blob: ddb00bdd8f0e5a9f619438e0e87ce230b57e7ce0 [file] [log] [blame]
//===- LoopTiling.cpp --- Loop tiling pass ------------------------------*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to tile loop nests.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/Analysis/LoopAnalysis.h"
#include "mlir/Analysis/Utils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
#include "mlir/Dialect/Affine/Passes.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Builders.h"
#include "mlir/Transforms/LoopUtils.h"
#include "mlir/Transforms/Utils.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
using namespace mlir;
#define DEBUG_TYPE "affine-loop-tile"
namespace {
/// A pass to perform loop tiling on all suitable loop nests of a Function.
struct LoopTiling : public AffineLoopTilingBase<LoopTiling> {
LoopTiling() = default;
explicit LoopTiling(uint64_t cacheSizeBytes, bool avoidMaxMinBounds = true)
: avoidMaxMinBounds(avoidMaxMinBounds) {
this->cacheSizeInKiB = cacheSizeBytes / 1024;
}
void runOnFunction() override;
void getTileSizes(ArrayRef<AffineForOp> band,
SmallVectorImpl<unsigned> *tileSizes);
// Default tile size if nothing is provided.
constexpr static unsigned kDefaultTileSize = 4;
// If true, tile sizes are set to avoid max/min in bounds if possible.
bool avoidMaxMinBounds = true;
};
} // end anonymous namespace
/// Creates a pass to perform loop tiling on all suitable loop nests of a
/// Function.
std::unique_ptr<OperationPass<FuncOp>>
mlir::createLoopTilingPass(uint64_t cacheSizeBytes) {
return std::make_unique<LoopTiling>(cacheSizeBytes);
}
std::unique_ptr<OperationPass<FuncOp>> mlir::createLoopTilingPass() {
return std::make_unique<LoopTiling>();
}
// Move the loop body of AffineForOp 'src' from 'src' into the specified
// location in destination's body, ignoring the terminator.
static inline void moveLoopBody(AffineForOp src, AffineForOp dest,
Block::iterator loc) {
auto &insts = src.getBody()->getOperations();
dest.getBody()->getOperations().splice(loc, insts, insts.begin(),
std::prev(insts.end()));
}
// Move the loop body of AffineForOp 'src' from 'src' to the start of dest's
// body.
static inline void moveLoopBody(AffineForOp src, AffineForOp dest) {
moveLoopBody(src, dest, dest.getBody()->begin());
}
/// Constructs and sets new loop bounds after tiling for the case of
/// hyper-rectangular index sets, where the bounds of one dimension do not
/// depend on other dimensions. Bounds of each dimension can thus be treated
/// independently, and deriving the new bounds is much simpler and faster
/// than for the case of tiling arbitrary polyhedral shapes.
static void
constructTiledIndexSetHyperRect(MutableArrayRef<AffineForOp> origLoops,
MutableArrayRef<AffineForOp> newLoops,
ArrayRef<unsigned> tileSizes) {
assert(!origLoops.empty());
assert(origLoops.size() == tileSizes.size());
OpBuilder b(origLoops[0].getOperation());
unsigned width = origLoops.size();
// Bounds for tile space loops.
for (unsigned i = 0; i < width; i++) {
OperandRange newLbOperands = origLoops[i].getLowerBoundOperands();
OperandRange newUbOperands = origLoops[i].getUpperBoundOperands();
newLoops[i].setLowerBound(newLbOperands, origLoops[i].getLowerBoundMap());
newLoops[i].setUpperBound(newUbOperands, origLoops[i].getUpperBoundMap());
newLoops[i].setStep(tileSizes[i]);
}
// Bounds for intra-tile loops.
for (unsigned i = 0; i < width; i++) {
int64_t largestDiv = getLargestDivisorOfTripCount(origLoops[i]);
auto mayBeConstantCount = getConstantTripCount(origLoops[i]);
// The lower bound is just the tile-space loop.
AffineMap lbMap = b.getDimIdentityMap();
newLoops[width + i].setLowerBound(
/*operands=*/newLoops[i].getInductionVar(), lbMap);
// Set the upper bound.
if (mayBeConstantCount && mayBeConstantCount.getValue() < tileSizes[i]) {
// Trip count is less than the tile size: upper bound is lower bound +
// trip count.
auto ubMap = b.getSingleDimShiftAffineMap(mayBeConstantCount.getValue());
newLoops[width + i].setUpperBound(
/*operands=*/newLoops[i].getInductionVar(), ubMap);
} else if (largestDiv % tileSizes[i] != 0) {
// Intra-tile loop ii goes from i to min(i + tileSize, ub_i).
// Construct the upper bound map; the operands are the original operands
// with 'i' (tile-space loop) appended to it. The new upper bound map is
// the original one with an additional expression i + tileSize appended.
// Add dim operands from original upper bound.
SmallVector<Value, 4> ubOperands;
auto ub = origLoops[i].getUpperBound();
ubOperands.reserve(ub.getNumOperands() + 1);
auto origUbMap = ub.getMap();
for (unsigned j = 0, e = origUbMap.getNumDims(); j < e; ++j)
ubOperands.push_back(ub.getOperand(j));
// Add dim operand for new loop upper bound.
ubOperands.push_back(newLoops[i].getInductionVar());
// Add symbol operands from original upper bound.
for (unsigned j = 0, e = origUbMap.getNumSymbols(); j < e; ++j)
ubOperands.push_back(ub.getOperand(origUbMap.getNumDims() + j));
SmallVector<AffineExpr, 4> boundExprs;
boundExprs.reserve(1 + origUbMap.getNumResults());
auto dim = b.getAffineDimExpr(origUbMap.getNumDims());
// The new upper bound map is the original one with an additional
// expression i + tileSize appended.
boundExprs.push_back(dim + tileSizes[i]);
boundExprs.append(origUbMap.getResults().begin(),
origUbMap.getResults().end());
auto ubMap =
AffineMap::get(origUbMap.getNumDims() + 1, origUbMap.getNumSymbols(),
boundExprs, b.getContext());
newLoops[width + i].setUpperBound(/*operands=*/ubOperands, ubMap);
} else {
// No need of the min expression.
auto dim = b.getAffineDimExpr(0);
auto ubMap = AffineMap::get(1, 0, dim + tileSizes[i]);
newLoops[width + i].setUpperBound(newLoops[i].getInductionVar(), ubMap);
}
}
}
/// Tiles the specified band of perfectly nested loops creating tile-space loops
/// and intra-tile loops. A band is a contiguous set of loops.
// TODO: handle non hyper-rectangular spaces.
LogicalResult
mlir::tilePerfectlyNested(MutableArrayRef<AffineForOp> input,
ArrayRef<unsigned> tileSizes,
SmallVectorImpl<AffineForOp> *tiledNest) {
// Check if the supplied for op's are all successively nested.
assert(!input.empty() && "no loops in input band");
assert(input.size() == tileSizes.size() && "Too few/many tile sizes");
assert(isPerfectlyNested(input) && "input loops not perfectly nested");
auto origLoops = input;
AffineForOp rootAffineForOp = origLoops[0];
auto loc = rootAffineForOp.getLoc();
// Note that width is at least one since band isn't empty.
unsigned width = input.size();
SmallVector<AffineForOp, 6> tiledLoops(2 * width);
// The outermost among the loops as we add more..
auto *topLoop = rootAffineForOp.getOperation();
AffineForOp innermostPointLoop;
// Add intra-tile (or point) loops.
for (unsigned i = 0; i < width; i++) {
OpBuilder b(topLoop);
// Loop bounds will be set later.
auto pointLoop = b.create<AffineForOp>(loc, 0, 0);
pointLoop.getBody()->getOperations().splice(
pointLoop.getBody()->begin(), topLoop->getBlock()->getOperations(),
topLoop);
tiledLoops[2 * width - 1 - i] = pointLoop;
topLoop = pointLoop.getOperation();
if (i == 0)
innermostPointLoop = pointLoop;
}
// Add tile space loops;
for (unsigned i = width; i < 2 * width; i++) {
OpBuilder b(topLoop);
// Loop bounds will be set later.
auto tileSpaceLoop = b.create<AffineForOp>(loc, 0, 0);
tileSpaceLoop.getBody()->getOperations().splice(
tileSpaceLoop.getBody()->begin(), topLoop->getBlock()->getOperations(),
topLoop);
tiledLoops[2 * width - i - 1] = tileSpaceLoop;
topLoop = tileSpaceLoop.getOperation();
}
// Move the loop body of the original nest to the new one.
moveLoopBody(origLoops.back(), innermostPointLoop);
SmallVector<Value, 8> origLoopIVs;
extractForInductionVars(input, &origLoopIVs);
FlatAffineConstraints cst;
getIndexSet(input, &cst);
if (!cst.isHyperRectangular(0, width)) {
llvm::dbgs() << "tiled code generation unimplemented for the "
"non-hyperrectangular case, op:"
<< *rootAffineForOp << "\n";
return failure();
}
constructTiledIndexSetHyperRect(origLoops, tiledLoops, tileSizes);
// Replace original IVs with intra-tile loop IVs.
for (unsigned i = 0; i < width; i++)
origLoopIVs[i].replaceAllUsesWith(tiledLoops[i + width].getInductionVar());
// Erase the old loop nest.
rootAffineForOp.erase();
if (tiledNest)
*tiledNest = std::move(tiledLoops);
return success();
}
// Identify valid and profitable bands of loops to tile. This is currently just
// a temporary placeholder to test the mechanics of tiled code generation.
// Returns all maximal outermost perfect loop nests to tile.
static void getTileableBands(FuncOp f,
std::vector<SmallVector<AffineForOp, 6>> *bands) {
// Get maximal perfect nest of 'affine.for' insts starting from root
// (inclusive).
auto getMaximalPerfectLoopNest = [&](AffineForOp root) {
SmallVector<AffineForOp, 6> band;
getPerfectlyNestedLoops(band, root);
bands->push_back(band);
};
for (auto &block : f)
for (auto &op : block)
if (auto forOp = dyn_cast<AffineForOp>(op))
getMaximalPerfectLoopNest(forOp);
}
/// Reduces each tile size to the largest divisor of the corresponding trip
/// count (if the trip count is known).
static void adjustToDivisorsOfTripCounts(ArrayRef<AffineForOp> band,
SmallVectorImpl<unsigned> *tileSizes) {
assert(band.size() == tileSizes->size() && "invalid tile size count");
for (unsigned i = 0, e = band.size(); i < e; i++) {
unsigned &tSizeAdjusted = (*tileSizes)[i];
auto mayConst = getConstantTripCount(band[i]);
if (!mayConst)
continue;
// Adjust the tile size to largest factor of the trip count less than
// tSize.
uint64_t constTripCount = mayConst.getValue();
if (constTripCount > 1 && tSizeAdjusted > constTripCount / 2)
tSizeAdjusted = constTripCount / 2;
while (constTripCount % tSizeAdjusted != 0)
tSizeAdjusted--;
}
}
// Returns tile sizes to use. Checks CL options; if none are specified, sets it
// based on a simple model that looks at the memory footprint and determines
// tile sizes assuming identity accesses / 1:1 tile size proportional footprint
// along each of the dimensions being tiled.
// TODO: evolve this model. Tile size determination is a large area
// to play with in general.
void LoopTiling::getTileSizes(ArrayRef<AffineForOp> band,
SmallVectorImpl<unsigned> *tileSizes) {
if (band.empty())
return;
// Use command-line tileSize for all loops if specified.
if (tileSize) {
tileSizes->assign(band.size(), tileSize);
return;
}
// Use tileSizes and fill them with default tile size if it's short.
if (!this->tileSizes.empty()) {
tileSizes->assign(this->tileSizes.begin(), this->tileSizes.end());
tileSizes->resize(band.size(), kDefaultTileSize);
return;
}
tileSizes->resize(band.size());
// The first loop in the band.
auto rootForOp = band[0];
(void)rootForOp;
// Obtain memory footprint and set tile sizes so that a tile fits in
// the cache size. This is an approximation with the assumption that the
// footprint increases with the tile size linearly in that dimension (i.e.,
// assumes one-to-one access function).
auto fp = getMemoryFootprintBytes(band[0], 0);
if (!fp) {
// Fill with default tile sizes if footprint is unknown.
std::fill(tileSizes->begin(), tileSizes->end(),
LoopTiling::kDefaultTileSize);
if (avoidMaxMinBounds)
adjustToDivisorsOfTripCounts(band, tileSizes);
LLVM_DEBUG(
rootForOp.emitWarning("memory footprint unknown: using default tile "
"sizes adjusted to trip count divisors"));
return;
}
// Check how many times larger the cache size is when compared to footprint.
uint64_t cacheSizeBytes = cacheSizeInKiB * 1024;
uint64_t excessFactor = llvm::divideCeil(fp.getValue(), cacheSizeBytes);
if (excessFactor <= 1) {
// No need of any tiling - set tile size to 1.
std::fill(tileSizes->begin(), tileSizes->end(), 1);
return;
}
// Divide all loops equally in an attempt to reduce footprint.
// TODO: this is approximate. Ideally, obtain reuse factor /
// profitability along each dimension and weight tile sizes based on that as
// one possible approach. Or compute a polynomial in tile sizes and solve for
// it.
// For an n-d tileable band, compute the n^th root of the excess.
unsigned tSize =
static_cast<unsigned>(floorl(std::pow(excessFactor, 1.0 / band.size())));
// We'll keep a running product to determine the last tile size better.
unsigned cumulProductOfTileSizes = 1;
for (unsigned i = 0, e = band.size(); i < e; i++) {
if (i < e - 1)
(*tileSizes)[i] = tSize;
else
// Set last tile size to cover the balance.
(*tileSizes)[i] = std::max(
1U, static_cast<unsigned>(excessFactor / cumulProductOfTileSizes));
cumulProductOfTileSizes *= (*tileSizes)[i];
}
if (avoidMaxMinBounds)
adjustToDivisorsOfTripCounts(band, tileSizes);
}
void LoopTiling::runOnFunction() {
// Bands of loops to tile.
std::vector<SmallVector<AffineForOp, 6>> bands;
getTileableBands(getFunction(), &bands);
// Tile each band.
for (auto &band : bands) {
// Set up tile sizes; fill missing tile sizes at the end with default tile
// size or tileSize if one was provided.
SmallVector<unsigned, 6> tileSizes;
getTileSizes(band, &tileSizes);
if (llvm::DebugFlag) {
auto diag = band[0].emitRemark("using tile sizes [");
for (auto tSize : tileSizes)
diag << tSize << ' ';
diag << "]\n";
}
SmallVector<AffineForOp, 6> tiledNest;
if (failed(tilePerfectlyNested(band, tileSizes, &tiledNest)))
return signalPassFailure();
// Separate full and partial tiles.
if (separate) {
auto intraTileLoops =
MutableArrayRef<AffineForOp>(tiledNest).drop_front(band.size());
separateFullTiles(intraTileLoops);
}
}
}
constexpr unsigned LoopTiling::kDefaultTileSize;