blob: 5934d85373b03d8b201a8156ea2443cc8d399adc [file] [log] [blame]
//===- ParallelLoopFusion.cpp - Code to perform loop fusion ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements loop fusion on parallel loops.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SCF/Transforms/Passes.h"
#include "mlir/Analysis/AliasAnalysis.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/IR/OperationSupport.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
namespace mlir {
#define GEN_PASS_DEF_SCFPARALLELLOOPFUSION
#include "mlir/Dialect/SCF/Transforms/Passes.h.inc"
} // namespace mlir
using namespace mlir;
using namespace mlir::scf;
/// Verify there are no nested ParallelOps.
static bool hasNestedParallelOp(ParallelOp ploop) {
auto walkResult =
ploop.getBody()->walk([](ParallelOp) { return WalkResult::interrupt(); });
return walkResult.wasInterrupted();
}
/// Verify equal iteration spaces.
static bool equalIterationSpaces(ParallelOp firstPloop,
ParallelOp secondPloop) {
if (firstPloop.getNumLoops() != secondPloop.getNumLoops())
return false;
auto matchOperands = [&](const OperandRange &lhs,
const OperandRange &rhs) -> bool {
// TODO: Extend this to support aliases and equal constants.
return std::equal(lhs.begin(), lhs.end(), rhs.begin());
};
return matchOperands(firstPloop.getLowerBound(),
secondPloop.getLowerBound()) &&
matchOperands(firstPloop.getUpperBound(),
secondPloop.getUpperBound()) &&
matchOperands(firstPloop.getStep(), secondPloop.getStep());
}
/// Checks if the parallel loops have mixed access to the same buffers. Returns
/// `true` if the first parallel loop writes to the same indices that the second
/// loop reads.
static bool haveNoReadsAfterWriteExceptSameIndex(
ParallelOp firstPloop, ParallelOp secondPloop,
const IRMapping &firstToSecondPloopIndices,
llvm::function_ref<bool(Value, Value)> mayAlias) {
DenseMap<Value, SmallVector<ValueRange, 1>> bufferStores;
SmallVector<Value> bufferStoresVec;
firstPloop.getBody()->walk([&](memref::StoreOp store) {
bufferStores[store.getMemRef()].push_back(store.getIndices());
bufferStoresVec.emplace_back(store.getMemRef());
});
auto walkResult = secondPloop.getBody()->walk([&](memref::LoadOp load) {
Value loadMem = load.getMemRef();
// Stop if the memref is defined in secondPloop body. Careful alias analysis
// is needed.
auto *memrefDef = loadMem.getDefiningOp();
if (memrefDef && memrefDef->getBlock() == load->getBlock())
return WalkResult::interrupt();
for (Value store : bufferStoresVec)
if (store != loadMem && mayAlias(store, loadMem))
return WalkResult::interrupt();
auto write = bufferStores.find(loadMem);
if (write == bufferStores.end())
return WalkResult::advance();
// Check that at last one store was retrieved
if (!write->second.size())
return WalkResult::interrupt();
auto storeIndices = write->second.front();
// Multiple writes to the same memref are allowed only on the same indices
for (const auto &othStoreIndices : write->second) {
if (othStoreIndices != storeIndices)
return WalkResult::interrupt();
}
// Check that the load indices of secondPloop coincide with store indices of
// firstPloop for the same memrefs.
auto loadIndices = load.getIndices();
if (storeIndices.size() != loadIndices.size())
return WalkResult::interrupt();
for (int i = 0, e = storeIndices.size(); i < e; ++i) {
if (firstToSecondPloopIndices.lookupOrDefault(storeIndices[i]) !=
loadIndices[i]) {
auto *storeIndexDefOp = storeIndices[i].getDefiningOp();
auto *loadIndexDefOp = loadIndices[i].getDefiningOp();
if (storeIndexDefOp && loadIndexDefOp) {
if (!isMemoryEffectFree(storeIndexDefOp))
return WalkResult::interrupt();
if (!isMemoryEffectFree(loadIndexDefOp))
return WalkResult::interrupt();
if (!OperationEquivalence::isEquivalentTo(
storeIndexDefOp, loadIndexDefOp,
[&](Value storeIndex, Value loadIndex) {
if (firstToSecondPloopIndices.lookupOrDefault(storeIndex) !=
firstToSecondPloopIndices.lookupOrDefault(loadIndex))
return failure();
else
return success();
},
/*markEquivalent=*/nullptr,
OperationEquivalence::Flags::IgnoreLocations)) {
return WalkResult::interrupt();
}
} else
return WalkResult::interrupt();
}
}
return WalkResult::advance();
});
return !walkResult.wasInterrupted();
}
/// Analyzes dependencies in the most primitive way by checking simple read and
/// write patterns.
static LogicalResult
verifyDependencies(ParallelOp firstPloop, ParallelOp secondPloop,
const IRMapping &firstToSecondPloopIndices,
llvm::function_ref<bool(Value, Value)> mayAlias) {
if (!haveNoReadsAfterWriteExceptSameIndex(
firstPloop, secondPloop, firstToSecondPloopIndices, mayAlias))
return failure();
IRMapping secondToFirstPloopIndices;
secondToFirstPloopIndices.map(secondPloop.getBody()->getArguments(),
firstPloop.getBody()->getArguments());
return success(haveNoReadsAfterWriteExceptSameIndex(
secondPloop, firstPloop, secondToFirstPloopIndices, mayAlias));
}
static bool isFusionLegal(ParallelOp firstPloop, ParallelOp secondPloop,
const IRMapping &firstToSecondPloopIndices,
llvm::function_ref<bool(Value, Value)> mayAlias) {
return !hasNestedParallelOp(firstPloop) &&
!hasNestedParallelOp(secondPloop) &&
equalIterationSpaces(firstPloop, secondPloop) &&
succeeded(verifyDependencies(firstPloop, secondPloop,
firstToSecondPloopIndices, mayAlias));
}
/// Prepends operations of firstPloop's body into secondPloop's body.
/// Updates secondPloop with new loop.
static void fuseIfLegal(ParallelOp firstPloop, ParallelOp &secondPloop,
OpBuilder builder,
llvm::function_ref<bool(Value, Value)> mayAlias) {
Block *block1 = firstPloop.getBody();
Block *block2 = secondPloop.getBody();
IRMapping firstToSecondPloopIndices;
firstToSecondPloopIndices.map(block1->getArguments(), block2->getArguments());
if (!isFusionLegal(firstPloop, secondPloop, firstToSecondPloopIndices,
mayAlias))
return;
DominanceInfo dom;
// We are fusing first loop into second, make sure there are no users of the
// first loop results between loops.
for (Operation *user : firstPloop->getUsers())
if (!dom.properlyDominates(secondPloop, user, /*enclosingOpOk*/ false))
return;
ValueRange inits1 = firstPloop.getInitVals();
ValueRange inits2 = secondPloop.getInitVals();
SmallVector<Value> newInitVars(inits1.begin(), inits1.end());
newInitVars.append(inits2.begin(), inits2.end());
IRRewriter b(builder);
b.setInsertionPoint(secondPloop);
auto newSecondPloop = b.create<ParallelOp>(
secondPloop.getLoc(), secondPloop.getLowerBound(),
secondPloop.getUpperBound(), secondPloop.getStep(), newInitVars);
Block *newBlock = newSecondPloop.getBody();
auto term1 = cast<ReduceOp>(block1->getTerminator());
auto term2 = cast<ReduceOp>(block2->getTerminator());
b.inlineBlockBefore(block2, newBlock, newBlock->begin(),
newBlock->getArguments());
b.inlineBlockBefore(block1, newBlock, newBlock->begin(),
newBlock->getArguments());
ValueRange results = newSecondPloop.getResults();
if (!results.empty()) {
b.setInsertionPointToEnd(newBlock);
ValueRange reduceArgs1 = term1.getOperands();
ValueRange reduceArgs2 = term2.getOperands();
SmallVector<Value> newReduceArgs(reduceArgs1.begin(), reduceArgs1.end());
newReduceArgs.append(reduceArgs2.begin(), reduceArgs2.end());
auto newReduceOp = b.create<scf::ReduceOp>(term2.getLoc(), newReduceArgs);
for (auto &&[i, reg] : llvm::enumerate(llvm::concat<Region>(
term1.getReductions(), term2.getReductions()))) {
Block &oldRedBlock = reg.front();
Block &newRedBlock = newReduceOp.getReductions()[i].front();
b.inlineBlockBefore(&oldRedBlock, &newRedBlock, newRedBlock.begin(),
newRedBlock.getArguments());
}
firstPloop.replaceAllUsesWith(results.take_front(inits1.size()));
secondPloop.replaceAllUsesWith(results.take_back(inits2.size()));
}
term1->erase();
term2->erase();
firstPloop.erase();
secondPloop.erase();
secondPloop = newSecondPloop;
}
void mlir::scf::naivelyFuseParallelOps(
Region &region, llvm::function_ref<bool(Value, Value)> mayAlias) {
OpBuilder b(region);
// Consider every single block and attempt to fuse adjacent loops.
SmallVector<SmallVector<ParallelOp>, 1> ploopChains;
for (auto &block : region) {
ploopChains.clear();
ploopChains.push_back({});
// Not using `walk()` to traverse only top-level parallel loops and also
// make sure that there are no side-effecting ops between the parallel
// loops.
bool noSideEffects = true;
for (auto &op : block) {
if (auto ploop = dyn_cast<ParallelOp>(op)) {
if (noSideEffects) {
ploopChains.back().push_back(ploop);
} else {
ploopChains.push_back({ploop});
noSideEffects = true;
}
continue;
}
// TODO: Handle region side effects properly.
noSideEffects &= isMemoryEffectFree(&op) && op.getNumRegions() == 0;
}
for (MutableArrayRef<ParallelOp> ploops : ploopChains) {
for (int i = 0, e = ploops.size(); i + 1 < e; ++i)
fuseIfLegal(ploops[i], ploops[i + 1], b, mayAlias);
}
}
}
namespace {
struct ParallelLoopFusion
: public impl::SCFParallelLoopFusionBase<ParallelLoopFusion> {
void runOnOperation() override {
auto &AA = getAnalysis<AliasAnalysis>();
auto mayAlias = [&](Value val1, Value val2) -> bool {
return !AA.alias(val1, val2).isNo();
};
getOperation()->walk([&](Operation *child) {
for (Region &region : child->getRegions())
naivelyFuseParallelOps(region, mayAlias);
});
}
};
} // namespace
std::unique_ptr<Pass> mlir::createParallelLoopFusionPass() {
return std::make_unique<ParallelLoopFusion>();
}