blob: caa888d030f7019de9543cf11acea6548747675a [file] [log] [blame]
//===- OpenMPDialect.cpp - MLIR Dialect for OpenMP implementation ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the OpenMP dialect and its operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/OpenMP/OpenMPDialect.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
#include "mlir/Dialect/OpenACCMPCommon/Interfaces/AtomicInterfaces.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/OperationSupport.h"
#include "mlir/Interfaces/FoldInterfaces.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLForwardCompat.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Frontend/OpenMP/OMPConstants.h"
#include <cstddef>
#include <optional>
#include "mlir/Dialect/OpenMP/OpenMPOpsDialect.cpp.inc"
#include "mlir/Dialect/OpenMP/OpenMPOpsEnums.cpp.inc"
#include "mlir/Dialect/OpenMP/OpenMPOpsInterfaces.cpp.inc"
#include "mlir/Dialect/OpenMP/OpenMPTypeInterfaces.cpp.inc"
using namespace mlir;
using namespace mlir::omp;
namespace {
struct MemRefPointerLikeModel
: public PointerLikeType::ExternalModel<MemRefPointerLikeModel,
MemRefType> {
Type getElementType(Type pointer) const {
return llvm::cast<MemRefType>(pointer).getElementType();
}
};
struct LLVMPointerPointerLikeModel
: public PointerLikeType::ExternalModel<LLVMPointerPointerLikeModel,
LLVM::LLVMPointerType> {
Type getElementType(Type pointer) const { return Type(); }
};
struct OpenMPDialectFoldInterface : public DialectFoldInterface {
using DialectFoldInterface::DialectFoldInterface;
bool shouldMaterializeInto(Region *region) const final {
// Avoid folding constants across target regions
return isa<TargetOp>(region->getParentOp());
}
};
} // namespace
void OpenMPDialect::initialize() {
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/OpenMP/OpenMPOps.cpp.inc"
>();
addAttributes<
#define GET_ATTRDEF_LIST
#include "mlir/Dialect/OpenMP/OpenMPOpsAttributes.cpp.inc"
>();
addTypes<
#define GET_TYPEDEF_LIST
#include "mlir/Dialect/OpenMP/OpenMPOpsTypes.cpp.inc"
>();
addInterface<OpenMPDialectFoldInterface>();
MemRefType::attachInterface<MemRefPointerLikeModel>(*getContext());
LLVM::LLVMPointerType::attachInterface<LLVMPointerPointerLikeModel>(
*getContext());
// Attach default offload module interface to module op to access
// offload functionality through
mlir::ModuleOp::attachInterface<mlir::omp::OffloadModuleDefaultModel>(
*getContext());
// Attach default declare target interfaces to operations which can be marked
// as declare target (Global Operations and Functions/Subroutines in dialects
// that Fortran (or other languages that lower to MLIR) translates too
mlir::LLVM::GlobalOp::attachInterface<
mlir::omp::DeclareTargetDefaultModel<mlir::LLVM::GlobalOp>>(
*getContext());
mlir::LLVM::LLVMFuncOp::attachInterface<
mlir::omp::DeclareTargetDefaultModel<mlir::LLVM::LLVMFuncOp>>(
*getContext());
mlir::func::FuncOp::attachInterface<
mlir::omp::DeclareTargetDefaultModel<mlir::func::FuncOp>>(*getContext());
}
//===----------------------------------------------------------------------===//
// Parser and printer for Allocate Clause
//===----------------------------------------------------------------------===//
/// Parse an allocate clause with allocators and a list of operands with types.
///
/// allocate-operand-list :: = allocate-operand |
/// allocator-operand `,` allocate-operand-list
/// allocate-operand :: = ssa-id-and-type -> ssa-id-and-type
/// ssa-id-and-type ::= ssa-id `:` type
static ParseResult parseAllocateAndAllocator(
OpAsmParser &parser,
SmallVectorImpl<OpAsmParser::UnresolvedOperand> &operandsAllocate,
SmallVectorImpl<Type> &typesAllocate,
SmallVectorImpl<OpAsmParser::UnresolvedOperand> &operandsAllocator,
SmallVectorImpl<Type> &typesAllocator) {
return parser.parseCommaSeparatedList([&]() {
OpAsmParser::UnresolvedOperand operand;
Type type;
if (parser.parseOperand(operand) || parser.parseColonType(type))
return failure();
operandsAllocator.push_back(operand);
typesAllocator.push_back(type);
if (parser.parseArrow())
return failure();
if (parser.parseOperand(operand) || parser.parseColonType(type))
return failure();
operandsAllocate.push_back(operand);
typesAllocate.push_back(type);
return success();
});
}
/// Print allocate clause
static void printAllocateAndAllocator(OpAsmPrinter &p, Operation *op,
OperandRange varsAllocate,
TypeRange typesAllocate,
OperandRange varsAllocator,
TypeRange typesAllocator) {
for (unsigned i = 0; i < varsAllocate.size(); ++i) {
std::string separator = i == varsAllocate.size() - 1 ? "" : ", ";
p << varsAllocator[i] << " : " << typesAllocator[i] << " -> ";
p << varsAllocate[i] << " : " << typesAllocate[i] << separator;
}
}
//===----------------------------------------------------------------------===//
// Parser and printer for a clause attribute (StringEnumAttr)
//===----------------------------------------------------------------------===//
template <typename ClauseAttr>
static ParseResult parseClauseAttr(AsmParser &parser, ClauseAttr &attr) {
using ClauseT = decltype(std::declval<ClauseAttr>().getValue());
StringRef enumStr;
SMLoc loc = parser.getCurrentLocation();
if (parser.parseKeyword(&enumStr))
return failure();
if (std::optional<ClauseT> enumValue = symbolizeEnum<ClauseT>(enumStr)) {
attr = ClauseAttr::get(parser.getContext(), *enumValue);
return success();
}
return parser.emitError(loc, "invalid clause value: '") << enumStr << "'";
}
template <typename ClauseAttr>
void printClauseAttr(OpAsmPrinter &p, Operation *op, ClauseAttr attr) {
p << stringifyEnum(attr.getValue());
}
//===----------------------------------------------------------------------===//
// Parser and printer for Linear Clause
//===----------------------------------------------------------------------===//
/// linear ::= `linear` `(` linear-list `)`
/// linear-list := linear-val | linear-val linear-list
/// linear-val := ssa-id-and-type `=` ssa-id-and-type
static ParseResult
parseLinearClause(OpAsmParser &parser,
SmallVectorImpl<OpAsmParser::UnresolvedOperand> &vars,
SmallVectorImpl<Type> &types,
SmallVectorImpl<OpAsmParser::UnresolvedOperand> &stepVars) {
return parser.parseCommaSeparatedList([&]() {
OpAsmParser::UnresolvedOperand var;
Type type;
OpAsmParser::UnresolvedOperand stepVar;
if (parser.parseOperand(var) || parser.parseEqual() ||
parser.parseOperand(stepVar) || parser.parseColonType(type))
return failure();
vars.push_back(var);
types.push_back(type);
stepVars.push_back(stepVar);
return success();
});
}
/// Print Linear Clause
static void printLinearClause(OpAsmPrinter &p, Operation *op,
ValueRange linearVars, TypeRange linearVarTypes,
ValueRange linearStepVars) {
size_t linearVarsSize = linearVars.size();
for (unsigned i = 0; i < linearVarsSize; ++i) {
std::string separator = i == linearVarsSize - 1 ? "" : ", ";
p << linearVars[i];
if (linearStepVars.size() > i)
p << " = " << linearStepVars[i];
p << " : " << linearVars[i].getType() << separator;
}
}
//===----------------------------------------------------------------------===//
// Verifier for Nontemporal Clause
//===----------------------------------------------------------------------===//
static LogicalResult
verifyNontemporalClause(Operation *op, OperandRange nontemporalVariables) {
// Check if each var is unique - OpenMP 5.0 -> 2.9.3.1 section
DenseSet<Value> nontemporalItems;
for (const auto &it : nontemporalVariables)
if (!nontemporalItems.insert(it).second)
return op->emitOpError() << "nontemporal variable used more than once";
return success();
}
//===----------------------------------------------------------------------===//
// Parser, verifier and printer for Aligned Clause
//===----------------------------------------------------------------------===//
static LogicalResult
verifyAlignedClause(Operation *op, std::optional<ArrayAttr> alignmentValues,
OperandRange alignedVariables) {
// Check if number of alignment values equals to number of aligned variables
if (!alignedVariables.empty()) {
if (!alignmentValues || alignmentValues->size() != alignedVariables.size())
return op->emitOpError()
<< "expected as many alignment values as aligned variables";
} else {
if (alignmentValues)
return op->emitOpError() << "unexpected alignment values attribute";
return success();
}
// Check if each var is aligned only once - OpenMP 4.5 -> 2.8.1 section
DenseSet<Value> alignedItems;
for (auto it : alignedVariables)
if (!alignedItems.insert(it).second)
return op->emitOpError() << "aligned variable used more than once";
if (!alignmentValues)
return success();
// Check if all alignment values are positive - OpenMP 4.5 -> 2.8.1 section
for (unsigned i = 0; i < (*alignmentValues).size(); ++i) {
if (auto intAttr = llvm::dyn_cast<IntegerAttr>((*alignmentValues)[i])) {
if (intAttr.getValue().sle(0))
return op->emitOpError() << "alignment should be greater than 0";
} else {
return op->emitOpError() << "expected integer alignment";
}
}
return success();
}
/// aligned ::= `aligned` `(` aligned-list `)`
/// aligned-list := aligned-val | aligned-val aligned-list
/// aligned-val := ssa-id-and-type `->` alignment
static ParseResult parseAlignedClause(
OpAsmParser &parser,
SmallVectorImpl<OpAsmParser::UnresolvedOperand> &alignedItems,
SmallVectorImpl<Type> &types, ArrayAttr &alignmentValues) {
SmallVector<Attribute> alignmentVec;
if (failed(parser.parseCommaSeparatedList([&]() {
if (parser.parseOperand(alignedItems.emplace_back()) ||
parser.parseColonType(types.emplace_back()) ||
parser.parseArrow() ||
parser.parseAttribute(alignmentVec.emplace_back())) {
return failure();
}
return success();
})))
return failure();
SmallVector<Attribute> alignments(alignmentVec.begin(), alignmentVec.end());
alignmentValues = ArrayAttr::get(parser.getContext(), alignments);
return success();
}
/// Print Aligned Clause
static void printAlignedClause(OpAsmPrinter &p, Operation *op,
ValueRange alignedVars,
TypeRange alignedVarTypes,
std::optional<ArrayAttr> alignmentValues) {
for (unsigned i = 0; i < alignedVars.size(); ++i) {
if (i != 0)
p << ", ";
p << alignedVars[i] << " : " << alignedVars[i].getType();
p << " -> " << (*alignmentValues)[i];
}
}
//===----------------------------------------------------------------------===//
// Parser, printer and verifier for Schedule Clause
//===----------------------------------------------------------------------===//
static ParseResult
verifyScheduleModifiers(OpAsmParser &parser,
SmallVectorImpl<SmallString<12>> &modifiers) {
if (modifiers.size() > 2)
return parser.emitError(parser.getNameLoc()) << " unexpected modifier(s)";
for (const auto &mod : modifiers) {
// Translate the string. If it has no value, then it was not a valid
// modifier!
auto symbol = symbolizeScheduleModifier(mod);
if (!symbol)
return parser.emitError(parser.getNameLoc())
<< " unknown modifier type: " << mod;
}
// If we have one modifier that is "simd", then stick a "none" modiifer in
// index 0.
if (modifiers.size() == 1) {
if (symbolizeScheduleModifier(modifiers[0]) == ScheduleModifier::simd) {
modifiers.push_back(modifiers[0]);
modifiers[0] = stringifyScheduleModifier(ScheduleModifier::none);
}
} else if (modifiers.size() == 2) {
// If there are two modifier:
// First modifier should not be simd, second one should be simd
if (symbolizeScheduleModifier(modifiers[0]) == ScheduleModifier::simd ||
symbolizeScheduleModifier(modifiers[1]) != ScheduleModifier::simd)
return parser.emitError(parser.getNameLoc())
<< " incorrect modifier order";
}
return success();
}
/// schedule ::= `schedule` `(` sched-list `)`
/// sched-list ::= sched-val | sched-val sched-list |
/// sched-val `,` sched-modifier
/// sched-val ::= sched-with-chunk | sched-wo-chunk
/// sched-with-chunk ::= sched-with-chunk-types (`=` ssa-id-and-type)?
/// sched-with-chunk-types ::= `static` | `dynamic` | `guided`
/// sched-wo-chunk ::= `auto` | `runtime`
/// sched-modifier ::= sched-mod-val | sched-mod-val `,` sched-mod-val
/// sched-mod-val ::= `monotonic` | `nonmonotonic` | `simd` | `none`
static ParseResult parseScheduleClause(
OpAsmParser &parser, ClauseScheduleKindAttr &scheduleAttr,
ScheduleModifierAttr &scheduleModifier, UnitAttr &simdModifier,
std::optional<OpAsmParser::UnresolvedOperand> &chunkSize, Type &chunkType) {
StringRef keyword;
if (parser.parseKeyword(&keyword))
return failure();
std::optional<mlir::omp::ClauseScheduleKind> schedule =
symbolizeClauseScheduleKind(keyword);
if (!schedule)
return parser.emitError(parser.getNameLoc()) << " expected schedule kind";
scheduleAttr = ClauseScheduleKindAttr::get(parser.getContext(), *schedule);
switch (*schedule) {
case ClauseScheduleKind::Static:
case ClauseScheduleKind::Dynamic:
case ClauseScheduleKind::Guided:
if (succeeded(parser.parseOptionalEqual())) {
chunkSize = OpAsmParser::UnresolvedOperand{};
if (parser.parseOperand(*chunkSize) || parser.parseColonType(chunkType))
return failure();
} else {
chunkSize = std::nullopt;
}
break;
case ClauseScheduleKind::Auto:
case ClauseScheduleKind::Runtime:
chunkSize = std::nullopt;
}
// If there is a comma, we have one or more modifiers..
SmallVector<SmallString<12>> modifiers;
while (succeeded(parser.parseOptionalComma())) {
StringRef mod;
if (parser.parseKeyword(&mod))
return failure();
modifiers.push_back(mod);
}
if (verifyScheduleModifiers(parser, modifiers))
return failure();
if (!modifiers.empty()) {
SMLoc loc = parser.getCurrentLocation();
if (std::optional<ScheduleModifier> mod =
symbolizeScheduleModifier(modifiers[0])) {
scheduleModifier = ScheduleModifierAttr::get(parser.getContext(), *mod);
} else {
return parser.emitError(loc, "invalid schedule modifier");
}
// Only SIMD attribute is allowed here!
if (modifiers.size() > 1) {
assert(symbolizeScheduleModifier(modifiers[1]) == ScheduleModifier::simd);
simdModifier = UnitAttr::get(parser.getBuilder().getContext());
}
}
return success();
}
/// Print schedule clause
static void printScheduleClause(OpAsmPrinter &p, Operation *op,
ClauseScheduleKindAttr schedAttr,
ScheduleModifierAttr modifier, UnitAttr simd,
Value scheduleChunkVar,
Type scheduleChunkType) {
p << stringifyClauseScheduleKind(schedAttr.getValue());
if (scheduleChunkVar)
p << " = " << scheduleChunkVar << " : " << scheduleChunkVar.getType();
if (modifier)
p << ", " << stringifyScheduleModifier(modifier.getValue());
if (simd)
p << ", simd";
}
//===----------------------------------------------------------------------===//
// Parser, printer and verifier for ReductionVarList
//===----------------------------------------------------------------------===//
/// reduction-entry-list ::= reduction-entry
/// | reduction-entry-list `,` reduction-entry
/// reduction-entry ::= symbol-ref `->` ssa-id `:` type
static ParseResult
parseReductionVarList(OpAsmParser &parser,
SmallVectorImpl<OpAsmParser::UnresolvedOperand> &operands,
SmallVectorImpl<Type> &types,
ArrayAttr &redcuctionSymbols) {
SmallVector<SymbolRefAttr> reductionVec;
if (failed(parser.parseCommaSeparatedList([&]() {
if (parser.parseAttribute(reductionVec.emplace_back()) ||
parser.parseArrow() ||
parser.parseOperand(operands.emplace_back()) ||
parser.parseColonType(types.emplace_back()))
return failure();
return success();
})))
return failure();
SmallVector<Attribute> reductions(reductionVec.begin(), reductionVec.end());
redcuctionSymbols = ArrayAttr::get(parser.getContext(), reductions);
return success();
}
/// Print Reduction clause
static void printReductionVarList(OpAsmPrinter &p, Operation *op,
OperandRange reductionVars,
TypeRange reductionTypes,
std::optional<ArrayAttr> reductions) {
for (unsigned i = 0, e = reductions->size(); i < e; ++i) {
if (i != 0)
p << ", ";
p << (*reductions)[i] << " -> " << reductionVars[i] << " : "
<< reductionVars[i].getType();
}
}
/// Verifies Reduction Clause
static LogicalResult verifyReductionVarList(Operation *op,
std::optional<ArrayAttr> reductions,
OperandRange reductionVars) {
if (!reductionVars.empty()) {
if (!reductions || reductions->size() != reductionVars.size())
return op->emitOpError()
<< "expected as many reduction symbol references "
"as reduction variables";
} else {
if (reductions)
return op->emitOpError() << "unexpected reduction symbol references";
return success();
}
// TODO: The followings should be done in
// SymbolUserOpInterface::verifySymbolUses.
DenseSet<Value> accumulators;
for (auto args : llvm::zip(reductionVars, *reductions)) {
Value accum = std::get<0>(args);
if (!accumulators.insert(accum).second)
return op->emitOpError() << "accumulator variable used more than once";
Type varType = accum.getType();
auto symbolRef = llvm::cast<SymbolRefAttr>(std::get<1>(args));
auto decl =
SymbolTable::lookupNearestSymbolFrom<ReductionDeclareOp>(op, symbolRef);
if (!decl)
return op->emitOpError() << "expected symbol reference " << symbolRef
<< " to point to a reduction declaration";
if (decl.getAccumulatorType() && decl.getAccumulatorType() != varType)
return op->emitOpError()
<< "expected accumulator (" << varType
<< ") to be the same type as reduction declaration ("
<< decl.getAccumulatorType() << ")";
}
return success();
}
//===----------------------------------------------------------------------===//
// Parser, printer and verifier for DependVarList
//===----------------------------------------------------------------------===//
/// depend-entry-list ::= depend-entry
/// | depend-entry-list `,` depend-entry
/// depend-entry ::= depend-kind `->` ssa-id `:` type
static ParseResult
parseDependVarList(OpAsmParser &parser,
SmallVectorImpl<OpAsmParser::UnresolvedOperand> &operands,
SmallVectorImpl<Type> &types, ArrayAttr &dependsArray) {
SmallVector<ClauseTaskDependAttr> dependVec;
if (failed(parser.parseCommaSeparatedList([&]() {
StringRef keyword;
if (parser.parseKeyword(&keyword) || parser.parseArrow() ||
parser.parseOperand(operands.emplace_back()) ||
parser.parseColonType(types.emplace_back()))
return failure();
if (std::optional<ClauseTaskDepend> keywordDepend =
(symbolizeClauseTaskDepend(keyword)))
dependVec.emplace_back(
ClauseTaskDependAttr::get(parser.getContext(), *keywordDepend));
else
return failure();
return success();
})))
return failure();
SmallVector<Attribute> depends(dependVec.begin(), dependVec.end());
dependsArray = ArrayAttr::get(parser.getContext(), depends);
return success();
}
/// Print Depend clause
static void printDependVarList(OpAsmPrinter &p, Operation *op,
OperandRange dependVars, TypeRange dependTypes,
std::optional<ArrayAttr> depends) {
for (unsigned i = 0, e = depends->size(); i < e; ++i) {
if (i != 0)
p << ", ";
p << stringifyClauseTaskDepend(
llvm::cast<mlir::omp::ClauseTaskDependAttr>((*depends)[i])
.getValue())
<< " -> " << dependVars[i] << " : " << dependTypes[i];
}
}
/// Verifies Depend clause
static LogicalResult verifyDependVarList(Operation *op,
std::optional<ArrayAttr> depends,
OperandRange dependVars) {
if (!dependVars.empty()) {
if (!depends || depends->size() != dependVars.size())
return op->emitOpError() << "expected as many depend values"
" as depend variables";
} else {
if (depends)
return op->emitOpError() << "unexpected depend values";
return success();
}
return success();
}
//===----------------------------------------------------------------------===//
// Parser, printer and verifier for Synchronization Hint (2.17.12)
//===----------------------------------------------------------------------===//
/// Parses a Synchronization Hint clause. The value of hint is an integer
/// which is a combination of different hints from `omp_sync_hint_t`.
///
/// hint-clause = `hint` `(` hint-value `)`
static ParseResult parseSynchronizationHint(OpAsmParser &parser,
IntegerAttr &hintAttr) {
StringRef hintKeyword;
int64_t hint = 0;
if (succeeded(parser.parseOptionalKeyword("none"))) {
hintAttr = IntegerAttr::get(parser.getBuilder().getI64Type(), 0);
return success();
}
auto parseKeyword = [&]() -> ParseResult {
if (failed(parser.parseKeyword(&hintKeyword)))
return failure();
if (hintKeyword == "uncontended")
hint |= 1;
else if (hintKeyword == "contended")
hint |= 2;
else if (hintKeyword == "nonspeculative")
hint |= 4;
else if (hintKeyword == "speculative")
hint |= 8;
else
return parser.emitError(parser.getCurrentLocation())
<< hintKeyword << " is not a valid hint";
return success();
};
if (parser.parseCommaSeparatedList(parseKeyword))
return failure();
hintAttr = IntegerAttr::get(parser.getBuilder().getI64Type(), hint);
return success();
}
/// Prints a Synchronization Hint clause
static void printSynchronizationHint(OpAsmPrinter &p, Operation *op,
IntegerAttr hintAttr) {
int64_t hint = hintAttr.getInt();
if (hint == 0) {
p << "none";
return;
}
// Helper function to get n-th bit from the right end of `value`
auto bitn = [](int value, int n) -> bool { return value & (1 << n); };
bool uncontended = bitn(hint, 0);
bool contended = bitn(hint, 1);
bool nonspeculative = bitn(hint, 2);
bool speculative = bitn(hint, 3);
SmallVector<StringRef> hints;
if (uncontended)
hints.push_back("uncontended");
if (contended)
hints.push_back("contended");
if (nonspeculative)
hints.push_back("nonspeculative");
if (speculative)
hints.push_back("speculative");
llvm::interleaveComma(hints, p);
}
/// Verifies a synchronization hint clause
static LogicalResult verifySynchronizationHint(Operation *op, uint64_t hint) {
// Helper function to get n-th bit from the right end of `value`
auto bitn = [](int value, int n) -> bool { return value & (1 << n); };
bool uncontended = bitn(hint, 0);
bool contended = bitn(hint, 1);
bool nonspeculative = bitn(hint, 2);
bool speculative = bitn(hint, 3);
if (uncontended && contended)
return op->emitOpError() << "the hints omp_sync_hint_uncontended and "
"omp_sync_hint_contended cannot be combined";
if (nonspeculative && speculative)
return op->emitOpError() << "the hints omp_sync_hint_nonspeculative and "
"omp_sync_hint_speculative cannot be combined.";
return success();
}
//===----------------------------------------------------------------------===//
// Parser, printer and verifier for Target
//===----------------------------------------------------------------------===//
// Helper function to get bitwise AND of `value` and 'flag'
uint64_t mapTypeToBitFlag(uint64_t value,
llvm::omp::OpenMPOffloadMappingFlags flag) {
return value & llvm::to_underlying(flag);
}
/// Parses a map_entries map type from a string format back into its numeric
/// value.
///
/// map-clause = `map_clauses ( ( `(` `always, `? `close, `? `present, `? (
/// `to` | `from` | `delete` `)` )+ `)` )
static ParseResult parseMapClause(OpAsmParser &parser, IntegerAttr &mapType) {
llvm::omp::OpenMPOffloadMappingFlags mapTypeBits =
llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_NONE;
// This simply verifies the correct keyword is read in, the
// keyword itself is stored inside of the operation
auto parseTypeAndMod = [&]() -> ParseResult {
StringRef mapTypeMod;
if (parser.parseKeyword(&mapTypeMod))
return failure();
if (mapTypeMod == "always")
mapTypeBits |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_ALWAYS;
if (mapTypeMod == "implicit")
mapTypeBits |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_IMPLICIT;
if (mapTypeMod == "close")
mapTypeBits |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_CLOSE;
if (mapTypeMod == "present")
mapTypeBits |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_PRESENT;
if (mapTypeMod == "to")
mapTypeBits |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_TO;
if (mapTypeMod == "from")
mapTypeBits |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_FROM;
if (mapTypeMod == "tofrom")
mapTypeBits |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_TO |
llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_FROM;
if (mapTypeMod == "delete")
mapTypeBits |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_DELETE;
return success();
};
if (parser.parseCommaSeparatedList(parseTypeAndMod))
return failure();
mapType = parser.getBuilder().getIntegerAttr(
parser.getBuilder().getIntegerType(64, /*isSigned=*/false),
llvm::to_underlying(mapTypeBits));
return success();
}
/// Prints a map_entries map type from its numeric value out into its string
/// format.
static void printMapClause(OpAsmPrinter &p, Operation *op,
IntegerAttr mapType) {
uint64_t mapTypeBits = mapType.getUInt();
bool emitAllocRelease = true;
llvm::SmallVector<std::string, 4> mapTypeStrs;
// handling of always, close, present placed at the beginning of the string
// to aid readability
if (mapTypeToBitFlag(mapTypeBits,
llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_ALWAYS))
mapTypeStrs.push_back("always");
if (mapTypeToBitFlag(mapTypeBits,
llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_IMPLICIT))
mapTypeStrs.push_back("implicit");
if (mapTypeToBitFlag(mapTypeBits,
llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_CLOSE))
mapTypeStrs.push_back("close");
if (mapTypeToBitFlag(mapTypeBits,
llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_PRESENT))
mapTypeStrs.push_back("present");
// special handling of to/from/tofrom/delete and release/alloc, release +
// alloc are the abscense of one of the other flags, whereas tofrom requires
// both the to and from flag to be set.
bool to = mapTypeToBitFlag(mapTypeBits,
llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_TO);
bool from = mapTypeToBitFlag(
mapTypeBits, llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_FROM);
if (to && from) {
emitAllocRelease = false;
mapTypeStrs.push_back("tofrom");
} else if (from) {
emitAllocRelease = false;
mapTypeStrs.push_back("from");
} else if (to) {
emitAllocRelease = false;
mapTypeStrs.push_back("to");
}
if (mapTypeToBitFlag(mapTypeBits,
llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_DELETE)) {
emitAllocRelease = false;
mapTypeStrs.push_back("delete");
}
if (emitAllocRelease)
mapTypeStrs.push_back("exit_release_or_enter_alloc");
for (unsigned int i = 0; i < mapTypeStrs.size(); ++i) {
p << mapTypeStrs[i];
if (i + 1 < mapTypeStrs.size()) {
p << ", ";
}
}
}
static ParseResult
parseMapEntries(OpAsmParser &parser,
SmallVectorImpl<OpAsmParser::UnresolvedOperand> &mapOperands,
SmallVectorImpl<Type> &mapOperandTypes) {
OpAsmParser::UnresolvedOperand arg;
OpAsmParser::UnresolvedOperand blockArg;
Type argType;
auto parseEntries = [&]() -> ParseResult {
if (parser.parseOperand(arg) || parser.parseArrow() ||
parser.parseOperand(blockArg))
return failure();
mapOperands.push_back(arg);
return success();
};
auto parseTypes = [&]() -> ParseResult {
if (parser.parseType(argType))
return failure();
mapOperandTypes.push_back(argType);
return success();
};
if (parser.parseCommaSeparatedList(parseEntries))
return failure();
if (parser.parseColon())
return failure();
if (parser.parseCommaSeparatedList(parseTypes))
return failure();
return success();
}
static void printMapEntries(OpAsmPrinter &p, Operation *op,
OperandRange mapOperands,
TypeRange mapOperandTypes) {
auto &region = op->getRegion(0);
unsigned argIndex = 0;
for (const auto &mapOp : mapOperands) {
const auto &blockArg = region.front().getArgument(argIndex);
p << mapOp << " -> " << blockArg;
argIndex++;
if (argIndex < mapOperands.size())
p << ", ";
}
p << " : ";
argIndex = 0;
for (const auto &mapType : mapOperandTypes) {
p << mapType;
argIndex++;
if (argIndex < mapOperands.size())
p << ", ";
}
}
static void printCaptureType(OpAsmPrinter &p, Operation *op,
VariableCaptureKindAttr mapCaptureType) {
std::string typeCapStr;
llvm::raw_string_ostream typeCap(typeCapStr);
if (mapCaptureType.getValue() == mlir::omp::VariableCaptureKind::ByRef)
typeCap << "ByRef";
if (mapCaptureType.getValue() == mlir::omp::VariableCaptureKind::ByCopy)
typeCap << "ByCopy";
if (mapCaptureType.getValue() == mlir::omp::VariableCaptureKind::VLAType)
typeCap << "VLAType";
if (mapCaptureType.getValue() == mlir::omp::VariableCaptureKind::This)
typeCap << "This";
p << typeCap.str();
}
static ParseResult parseCaptureType(OpAsmParser &parser,
VariableCaptureKindAttr &mapCapture) {
StringRef mapCaptureKey;
if (parser.parseKeyword(&mapCaptureKey))
return failure();
if (mapCaptureKey == "This")
mapCapture = mlir::omp::VariableCaptureKindAttr::get(
parser.getContext(), mlir::omp::VariableCaptureKind::This);
if (mapCaptureKey == "ByRef")
mapCapture = mlir::omp::VariableCaptureKindAttr::get(
parser.getContext(), mlir::omp::VariableCaptureKind::ByRef);
if (mapCaptureKey == "ByCopy")
mapCapture = mlir::omp::VariableCaptureKindAttr::get(
parser.getContext(), mlir::omp::VariableCaptureKind::ByCopy);
if (mapCaptureKey == "VLAType")
mapCapture = mlir::omp::VariableCaptureKindAttr::get(
parser.getContext(), mlir::omp::VariableCaptureKind::VLAType);
return success();
}
static LogicalResult verifyMapClause(Operation *op, OperandRange mapOperands) {
llvm::DenseSet<mlir::TypedValue<mlir::omp::PointerLikeType>> updateToVars;
llvm::DenseSet<mlir::TypedValue<mlir::omp::PointerLikeType>> updateFromVars;
for (auto mapOp : mapOperands) {
if (!mapOp.getDefiningOp())
emitError(op->getLoc(), "missing map operation");
if (auto mapInfoOp =
mlir::dyn_cast<mlir::omp::MapInfoOp>(mapOp.getDefiningOp())) {
if (!mapInfoOp.getMapType().has_value())
emitError(op->getLoc(), "missing map type for map operand");
if (!mapInfoOp.getMapCaptureType().has_value())
emitError(op->getLoc(), "missing map capture type for map operand");
uint64_t mapTypeBits = mapInfoOp.getMapType().value();
bool to = mapTypeToBitFlag(
mapTypeBits, llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_TO);
bool from = mapTypeToBitFlag(
mapTypeBits, llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_FROM);
bool del = mapTypeToBitFlag(
mapTypeBits, llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_DELETE);
bool always = mapTypeToBitFlag(
mapTypeBits, llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_ALWAYS);
bool close = mapTypeToBitFlag(
mapTypeBits, llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_CLOSE);
bool implicit = mapTypeToBitFlag(
mapTypeBits, llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_IMPLICIT);
if ((isa<DataOp>(op) || isa<TargetOp>(op)) && del)
return emitError(op->getLoc(),
"to, from, tofrom and alloc map types are permitted");
if (isa<EnterDataOp>(op) && (from || del))
return emitError(op->getLoc(), "to and alloc map types are permitted");
if (isa<ExitDataOp>(op) && to)
return emitError(op->getLoc(),
"from, release and delete map types are permitted");
if (isa<UpdateDataOp>(op)) {
if (del) {
return emitError(op->getLoc(),
"at least one of to or from map types must be "
"specified, other map types are not permitted");
}
if (!to && !from) {
return emitError(op->getLoc(),
"at least one of to or from map types must be "
"specified, other map types are not permitted");
}
auto updateVar = mapInfoOp.getVarPtr();
if ((to && from) || (to && updateFromVars.contains(updateVar)) ||
(from && updateToVars.contains(updateVar))) {
return emitError(
op->getLoc(),
"either to or from map types can be specified, not both");
}
if (always || close || implicit) {
return emitError(
op->getLoc(),
"present, mapper and iterator map type modifiers are permitted");
}
to ? updateToVars.insert(updateVar) : updateFromVars.insert(updateVar);
}
} else {
emitError(op->getLoc(), "map argument is not a map entry operation");
}
}
return success();
}
LogicalResult DataOp::verify() {
if (getMapOperands().empty() && getUseDevicePtr().empty() &&
getUseDeviceAddr().empty()) {
return ::emitError(this->getLoc(), "At least one of map, useDevicePtr, or "
"useDeviceAddr operand must be present");
}
return verifyMapClause(*this, getMapOperands());
}
LogicalResult EnterDataOp::verify() {
return verifyMapClause(*this, getMapOperands());
}
LogicalResult ExitDataOp::verify() {
return verifyMapClause(*this, getMapOperands());
}
LogicalResult UpdateDataOp::verify() {
return verifyMapClause(*this, getMotionOperands());
}
LogicalResult TargetOp::verify() {
return verifyMapClause(*this, getMapOperands());
}
//===----------------------------------------------------------------------===//
// ParallelOp
//===----------------------------------------------------------------------===//
void ParallelOp::build(OpBuilder &builder, OperationState &state,
ArrayRef<NamedAttribute> attributes) {
ParallelOp::build(
builder, state, /*if_expr_var=*/nullptr, /*num_threads_var=*/nullptr,
/*allocate_vars=*/ValueRange(), /*allocators_vars=*/ValueRange(),
/*reduction_vars=*/ValueRange(), /*reductions=*/nullptr,
/*proc_bind_val=*/nullptr);
state.addAttributes(attributes);
}
LogicalResult ParallelOp::verify() {
if (getAllocateVars().size() != getAllocatorsVars().size())
return emitError(
"expected equal sizes for allocate and allocator variables");
return verifyReductionVarList(*this, getReductions(), getReductionVars());
}
//===----------------------------------------------------------------------===//
// TeamsOp
//===----------------------------------------------------------------------===//
static bool opInGlobalImplicitParallelRegion(Operation *op) {
while ((op = op->getParentOp()))
if (isa<OpenMPDialect>(op->getDialect()))
return false;
return true;
}
LogicalResult TeamsOp::verify() {
// Check parent region
// TODO If nested inside of a target region, also check that it does not
// contain any statements, declarations or directives other than this
// omp.teams construct. The issue is how to support the initialization of
// this operation's own arguments (allow SSA values across omp.target?).
Operation *op = getOperation();
if (!isa<TargetOp>(op->getParentOp()) &&
!opInGlobalImplicitParallelRegion(op))
return emitError("expected to be nested inside of omp.target or not nested "
"in any OpenMP dialect operations");
// Check for num_teams clause restrictions
if (auto numTeamsLowerBound = getNumTeamsLower()) {
auto numTeamsUpperBound = getNumTeamsUpper();
if (!numTeamsUpperBound)
return emitError("expected num_teams upper bound to be defined if the "
"lower bound is defined");
if (numTeamsLowerBound.getType() != numTeamsUpperBound.getType())
return emitError(
"expected num_teams upper bound and lower bound to be the same type");
}
// Check for allocate clause restrictions
if (getAllocateVars().size() != getAllocatorsVars().size())
return emitError(
"expected equal sizes for allocate and allocator variables");
return verifyReductionVarList(*this, getReductions(), getReductionVars());
}
//===----------------------------------------------------------------------===//
// Verifier for SectionsOp
//===----------------------------------------------------------------------===//
LogicalResult SectionsOp::verify() {
if (getAllocateVars().size() != getAllocatorsVars().size())
return emitError(
"expected equal sizes for allocate and allocator variables");
return verifyReductionVarList(*this, getReductions(), getReductionVars());
}
LogicalResult SectionsOp::verifyRegions() {
for (auto &inst : *getRegion().begin()) {
if (!(isa<SectionOp>(inst) || isa<TerminatorOp>(inst))) {
return emitOpError()
<< "expected omp.section op or terminator op inside region";
}
}
return success();
}
LogicalResult SingleOp::verify() {
// Check for allocate clause restrictions
if (getAllocateVars().size() != getAllocatorsVars().size())
return emitError(
"expected equal sizes for allocate and allocator variables");
return success();
}
//===----------------------------------------------------------------------===//
// WsLoopOp
//===----------------------------------------------------------------------===//
/// loop-control ::= `(` ssa-id-list `)` `:` type `=` loop-bounds
/// loop-bounds := `(` ssa-id-list `)` to `(` ssa-id-list `)` inclusive? steps
/// steps := `step` `(`ssa-id-list`)`
ParseResult
parseLoopControl(OpAsmParser &parser, Region &region,
SmallVectorImpl<OpAsmParser::UnresolvedOperand> &lowerBound,
SmallVectorImpl<OpAsmParser::UnresolvedOperand> &upperBound,
SmallVectorImpl<OpAsmParser::UnresolvedOperand> &steps,
SmallVectorImpl<Type> &loopVarTypes, UnitAttr &inclusive) {
// Parse an opening `(` followed by induction variables followed by `)`
SmallVector<OpAsmParser::Argument> ivs;
Type loopVarType;
if (parser.parseArgumentList(ivs, OpAsmParser::Delimiter::Paren) ||
parser.parseColonType(loopVarType) ||
// Parse loop bounds.
parser.parseEqual() ||
parser.parseOperandList(lowerBound, ivs.size(),
OpAsmParser::Delimiter::Paren) ||
parser.parseKeyword("to") ||
parser.parseOperandList(upperBound, ivs.size(),
OpAsmParser::Delimiter::Paren))
return failure();
if (succeeded(parser.parseOptionalKeyword("inclusive")))
inclusive = UnitAttr::get(parser.getBuilder().getContext());
// Parse step values.
if (parser.parseKeyword("step") ||
parser.parseOperandList(steps, ivs.size(), OpAsmParser::Delimiter::Paren))
return failure();
// Now parse the body.
loopVarTypes = SmallVector<Type>(ivs.size(), loopVarType);
for (auto &iv : ivs)
iv.type = loopVarType;
return parser.parseRegion(region, ivs);
}
void printLoopControl(OpAsmPrinter &p, Operation *op, Region &region,
ValueRange lowerBound, ValueRange upperBound,
ValueRange steps, TypeRange loopVarTypes,
UnitAttr inclusive) {
auto args = region.front().getArguments();
p << " (" << args << ") : " << args[0].getType() << " = (" << lowerBound
<< ") to (" << upperBound << ") ";
if (inclusive)
p << "inclusive ";
p << "step (" << steps << ") ";
p.printRegion(region, /*printEntryBlockArgs=*/false);
}
//===----------------------------------------------------------------------===//
// Verifier for Simd constructs [2.9.3.1]
//===----------------------------------------------------------------------===//
template <typename OpTy>
static LogicalResult verifySimdOp(OpTy op) {
if (op.getSimdlen().has_value() && op.getSafelen().has_value() &&
op.getSimdlen().value() > op.getSafelen().value()) {
return op.emitOpError()
<< "simdlen clause and safelen clause are both present, but the "
"simdlen value is not less than or equal to safelen value";
}
if (verifyAlignedClause(op, op.getAlignmentValues(), op.getAlignedVars())
.failed())
return failure();
if (verifyNontemporalClause(op, op.getNontemporalVars()).failed())
return failure();
return success();
}
LogicalResult SimdLoopOp::verify() {
if (this->getLowerBound().empty())
return emitOpError() << "empty lowerbound for simd loop operation";
return verifySimdOp(*this);
}
LogicalResult SimdOp::verify() { return verifySimdOp(*this); }
//===----------------------------------------------------------------------===//
// Verifier for Distribute construct [2.9.4.1]
//===----------------------------------------------------------------------===//
LogicalResult DistributeOp::verify() {
if (this->getChunkSize() && !this->getDistScheduleStatic())
return emitOpError() << "chunk size set without "
"dist_schedule_static being present";
if (getAllocateVars().size() != getAllocatorsVars().size())
return emitError(
"expected equal sizes for allocate and allocator variables");
return success();
}
//===----------------------------------------------------------------------===//
// ReductionOp
//===----------------------------------------------------------------------===//
static ParseResult parseAtomicReductionRegion(OpAsmParser &parser,
Region &region) {
if (parser.parseOptionalKeyword("atomic"))
return success();
return parser.parseRegion(region);
}
static void printAtomicReductionRegion(OpAsmPrinter &printer,
ReductionDeclareOp op, Region &region) {
if (region.empty())
return;
printer << "atomic ";
printer.printRegion(region);
}
LogicalResult ReductionDeclareOp::verifyRegions() {
if (getInitializerRegion().empty())
return emitOpError() << "expects non-empty initializer region";
Block &initializerEntryBlock = getInitializerRegion().front();
if (initializerEntryBlock.getNumArguments() != 1 ||
initializerEntryBlock.getArgument(0).getType() != getType()) {
return emitOpError() << "expects initializer region with one argument "
"of the reduction type";
}
for (YieldOp yieldOp : getInitializerRegion().getOps<YieldOp>()) {
if (yieldOp.getResults().size() != 1 ||
yieldOp.getResults().getTypes()[0] != getType())
return emitOpError() << "expects initializer region to yield a value "
"of the reduction type";
}
if (getReductionRegion().empty())
return emitOpError() << "expects non-empty reduction region";
Block &reductionEntryBlock = getReductionRegion().front();
if (reductionEntryBlock.getNumArguments() != 2 ||
reductionEntryBlock.getArgumentTypes()[0] !=
reductionEntryBlock.getArgumentTypes()[1] ||
reductionEntryBlock.getArgumentTypes()[0] != getType())
return emitOpError() << "expects reduction region with two arguments of "
"the reduction type";
for (YieldOp yieldOp : getReductionRegion().getOps<YieldOp>()) {
if (yieldOp.getResults().size() != 1 ||
yieldOp.getResults().getTypes()[0] != getType())
return emitOpError() << "expects reduction region to yield a value "
"of the reduction type";
}
if (getAtomicReductionRegion().empty())
return success();
Block &atomicReductionEntryBlock = getAtomicReductionRegion().front();
if (atomicReductionEntryBlock.getNumArguments() != 2 ||
atomicReductionEntryBlock.getArgumentTypes()[0] !=
atomicReductionEntryBlock.getArgumentTypes()[1])
return emitOpError() << "expects atomic reduction region with two "
"arguments of the same type";
auto ptrType = llvm::dyn_cast<PointerLikeType>(
atomicReductionEntryBlock.getArgumentTypes()[0]);
if (!ptrType ||
(ptrType.getElementType() && ptrType.getElementType() != getType()))
return emitOpError() << "expects atomic reduction region arguments to "
"be accumulators containing the reduction type";
return success();
}
LogicalResult ReductionOp::verify() {
auto *op = (*this)->getParentWithTrait<ReductionClauseInterface::Trait>();
if (!op)
return emitOpError() << "must be used within an operation supporting "
"reduction clause interface";
while (op) {
for (const auto &var :
cast<ReductionClauseInterface>(op).getAllReductionVars())
if (var == getAccumulator())
return success();
op = op->getParentWithTrait<ReductionClauseInterface::Trait>();
}
return emitOpError() << "the accumulator is not used by the parent";
}
//===----------------------------------------------------------------------===//
// TaskOp
//===----------------------------------------------------------------------===//
LogicalResult TaskOp::verify() {
LogicalResult verifyDependVars =
verifyDependVarList(*this, getDepends(), getDependVars());
return failed(verifyDependVars)
? verifyDependVars
: verifyReductionVarList(*this, getInReductions(),
getInReductionVars());
}
//===----------------------------------------------------------------------===//
// TaskGroupOp
//===----------------------------------------------------------------------===//
LogicalResult TaskGroupOp::verify() {
return verifyReductionVarList(*this, getTaskReductions(),
getTaskReductionVars());
}
//===----------------------------------------------------------------------===//
// TaskLoopOp
//===----------------------------------------------------------------------===//
SmallVector<Value> TaskLoopOp::getAllReductionVars() {
SmallVector<Value> allReductionNvars(getInReductionVars().begin(),
getInReductionVars().end());
allReductionNvars.insert(allReductionNvars.end(), getReductionVars().begin(),
getReductionVars().end());
return allReductionNvars;
}
LogicalResult TaskLoopOp::verify() {
if (getAllocateVars().size() != getAllocatorsVars().size())
return emitError(
"expected equal sizes for allocate and allocator variables");
if (failed(
verifyReductionVarList(*this, getReductions(), getReductionVars())) ||
failed(verifyReductionVarList(*this, getInReductions(),
getInReductionVars())))
return failure();
if (!getReductionVars().empty() && getNogroup())
return emitError("if a reduction clause is present on the taskloop "
"directive, the nogroup clause must not be specified");
for (auto var : getReductionVars()) {
if (llvm::is_contained(getInReductionVars(), var))
return emitError("the same list item cannot appear in both a reduction "
"and an in_reduction clause");
}
if (getGrainSize() && getNumTasks()) {
return emitError(
"the grainsize clause and num_tasks clause are mutually exclusive and "
"may not appear on the same taskloop directive");
}
return success();
}
//===----------------------------------------------------------------------===//
// WsLoopOp
//===----------------------------------------------------------------------===//
void WsLoopOp::build(OpBuilder &builder, OperationState &state,
ValueRange lowerBound, ValueRange upperBound,
ValueRange step, ArrayRef<NamedAttribute> attributes) {
build(builder, state, lowerBound, upperBound, step,
/*linear_vars=*/ValueRange(),
/*linear_step_vars=*/ValueRange(), /*reduction_vars=*/ValueRange(),
/*reductions=*/nullptr, /*schedule_val=*/nullptr,
/*schedule_chunk_var=*/nullptr, /*schedule_modifier=*/nullptr,
/*simd_modifier=*/false, /*nowait=*/false, /*ordered_val=*/nullptr,
/*order_val=*/nullptr, /*inclusive=*/false);
state.addAttributes(attributes);
}
SimdOp WsLoopOp::getNestedSimd() {
auto ops = this->getOps<SimdOp>();
assert(std::distance(ops.begin(), ops.end()) <= 1 &&
"There can only be a single omp.simd child at most");
return ops.empty() ? SimdOp() : *ops.begin();
}
LogicalResult WsLoopOp::verify() {
// Check that, if it has an omp.simd child, it must be the only one.
bool hasSimd = false, hasOther = false;
for (auto &op : this->getOps()) {
if (isa<SimdOp>(op)) {
if (hasSimd)
return emitOpError() << "cannot have multiple 'omp.simd' child ops";
hasSimd = true;
if (hasOther)
break;
} else if (!op.hasTrait<OpTrait::IsTerminator>()) {
hasOther = true;
if (hasSimd)
break;
}
}
if (hasSimd && hasOther)
return emitOpError() << "if 'omp.simd' is a child, it must be the only "
"non-terminator child op";
return verifyReductionVarList(*this, getReductions(), getReductionVars());
}
//===----------------------------------------------------------------------===//
// Verifier for critical construct (2.17.1)
//===----------------------------------------------------------------------===//
LogicalResult CriticalDeclareOp::verify() {
return verifySynchronizationHint(*this, getHintVal());
}
LogicalResult CriticalOp::verifySymbolUses(SymbolTableCollection &symbolTable) {
if (getNameAttr()) {
SymbolRefAttr symbolRef = getNameAttr();
auto decl = symbolTable.lookupNearestSymbolFrom<CriticalDeclareOp>(
*this, symbolRef);
if (!decl) {
return emitOpError() << "expected symbol reference " << symbolRef
<< " to point to a critical declaration";
}
}
return success();
}
//===----------------------------------------------------------------------===//
// Verifier for ordered construct
//===----------------------------------------------------------------------===//
LogicalResult OrderedOp::verify() {
auto container = (*this)->getParentOfType<WsLoopOp>();
if (!container || !container.getOrderedValAttr() ||
container.getOrderedValAttr().getInt() == 0)
return emitOpError() << "ordered depend directive must be closely "
<< "nested inside a worksharing-loop with ordered "
<< "clause with parameter present";
if (container.getOrderedValAttr().getInt() != (int64_t)*getNumLoopsVal())
return emitOpError() << "number of variables in depend clause does not "
<< "match number of iteration variables in the "
<< "doacross loop";
return success();
}
LogicalResult OrderedRegionOp::verify() {
// TODO: The code generation for ordered simd directive is not supported yet.
if (getSimd())
return failure();
if (auto container = (*this)->getParentOfType<WsLoopOp>()) {
if (!container.getOrderedValAttr() ||
container.getOrderedValAttr().getInt() != 0)
return emitOpError() << "ordered region must be closely nested inside "
<< "a worksharing-loop region with an ordered "
<< "clause without parameter present";
}
return success();
}
//===----------------------------------------------------------------------===//
// Verifier for AtomicReadOp
//===----------------------------------------------------------------------===//
LogicalResult AtomicReadOp::verify() {
if (verifyCommon().failed())
return mlir::failure();
if (auto mo = getMemoryOrderVal()) {
if (*mo == ClauseMemoryOrderKind::Acq_rel ||
*mo == ClauseMemoryOrderKind::Release) {
return emitError(
"memory-order must not be acq_rel or release for atomic reads");
}
}
return verifySynchronizationHint(*this, getHintVal());
}
//===----------------------------------------------------------------------===//
// Verifier for AtomicWriteOp
//===----------------------------------------------------------------------===//
LogicalResult AtomicWriteOp::verify() {
if (verifyCommon().failed())
return mlir::failure();
if (auto mo = getMemoryOrderVal()) {
if (*mo == ClauseMemoryOrderKind::Acq_rel ||
*mo == ClauseMemoryOrderKind::Acquire) {
return emitError(
"memory-order must not be acq_rel or acquire for atomic writes");
}
}
return verifySynchronizationHint(*this, getHintVal());
}
//===----------------------------------------------------------------------===//
// Verifier for AtomicUpdateOp
//===----------------------------------------------------------------------===//
LogicalResult AtomicUpdateOp::canonicalize(AtomicUpdateOp op,
PatternRewriter &rewriter) {
if (op.isNoOp()) {
rewriter.eraseOp(op);
return success();
}
if (Value writeVal = op.getWriteOpVal()) {
rewriter.replaceOpWithNewOp<AtomicWriteOp>(op, op.getX(), writeVal,
op.getHintValAttr(),
op.getMemoryOrderValAttr());
return success();
}
return failure();
}
LogicalResult AtomicUpdateOp::verify() {
if (verifyCommon().failed())
return mlir::failure();
if (auto mo = getMemoryOrderVal()) {
if (*mo == ClauseMemoryOrderKind::Acq_rel ||
*mo == ClauseMemoryOrderKind::Acquire) {
return emitError(
"memory-order must not be acq_rel or acquire for atomic updates");
}
}
return verifySynchronizationHint(*this, getHintVal());
}
LogicalResult AtomicUpdateOp::verifyRegions() { return verifyRegionsCommon(); }
//===----------------------------------------------------------------------===//
// Verifier for AtomicCaptureOp
//===----------------------------------------------------------------------===//
AtomicReadOp AtomicCaptureOp::getAtomicReadOp() {
if (auto op = dyn_cast<AtomicReadOp>(getFirstOp()))
return op;
return dyn_cast<AtomicReadOp>(getSecondOp());
}
AtomicWriteOp AtomicCaptureOp::getAtomicWriteOp() {
if (auto op = dyn_cast<AtomicWriteOp>(getFirstOp()))
return op;
return dyn_cast<AtomicWriteOp>(getSecondOp());
}
AtomicUpdateOp AtomicCaptureOp::getAtomicUpdateOp() {
if (auto op = dyn_cast<AtomicUpdateOp>(getFirstOp()))
return op;
return dyn_cast<AtomicUpdateOp>(getSecondOp());
}
LogicalResult AtomicCaptureOp::verify() {
return verifySynchronizationHint(*this, getHintVal());
}
LogicalResult AtomicCaptureOp::verifyRegions() {
if (verifyRegionsCommon().failed())
return mlir::failure();
if (getFirstOp()->getAttr("hint_val") || getSecondOp()->getAttr("hint_val"))
return emitOpError(
"operations inside capture region must not have hint clause");
if (getFirstOp()->getAttr("memory_order_val") ||
getSecondOp()->getAttr("memory_order_val"))
return emitOpError(
"operations inside capture region must not have memory_order clause");
return success();
}
//===----------------------------------------------------------------------===//
// Verifier for CancelOp
//===----------------------------------------------------------------------===//
LogicalResult CancelOp::verify() {
ClauseCancellationConstructType cct = getCancellationConstructTypeVal();
Operation *parentOp = (*this)->getParentOp();
if (!parentOp) {
return emitOpError() << "must be used within a region supporting "
"cancel directive";
}
if ((cct == ClauseCancellationConstructType::Parallel) &&
!isa<ParallelOp>(parentOp)) {
return emitOpError() << "cancel parallel must appear "
<< "inside a parallel region";
}
if (cct == ClauseCancellationConstructType::Loop) {
if (!isa<WsLoopOp>(parentOp)) {
return emitOpError() << "cancel loop must appear "
<< "inside a worksharing-loop region";
}
if (cast<WsLoopOp>(parentOp).getNowaitAttr()) {
return emitError() << "A worksharing construct that is canceled "
<< "must not have a nowait clause";
}
if (cast<WsLoopOp>(parentOp).getOrderedValAttr()) {
return emitError() << "A worksharing construct that is canceled "
<< "must not have an ordered clause";
}
} else if (cct == ClauseCancellationConstructType::Sections) {
if (!(isa<SectionsOp>(parentOp) || isa<SectionOp>(parentOp))) {
return emitOpError() << "cancel sections must appear "
<< "inside a sections region";
}
if (isa_and_nonnull<SectionsOp>(parentOp->getParentOp()) &&
cast<SectionsOp>(parentOp->getParentOp()).getNowaitAttr()) {
return emitError() << "A sections construct that is canceled "
<< "must not have a nowait clause";
}
}
// TODO : Add more when we support taskgroup.
return success();
}
//===----------------------------------------------------------------------===//
// Verifier for CancelOp
//===----------------------------------------------------------------------===//
LogicalResult CancellationPointOp::verify() {
ClauseCancellationConstructType cct = getCancellationConstructTypeVal();
Operation *parentOp = (*this)->getParentOp();
if (!parentOp) {
return emitOpError() << "must be used within a region supporting "
"cancellation point directive";
}
if ((cct == ClauseCancellationConstructType::Parallel) &&
!(isa<ParallelOp>(parentOp))) {
return emitOpError() << "cancellation point parallel must appear "
<< "inside a parallel region";
}
if ((cct == ClauseCancellationConstructType::Loop) &&
!isa<WsLoopOp>(parentOp)) {
return emitOpError() << "cancellation point loop must appear "
<< "inside a worksharing-loop region";
}
if ((cct == ClauseCancellationConstructType::Sections) &&
!(isa<SectionsOp>(parentOp) || isa<SectionOp>(parentOp))) {
return emitOpError() << "cancellation point sections must appear "
<< "inside a sections region";
}
// TODO : Add more when we support taskgroup.
return success();
}
//===----------------------------------------------------------------------===//
// DataBoundsOp
//===----------------------------------------------------------------------===//
LogicalResult DataBoundsOp::verify() {
auto extent = getExtent();
auto upperbound = getUpperBound();
if (!extent && !upperbound)
return emitError("expected extent or upperbound.");
return success();
}
#define GET_ATTRDEF_CLASSES
#include "mlir/Dialect/OpenMP/OpenMPOpsAttributes.cpp.inc"
#define GET_OP_CLASSES
#include "mlir/Dialect/OpenMP/OpenMPOps.cpp.inc"
#define GET_TYPEDEF_CLASSES
#include "mlir/Dialect/OpenMP/OpenMPOpsTypes.cpp.inc"