blob: d882f1184f45704c25c5b802a3433afa5f2ea6b5 [file] [log] [blame]
//===- ArithToLLVM.cpp - Arithmetic to LLVM dialect conversion -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/ArithToLLVM/ArithToLLVM.h"
#include "mlir/Conversion/ArithCommon/AttrToLLVMConverter.h"
#include "mlir/Conversion/ConvertToLLVM/ToLLVMInterface.h"
#include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
#include "mlir/Conversion/LLVMCommon/VectorPattern.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/LLVMIR/LLVMAttrs.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Pass/Pass.h"
#include <type_traits>
namespace mlir {
#define GEN_PASS_DEF_ARITHTOLLVMCONVERSIONPASS
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
namespace {
/// Operations whose conversion will depend on whether they are passed a
/// rounding mode attribute or not.
///
/// `SourceOp` is the source operation; `TargetOp`, the operation it will lower
/// to; `AttrConvert` is the attribute conversion to convert the rounding mode
/// attribute.
template <typename SourceOp, typename TargetOp, bool Constrained,
template <typename, typename> typename AttrConvert =
AttrConvertPassThrough>
struct ConstrainedVectorConvertToLLVMPattern
: public VectorConvertToLLVMPattern<SourceOp, TargetOp, AttrConvert> {
using VectorConvertToLLVMPattern<SourceOp, TargetOp,
AttrConvert>::VectorConvertToLLVMPattern;
LogicalResult
matchAndRewrite(SourceOp op, typename SourceOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (Constrained != static_cast<bool>(op.getRoundingModeAttr()))
return failure();
return VectorConvertToLLVMPattern<SourceOp, TargetOp,
AttrConvert>::matchAndRewrite(op, adaptor,
rewriter);
}
};
//===----------------------------------------------------------------------===//
// Straightforward Op Lowerings
//===----------------------------------------------------------------------===//
using AddFOpLowering =
VectorConvertToLLVMPattern<arith::AddFOp, LLVM::FAddOp,
arith::AttrConvertFastMathToLLVM>;
using AddIOpLowering =
VectorConvertToLLVMPattern<arith::AddIOp, LLVM::AddOp,
arith::AttrConvertOverflowToLLVM>;
using AndIOpLowering = VectorConvertToLLVMPattern<arith::AndIOp, LLVM::AndOp>;
using BitcastOpLowering =
VectorConvertToLLVMPattern<arith::BitcastOp, LLVM::BitcastOp>;
using DivFOpLowering =
VectorConvertToLLVMPattern<arith::DivFOp, LLVM::FDivOp,
arith::AttrConvertFastMathToLLVM>;
using DivSIOpLowering =
VectorConvertToLLVMPattern<arith::DivSIOp, LLVM::SDivOp>;
using DivUIOpLowering =
VectorConvertToLLVMPattern<arith::DivUIOp, LLVM::UDivOp>;
using ExtFOpLowering = VectorConvertToLLVMPattern<arith::ExtFOp, LLVM::FPExtOp>;
using ExtSIOpLowering =
VectorConvertToLLVMPattern<arith::ExtSIOp, LLVM::SExtOp>;
using ExtUIOpLowering =
VectorConvertToLLVMPattern<arith::ExtUIOp, LLVM::ZExtOp>;
using FPToSIOpLowering =
VectorConvertToLLVMPattern<arith::FPToSIOp, LLVM::FPToSIOp>;
using FPToUIOpLowering =
VectorConvertToLLVMPattern<arith::FPToUIOp, LLVM::FPToUIOp>;
using MaximumFOpLowering =
VectorConvertToLLVMPattern<arith::MaximumFOp, LLVM::MaximumOp,
arith::AttrConvertFastMathToLLVM>;
using MaxNumFOpLowering =
VectorConvertToLLVMPattern<arith::MaxNumFOp, LLVM::MaxNumOp,
arith::AttrConvertFastMathToLLVM>;
using MaxSIOpLowering =
VectorConvertToLLVMPattern<arith::MaxSIOp, LLVM::SMaxOp>;
using MaxUIOpLowering =
VectorConvertToLLVMPattern<arith::MaxUIOp, LLVM::UMaxOp>;
using MinimumFOpLowering =
VectorConvertToLLVMPattern<arith::MinimumFOp, LLVM::MinimumOp,
arith::AttrConvertFastMathToLLVM>;
using MinNumFOpLowering =
VectorConvertToLLVMPattern<arith::MinNumFOp, LLVM::MinNumOp,
arith::AttrConvertFastMathToLLVM>;
using MinSIOpLowering =
VectorConvertToLLVMPattern<arith::MinSIOp, LLVM::SMinOp>;
using MinUIOpLowering =
VectorConvertToLLVMPattern<arith::MinUIOp, LLVM::UMinOp>;
using MulFOpLowering =
VectorConvertToLLVMPattern<arith::MulFOp, LLVM::FMulOp,
arith::AttrConvertFastMathToLLVM>;
using MulIOpLowering =
VectorConvertToLLVMPattern<arith::MulIOp, LLVM::MulOp,
arith::AttrConvertOverflowToLLVM>;
using NegFOpLowering =
VectorConvertToLLVMPattern<arith::NegFOp, LLVM::FNegOp,
arith::AttrConvertFastMathToLLVM>;
using OrIOpLowering = VectorConvertToLLVMPattern<arith::OrIOp, LLVM::OrOp>;
using RemFOpLowering =
VectorConvertToLLVMPattern<arith::RemFOp, LLVM::FRemOp,
arith::AttrConvertFastMathToLLVM>;
using RemSIOpLowering =
VectorConvertToLLVMPattern<arith::RemSIOp, LLVM::SRemOp>;
using RemUIOpLowering =
VectorConvertToLLVMPattern<arith::RemUIOp, LLVM::URemOp>;
using SelectOpLowering =
VectorConvertToLLVMPattern<arith::SelectOp, LLVM::SelectOp>;
using ShLIOpLowering =
VectorConvertToLLVMPattern<arith::ShLIOp, LLVM::ShlOp,
arith::AttrConvertOverflowToLLVM>;
using ShRSIOpLowering =
VectorConvertToLLVMPattern<arith::ShRSIOp, LLVM::AShrOp>;
using ShRUIOpLowering =
VectorConvertToLLVMPattern<arith::ShRUIOp, LLVM::LShrOp>;
using SIToFPOpLowering =
VectorConvertToLLVMPattern<arith::SIToFPOp, LLVM::SIToFPOp>;
using SubFOpLowering =
VectorConvertToLLVMPattern<arith::SubFOp, LLVM::FSubOp,
arith::AttrConvertFastMathToLLVM>;
using SubIOpLowering =
VectorConvertToLLVMPattern<arith::SubIOp, LLVM::SubOp,
arith::AttrConvertOverflowToLLVM>;
using TruncFOpLowering =
ConstrainedVectorConvertToLLVMPattern<arith::TruncFOp, LLVM::FPTruncOp,
false>;
using ConstrainedTruncFOpLowering = ConstrainedVectorConvertToLLVMPattern<
arith::TruncFOp, LLVM::ConstrainedFPTruncIntr, true,
arith::AttrConverterConstrainedFPToLLVM>;
using TruncIOpLowering =
VectorConvertToLLVMPattern<arith::TruncIOp, LLVM::TruncOp>;
using UIToFPOpLowering =
VectorConvertToLLVMPattern<arith::UIToFPOp, LLVM::UIToFPOp>;
using XOrIOpLowering = VectorConvertToLLVMPattern<arith::XOrIOp, LLVM::XOrOp>;
//===----------------------------------------------------------------------===//
// Op Lowering Patterns
//===----------------------------------------------------------------------===//
/// Directly lower to LLVM op.
struct ConstantOpLowering : public ConvertOpToLLVMPattern<arith::ConstantOp> {
using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(arith::ConstantOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
/// The lowering of index_cast becomes an integer conversion since index
/// becomes an integer. If the bit width of the source and target integer
/// types is the same, just erase the cast. If the target type is wider,
/// sign-extend the value, otherwise truncate it.
template <typename OpTy, typename ExtCastTy>
struct IndexCastOpLowering : public ConvertOpToLLVMPattern<OpTy> {
using ConvertOpToLLVMPattern<OpTy>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(OpTy op, typename OpTy::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
using IndexCastOpSILowering =
IndexCastOpLowering<arith::IndexCastOp, LLVM::SExtOp>;
using IndexCastOpUILowering =
IndexCastOpLowering<arith::IndexCastUIOp, LLVM::ZExtOp>;
struct AddUIExtendedOpLowering
: public ConvertOpToLLVMPattern<arith::AddUIExtendedOp> {
using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(arith::AddUIExtendedOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
template <typename ArithMulOp, bool IsSigned>
struct MulIExtendedOpLowering : public ConvertOpToLLVMPattern<ArithMulOp> {
using ConvertOpToLLVMPattern<ArithMulOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(ArithMulOp op, typename ArithMulOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
using MulSIExtendedOpLowering =
MulIExtendedOpLowering<arith::MulSIExtendedOp, true>;
using MulUIExtendedOpLowering =
MulIExtendedOpLowering<arith::MulUIExtendedOp, false>;
struct CmpIOpLowering : public ConvertOpToLLVMPattern<arith::CmpIOp> {
using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(arith::CmpIOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
struct CmpFOpLowering : public ConvertOpToLLVMPattern<arith::CmpFOp> {
using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(arith::CmpFOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
//===----------------------------------------------------------------------===//
// ConstantOpLowering
//===----------------------------------------------------------------------===//
LogicalResult
ConstantOpLowering::matchAndRewrite(arith::ConstantOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
return LLVM::detail::oneToOneRewrite(op, LLVM::ConstantOp::getOperationName(),
adaptor.getOperands(), op->getAttrs(),
*getTypeConverter(), rewriter);
}
//===----------------------------------------------------------------------===//
// IndexCastOpLowering
//===----------------------------------------------------------------------===//
template <typename OpTy, typename ExtCastTy>
LogicalResult IndexCastOpLowering<OpTy, ExtCastTy>::matchAndRewrite(
OpTy op, typename OpTy::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Type resultType = op.getResult().getType();
Type targetElementType =
this->typeConverter->convertType(getElementTypeOrSelf(resultType));
Type sourceElementType =
this->typeConverter->convertType(getElementTypeOrSelf(op.getIn()));
unsigned targetBits = targetElementType.getIntOrFloatBitWidth();
unsigned sourceBits = sourceElementType.getIntOrFloatBitWidth();
if (targetBits == sourceBits) {
rewriter.replaceOp(op, adaptor.getIn());
return success();
}
// Handle the scalar and 1D vector cases.
Type operandType = adaptor.getIn().getType();
if (!isa<LLVM::LLVMArrayType>(operandType)) {
Type targetType = this->typeConverter->convertType(resultType);
if (targetBits < sourceBits)
rewriter.replaceOpWithNewOp<LLVM::TruncOp>(op, targetType,
adaptor.getIn());
else
rewriter.replaceOpWithNewOp<ExtCastTy>(op, targetType, adaptor.getIn());
return success();
}
if (!isa<VectorType>(resultType))
return rewriter.notifyMatchFailure(op, "expected vector result type");
return LLVM::detail::handleMultidimensionalVectors(
op.getOperation(), adaptor.getOperands(), *(this->getTypeConverter()),
[&](Type llvm1DVectorTy, ValueRange operands) -> Value {
typename OpTy::Adaptor adaptor(operands);
if (targetBits < sourceBits) {
return rewriter.create<LLVM::TruncOp>(op.getLoc(), llvm1DVectorTy,
adaptor.getIn());
}
return rewriter.create<ExtCastTy>(op.getLoc(), llvm1DVectorTy,
adaptor.getIn());
},
rewriter);
}
//===----------------------------------------------------------------------===//
// AddUIExtendedOpLowering
//===----------------------------------------------------------------------===//
LogicalResult AddUIExtendedOpLowering::matchAndRewrite(
arith::AddUIExtendedOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Type operandType = adaptor.getLhs().getType();
Type sumResultType = op.getSum().getType();
Type overflowResultType = op.getOverflow().getType();
if (!LLVM::isCompatibleType(operandType))
return failure();
MLIRContext *ctx = rewriter.getContext();
Location loc = op.getLoc();
// Handle the scalar and 1D vector cases.
if (!isa<LLVM::LLVMArrayType>(operandType)) {
Type newOverflowType = typeConverter->convertType(overflowResultType);
Type structType =
LLVM::LLVMStructType::getLiteral(ctx, {sumResultType, newOverflowType});
Value addOverflow = rewriter.create<LLVM::UAddWithOverflowOp>(
loc, structType, adaptor.getLhs(), adaptor.getRhs());
Value sumExtracted =
rewriter.create<LLVM::ExtractValueOp>(loc, addOverflow, 0);
Value overflowExtracted =
rewriter.create<LLVM::ExtractValueOp>(loc, addOverflow, 1);
rewriter.replaceOp(op, {sumExtracted, overflowExtracted});
return success();
}
if (!isa<VectorType>(sumResultType))
return rewriter.notifyMatchFailure(loc, "expected vector result types");
return rewriter.notifyMatchFailure(loc,
"ND vector types are not supported yet");
}
//===----------------------------------------------------------------------===//
// MulIExtendedOpLowering
//===----------------------------------------------------------------------===//
template <typename ArithMulOp, bool IsSigned>
LogicalResult MulIExtendedOpLowering<ArithMulOp, IsSigned>::matchAndRewrite(
ArithMulOp op, typename ArithMulOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Type resultType = adaptor.getLhs().getType();
if (!LLVM::isCompatibleType(resultType))
return failure();
Location loc = op.getLoc();
// Handle the scalar and 1D vector cases. Because LLVM does not have a
// matching extended multiplication intrinsic, perform regular multiplication
// on operands zero-extended to i(2*N) bits, and truncate the results back to
// iN types.
if (!isa<LLVM::LLVMArrayType>(resultType)) {
// Shift amount necessary to extract the high bits from widened result.
TypedAttr shiftValAttr;
if (auto intTy = dyn_cast<IntegerType>(resultType)) {
unsigned resultBitwidth = intTy.getWidth();
auto attrTy = rewriter.getIntegerType(resultBitwidth * 2);
shiftValAttr = rewriter.getIntegerAttr(attrTy, resultBitwidth);
} else {
auto vecTy = cast<VectorType>(resultType);
unsigned resultBitwidth = vecTy.getElementTypeBitWidth();
auto attrTy = VectorType::get(
vecTy.getShape(), rewriter.getIntegerType(resultBitwidth * 2));
shiftValAttr = SplatElementsAttr::get(
attrTy, APInt(resultBitwidth * 2, resultBitwidth));
}
Type wideType = shiftValAttr.getType();
assert(LLVM::isCompatibleType(wideType) &&
"LLVM dialect should support all signless integer types");
using LLVMExtOp = std::conditional_t<IsSigned, LLVM::SExtOp, LLVM::ZExtOp>;
Value lhsExt = rewriter.create<LLVMExtOp>(loc, wideType, adaptor.getLhs());
Value rhsExt = rewriter.create<LLVMExtOp>(loc, wideType, adaptor.getRhs());
Value mulExt = rewriter.create<LLVM::MulOp>(loc, wideType, lhsExt, rhsExt);
// Split the 2*N-bit wide result into two N-bit values.
Value low = rewriter.create<LLVM::TruncOp>(loc, resultType, mulExt);
Value shiftVal = rewriter.create<LLVM::ConstantOp>(loc, shiftValAttr);
Value highExt = rewriter.create<LLVM::LShrOp>(loc, mulExt, shiftVal);
Value high = rewriter.create<LLVM::TruncOp>(loc, resultType, highExt);
rewriter.replaceOp(op, {low, high});
return success();
}
if (!isa<VectorType>(resultType))
return rewriter.notifyMatchFailure(op, "expected vector result type");
return rewriter.notifyMatchFailure(op,
"ND vector types are not supported yet");
}
//===----------------------------------------------------------------------===//
// CmpIOpLowering
//===----------------------------------------------------------------------===//
// Convert arith.cmp predicate into the LLVM dialect CmpPredicate. The two enums
// share numerical values so just cast.
template <typename LLVMPredType, typename PredType>
static LLVMPredType convertCmpPredicate(PredType pred) {
return static_cast<LLVMPredType>(pred);
}
LogicalResult
CmpIOpLowering::matchAndRewrite(arith::CmpIOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Type operandType = adaptor.getLhs().getType();
Type resultType = op.getResult().getType();
// Handle the scalar and 1D vector cases.
if (!isa<LLVM::LLVMArrayType>(operandType)) {
rewriter.replaceOpWithNewOp<LLVM::ICmpOp>(
op, typeConverter->convertType(resultType),
convertCmpPredicate<LLVM::ICmpPredicate>(op.getPredicate()),
adaptor.getLhs(), adaptor.getRhs());
return success();
}
if (!isa<VectorType>(resultType))
return rewriter.notifyMatchFailure(op, "expected vector result type");
return LLVM::detail::handleMultidimensionalVectors(
op.getOperation(), adaptor.getOperands(), *getTypeConverter(),
[&](Type llvm1DVectorTy, ValueRange operands) {
OpAdaptor adaptor(operands);
return rewriter.create<LLVM::ICmpOp>(
op.getLoc(), llvm1DVectorTy,
convertCmpPredicate<LLVM::ICmpPredicate>(op.getPredicate()),
adaptor.getLhs(), adaptor.getRhs());
},
rewriter);
}
//===----------------------------------------------------------------------===//
// CmpFOpLowering
//===----------------------------------------------------------------------===//
LogicalResult
CmpFOpLowering::matchAndRewrite(arith::CmpFOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Type operandType = adaptor.getLhs().getType();
Type resultType = op.getResult().getType();
LLVM::FastmathFlags fmf =
arith::convertArithFastMathFlagsToLLVM(op.getFastmath());
// Handle the scalar and 1D vector cases.
if (!isa<LLVM::LLVMArrayType>(operandType)) {
rewriter.replaceOpWithNewOp<LLVM::FCmpOp>(
op, typeConverter->convertType(resultType),
convertCmpPredicate<LLVM::FCmpPredicate>(op.getPredicate()),
adaptor.getLhs(), adaptor.getRhs(), fmf);
return success();
}
if (!isa<VectorType>(resultType))
return rewriter.notifyMatchFailure(op, "expected vector result type");
return LLVM::detail::handleMultidimensionalVectors(
op.getOperation(), adaptor.getOperands(), *getTypeConverter(),
[&](Type llvm1DVectorTy, ValueRange operands) {
OpAdaptor adaptor(operands);
return rewriter.create<LLVM::FCmpOp>(
op.getLoc(), llvm1DVectorTy,
convertCmpPredicate<LLVM::FCmpPredicate>(op.getPredicate()),
adaptor.getLhs(), adaptor.getRhs(), fmf);
},
rewriter);
}
//===----------------------------------------------------------------------===//
// Pass Definition
//===----------------------------------------------------------------------===//
namespace {
struct ArithToLLVMConversionPass
: public impl::ArithToLLVMConversionPassBase<ArithToLLVMConversionPass> {
using Base::Base;
void runOnOperation() override {
LLVMConversionTarget target(getContext());
RewritePatternSet patterns(&getContext());
LowerToLLVMOptions options(&getContext());
if (indexBitwidth != kDeriveIndexBitwidthFromDataLayout)
options.overrideIndexBitwidth(indexBitwidth);
LLVMTypeConverter converter(&getContext(), options);
mlir::arith::populateArithToLLVMConversionPatterns(converter, patterns);
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// ConvertToLLVMPatternInterface implementation
//===----------------------------------------------------------------------===//
namespace {
/// Implement the interface to convert MemRef to LLVM.
struct ArithToLLVMDialectInterface : public ConvertToLLVMPatternInterface {
using ConvertToLLVMPatternInterface::ConvertToLLVMPatternInterface;
void loadDependentDialects(MLIRContext *context) const final {
context->loadDialect<LLVM::LLVMDialect>();
}
/// Hook for derived dialect interface to provide conversion patterns
/// and mark dialect legal for the conversion target.
void populateConvertToLLVMConversionPatterns(
ConversionTarget &target, LLVMTypeConverter &typeConverter,
RewritePatternSet &patterns) const final {
arith::populateArithToLLVMConversionPatterns(typeConverter, patterns);
}
};
} // namespace
void mlir::arith::registerConvertArithToLLVMInterface(
DialectRegistry &registry) {
registry.addExtension(+[](MLIRContext *ctx, arith::ArithDialect *dialect) {
dialect->addInterfaces<ArithToLLVMDialectInterface>();
});
}
//===----------------------------------------------------------------------===//
// Pattern Population
//===----------------------------------------------------------------------===//
void mlir::arith::populateArithToLLVMConversionPatterns(
LLVMTypeConverter &converter, RewritePatternSet &patterns) {
// clang-format off
patterns.add<
AddFOpLowering,
AddIOpLowering,
AndIOpLowering,
AddUIExtendedOpLowering,
BitcastOpLowering,
ConstantOpLowering,
CmpFOpLowering,
CmpIOpLowering,
DivFOpLowering,
DivSIOpLowering,
DivUIOpLowering,
ExtFOpLowering,
ExtSIOpLowering,
ExtUIOpLowering,
FPToSIOpLowering,
FPToUIOpLowering,
IndexCastOpSILowering,
IndexCastOpUILowering,
MaximumFOpLowering,
MaxNumFOpLowering,
MaxSIOpLowering,
MaxUIOpLowering,
MinimumFOpLowering,
MinNumFOpLowering,
MinSIOpLowering,
MinUIOpLowering,
MulFOpLowering,
MulIOpLowering,
MulSIExtendedOpLowering,
MulUIExtendedOpLowering,
NegFOpLowering,
OrIOpLowering,
RemFOpLowering,
RemSIOpLowering,
RemUIOpLowering,
SelectOpLowering,
ShLIOpLowering,
ShRSIOpLowering,
ShRUIOpLowering,
SIToFPOpLowering,
SubFOpLowering,
SubIOpLowering,
TruncFOpLowering,
ConstrainedTruncFOpLowering,
TruncIOpLowering,
UIToFPOpLowering,
XOrIOpLowering
>(converter);
// clang-format on
}