runWithCrashRecovery(MutableArrayRef<std::unique_ptr<Pass>> passes,
ModuleOp module, AnalysisManager am) {
RecoveryReproducerContext context(passes, module, *crashReproducerFileName,
!getContext()->isMultithreadingEnabled(),
impl->verifyPasses);
// Safely invoke the passes within a recovery context.
llvm::CrashRecoveryContext::Enable();
LogicalResult passManagerResult = failure();
llvm::CrashRecoveryContext recoveryContext;
recoveryContext.RunSafelyOnThread([&] {
for (std::unique_ptr<Pass> &pass : passes)
if (failed(pass->run(module, am)))
return;
passManagerResult = success();
});
llvm::CrashRecoveryContext::Disable();
if (succeeded(passManagerResult))
return success();
std::string error;
if (failed(context.generate(error)))
return module.emitError("<MLIR-PassManager-Crash-Reproducer>: ") << error;
return module.emitError()
<< "A failure has been detected while processing the MLIR module, a "
"reproducer has been generated in '"
<< *crashReproducerFileName << "'";
}
//===----------------------------------------------------------------------===//
// PassManager
//===----------------------------------------------------------------------===//
PassManager::PassManager(MLIRContext *ctx, bool verifyPasses)
: OpPassManager(OperationName(ModuleOp::getOperationName(), ctx),
verifyPasses),
passTiming(false), localReproducer(false) {}
PassManager::~PassManager() {}
/// Run the passes within this manager on the provided module.
LogicalResult PassManager::run(ModuleOp module) {
// Before running, make sure to coalesce any adjacent pass adaptors in the
// pipeline.
getImpl().coalesceAdjacentAdaptorPasses();
// Construct an analysis manager for the pipeline.
ModuleAnalysisManager am(module, instrumentor.get());
// If reproducer generation is enabled, run the pass manager with crash
// handling enabled.
LogicalResult result = crashReproducerFileName
? runWithCrashRecovery(module, am)
: OpPassManager::run(module, am);
// Dump all of the pass statistics if necessary.
if (passStatisticsMode)
dumpStatistics();
return result;
}
/// Enable support for the pass manager to generate a reproducer on the event
/// of a crash or a pass failure. `outputFile` is a .mlir filename used to write
/// the generated reproducer. If `genLocalReproducer` is true, the pass manager
/// will attempt to generate a local reproducer that contains the smallest
/// pipeline.
void PassManager::enableCrashReproducerGeneration(StringRef outputFile,
bool genLocalReproducer) {
crashReproducerFileName = std::string(outputFile);
localReproducer = genLocalReproducer;
}
/// Add the provided instrumentation to the pass manager.
void PassManager::addInstrumentation(std::unique_ptr<PassInstrumentation> pi) {
if (!instrumentor)
instrumentor = std::make_unique<PassInstrumentor>();
instrumentor->addInstrumentation(std::move(pi));
}
//===----------------------------------------------------------------------===//
// AnalysisManager
//===----------------------------------------------------------------------===//
/// Returns a pass instrumentation object for the current operation.
PassInstrumentor *AnalysisManager::getPassInstrumentor() const {
ParentPointerT curParent = parent;
while (auto *parentAM = curParent.dyn_cast<const AnalysisManager *>())
curParent = parentAM->parent;
return curParent.get<const ModuleAnalysisManager *>()->getPassInstrumentor();
}
/// Get an analysis manager for the given child operation.
AnalysisManager AnalysisManager::slice(Operation *op) {
assert(op->getParentOp() == impl->getOperation() &&
"'op' has a different parent operation");
auto it = impl->childAnalyses.find(op);
if (it == impl->childAnalyses.end())
it = impl->childAnalyses
.try_emplace(op, std::make_unique<NestedAnalysisMap>(op))
.first;
return {this, it->second.get()};
}
/// Invalidate any non preserved analyses.
void detail::NestedAnalysisMap::invalidate(
const detail::PreservedAnalyses &pa) {
// If all analyses were preserved, then there is nothing to do here.
if (pa.isAll())
return;
// Invalidate the analyses for the current operation directly.
analyses.invalidate(pa);
// If no analyses were preserved, then just simply clear out the child
// analysis results.
if (pa.isNone()) {
childAnalyses.clear();
return;
}
// Otherwise, invalidate each child analysis map.
SmallVector<NestedAnalysisMap *, 8> mapsToInvalidate(1, this);
while (!mapsToInvalidate.empty()) {
auto *map = mapsToInvalidate.pop_back_val();
for (auto &analysisPair : map->childAnalyses) {
analysisPair.second->invalidate(pa);
if (!analysisPair.second->childAnalyses.empty())
mapsToInvalidate.push_back(analysisPair.second.get());
}
}
}
//===----------------------------------------------------------------------===//
// PassInstrumentation
//===----------------------------------------------------------------------===//
PassInstrumentation::~PassInstrumentation() {}
//===----------------------------------------------------------------------===//
// PassInstrumentor
//===----------------------------------------------------------------------===//
namespace mlir {
namespace detail {
struct PassInstrumentorImpl {
/// Mutex to keep instrumentation access thread-safe.
llvm::sys::SmartMutex<true> mutex;
/// Set of registered instrumentations.
std::vector<std::unique_ptr<PassInstrumentation>> instrumentations;
};
} // end namespace detail
} // end namespace mlir
PassInstrumentor::PassInstrumentor() : impl(new PassInstrumentorImpl()) {}
PassInstrumentor::~PassInstrumentor() {}
/// See PassInstrumentation::runBeforePipeline for details.
void PassInstrumentor::runBeforePipeline(
const OperationName &name,
const PassInstrumentation::PipelineParentInfo &parentInfo) {
llvm::sys::SmartScopedLock<true> instrumentationLock(impl->mutex);
for (auto &instr : impl->instrumentations)
instr->runBeforePipeline(name, parentInfo);
}
/// See PassInstrumentation::runAfterPipeline for details.
void PassInstrumentor::runAfterPipeline(
const OperationName &name,
const PassInstrumentation::PipelineParentInfo &parentInfo) {
llvm::sys::SmartScopedLock<true> instrumentationLock(impl->mutex);
for (auto &instr : llvm::reverse(impl->instrumentations))
instr->runAfterPipeline(name, parentInfo);
}
/// See PassInstrumentation::runBeforePass for details.
void PassInstrumentor::runBeforePass(Pass *pass, Operation *op) {
llvm::sys::SmartScopedLock<true> instrumentationLock(impl->mutex);
for (auto &instr : impl->instrumentations)
instr->runBeforePass(pass, op);
}
/// See PassInstrumentation::runAfterPass for details.
void PassInstrumentor::runAfterPass(Pass *pass, Operation *op) {
llvm::sys::SmartScopedLock<true> instrumentationLock(impl->mutex);
for (auto &instr : llvm::reverse(impl->instrumentations))
instr->runAfterPass(pass, op);
}
/// See PassInstrumentation::runAfterPassFailed for details.
void PassInstrumentor::runAfterPassFailed(Pass *pass, Operation *op) {
llvm::sys::SmartScopedLock<true> instrumentationLock(impl->mutex);
for (auto &instr : llvm::reverse(impl->instrumentations))
instr->runAfterPassFailed(pass, op);
}
/// See PassInstrumentation::runBeforeAnalysis for details.
void PassInstrumentor::runBeforeAnalysis(StringRef name, TypeID id,
Operation *op) {
llvm::sys::SmartScopedLock<true> instrumentationLock(impl->mutex);
for (auto &instr : impl->instrumentations)
instr->runBeforeAnalysis(name, id, op);
}
/// See PassInstrumentation::runAfterAnalysis for details.
void PassInstrumentor::runAfterAnalysis(StringRef name, TypeID id,
Operation *op) {
llvm::sys::SmartScopedLock<true> instrumentationLock(impl->mutex);
for (auto &instr : llvm::reverse(impl->instrumentations))
instr->runAfterAnalysis(name, id, op);
}
/// Add the given instrumentation to the collection.
void PassInstrumentor::addInstrumentation(
std::unique_ptr<PassInstrumentation> pi) {
llvm::sys::SmartScopedLock<true> instrumentationLock(impl->mutex);
impl->instrumentations.emplace_back(std::move(pi));
}