blob: 402de64fe99bb422dfd3ac55e1683a4c8126cae0 [file] [log] [blame]
//===- unittest/ProfileData/InstrProfTest.cpp -------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/ProfileData/InstrProfWriter.h"
#include "llvm/ProfileData/MemProf.h"
#include "llvm/ProfileData/MemProfData.inc"
#include "llvm/Support/Compression.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Testing/Support/Error.h"
#include "gtest/gtest.h"
#include <cstdarg>
#include <optional>
using namespace llvm;
using ::testing::EndsWith;
using ::testing::IsSubsetOf;
using ::testing::SizeIs;
using ::testing::UnorderedElementsAre;
[[nodiscard]] static ::testing::AssertionResult
ErrorEquals(instrprof_error Expected, Error E) {
instrprof_error Found;
std::string FoundMsg;
handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
Found = IPE.get();
FoundMsg = IPE.message();
});
if (Expected == Found)
return ::testing::AssertionSuccess();
return ::testing::AssertionFailure() << "error: " << FoundMsg << "\n";
}
namespace llvm {
bool operator==(const TemporalProfTraceTy &lhs,
const TemporalProfTraceTy &rhs) {
return lhs.Weight == rhs.Weight &&
lhs.FunctionNameRefs == rhs.FunctionNameRefs;
}
} // end namespace llvm
namespace {
struct InstrProfTest : ::testing::Test {
InstrProfWriter Writer;
std::unique_ptr<IndexedInstrProfReader> Reader;
void SetUp() override { Writer.setOutputSparse(false); }
void readProfile(std::unique_ptr<MemoryBuffer> Profile,
std::unique_ptr<MemoryBuffer> Remapping = nullptr) {
auto ReaderOrErr = IndexedInstrProfReader::create(std::move(Profile),
std::move(Remapping));
EXPECT_THAT_ERROR(ReaderOrErr.takeError(), Succeeded());
Reader = std::move(ReaderOrErr.get());
}
};
struct SparseInstrProfTest : public InstrProfTest {
void SetUp() override { Writer.setOutputSparse(true); }
};
struct InstrProfReaderWriterTest
: public InstrProfTest,
public ::testing::WithParamInterface<
std::tuple<bool, uint64_t, llvm::endianness>> {
void SetUp() override { Writer.setOutputSparse(std::get<0>(GetParam())); }
void TearDown() override {
// Reset writer value profile data endianness after each test case. Note
// it's not necessary to reset reader value profile endianness for each test
// case. Each test case creates a new reader; at reader initialization time,
// it uses the endianness from hash table object (which is little by
// default).
Writer.setValueProfDataEndianness(llvm::endianness::little);
}
uint64_t getProfWeight() const { return std::get<1>(GetParam()); }
llvm::endianness getEndianness() const { return std::get<2>(GetParam()); }
};
struct MaybeSparseInstrProfTest : public InstrProfTest,
public ::testing::WithParamInterface<bool> {
void SetUp() override { Writer.setOutputSparse(GetParam()); }
};
TEST_P(MaybeSparseInstrProfTest, write_and_read_empty_profile) {
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile));
ASSERT_TRUE(Reader->begin() == Reader->end());
}
static const auto Err = [](Error E) {
consumeError(std::move(E));
FAIL();
};
TEST_P(MaybeSparseInstrProfTest, write_and_read_one_function) {
Writer.addRecord({"foo", 0x1234, {1, 2, 3, 4}}, Err);
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile));
auto I = Reader->begin(), E = Reader->end();
ASSERT_TRUE(I != E);
ASSERT_EQ(StringRef("foo"), I->Name);
ASSERT_EQ(0x1234U, I->Hash);
ASSERT_EQ(4U, I->Counts.size());
ASSERT_EQ(1U, I->Counts[0]);
ASSERT_EQ(2U, I->Counts[1]);
ASSERT_EQ(3U, I->Counts[2]);
ASSERT_EQ(4U, I->Counts[3]);
ASSERT_TRUE(++I == E);
}
TEST_P(MaybeSparseInstrProfTest, get_instr_prof_record) {
Writer.addRecord({"foo", 0x1234, {1, 2}}, Err);
Writer.addRecord({"foo", 0x1235, {3, 4}}, Err);
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile));
Expected<InstrProfRecord> R = Reader->getInstrProfRecord("foo", 0x1234);
EXPECT_THAT_ERROR(R.takeError(), Succeeded());
ASSERT_EQ(2U, R->Counts.size());
ASSERT_EQ(1U, R->Counts[0]);
ASSERT_EQ(2U, R->Counts[1]);
R = Reader->getInstrProfRecord("foo", 0x1235);
EXPECT_THAT_ERROR(R.takeError(), Succeeded());
ASSERT_EQ(2U, R->Counts.size());
ASSERT_EQ(3U, R->Counts[0]);
ASSERT_EQ(4U, R->Counts[1]);
R = Reader->getInstrProfRecord("foo", 0x5678);
ASSERT_TRUE(ErrorEquals(instrprof_error::hash_mismatch, R.takeError()));
R = Reader->getInstrProfRecord("bar", 0x1234);
ASSERT_TRUE(ErrorEquals(instrprof_error::unknown_function, R.takeError()));
}
TEST_P(MaybeSparseInstrProfTest, get_function_counts) {
Writer.addRecord({"foo", 0x1234, {1, 2}}, Err);
Writer.addRecord({"foo", 0x1235, {3, 4}}, Err);
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile));
std::vector<uint64_t> Counts;
EXPECT_THAT_ERROR(Reader->getFunctionCounts("foo", 0x1234, Counts),
Succeeded());
ASSERT_EQ(2U, Counts.size());
ASSERT_EQ(1U, Counts[0]);
ASSERT_EQ(2U, Counts[1]);
EXPECT_THAT_ERROR(Reader->getFunctionCounts("foo", 0x1235, Counts),
Succeeded());
ASSERT_EQ(2U, Counts.size());
ASSERT_EQ(3U, Counts[0]);
ASSERT_EQ(4U, Counts[1]);
Error E1 = Reader->getFunctionCounts("foo", 0x5678, Counts);
ASSERT_TRUE(ErrorEquals(instrprof_error::hash_mismatch, std::move(E1)));
Error E2 = Reader->getFunctionCounts("bar", 0x1234, Counts);
ASSERT_TRUE(ErrorEquals(instrprof_error::unknown_function, std::move(E2)));
}
// Profile data is copied from general.proftext
TEST_F(InstrProfTest, get_profile_summary) {
Writer.addRecord({"func1", 0x1234, {97531}}, Err);
Writer.addRecord({"func2", 0x1234, {0, 0}}, Err);
Writer.addRecord(
{"func3",
0x1234,
{2305843009213693952, 1152921504606846976, 576460752303423488,
288230376151711744, 144115188075855872, 72057594037927936}},
Err);
Writer.addRecord({"func4", 0x1234, {0}}, Err);
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile));
auto VerifySummary = [](ProfileSummary &IPS) mutable {
ASSERT_EQ(ProfileSummary::PSK_Instr, IPS.getKind());
ASSERT_EQ(2305843009213693952U, IPS.getMaxFunctionCount());
ASSERT_EQ(2305843009213693952U, IPS.getMaxCount());
ASSERT_EQ(10U, IPS.getNumCounts());
ASSERT_EQ(4539628424389557499U, IPS.getTotalCount());
const std::vector<ProfileSummaryEntry> &Details = IPS.getDetailedSummary();
uint32_t Cutoff = 800000;
auto Predicate = [&Cutoff](const ProfileSummaryEntry &PE) {
return PE.Cutoff == Cutoff;
};
auto EightyPerc = find_if(Details, Predicate);
Cutoff = 900000;
auto NinetyPerc = find_if(Details, Predicate);
Cutoff = 950000;
auto NinetyFivePerc = find_if(Details, Predicate);
Cutoff = 990000;
auto NinetyNinePerc = find_if(Details, Predicate);
ASSERT_EQ(576460752303423488U, EightyPerc->MinCount);
ASSERT_EQ(288230376151711744U, NinetyPerc->MinCount);
ASSERT_EQ(288230376151711744U, NinetyFivePerc->MinCount);
ASSERT_EQ(72057594037927936U, NinetyNinePerc->MinCount);
};
ProfileSummary &PS = Reader->getSummary(/* IsCS */ false);
VerifySummary(PS);
// Test that conversion of summary to and from Metadata works.
LLVMContext Context;
Metadata *MD = PS.getMD(Context);
ASSERT_TRUE(MD);
ProfileSummary *PSFromMD = ProfileSummary::getFromMD(MD);
ASSERT_TRUE(PSFromMD);
VerifySummary(*PSFromMD);
delete PSFromMD;
// Test that summary can be attached to and read back from module.
Module M("my_module", Context);
M.setProfileSummary(MD, ProfileSummary::PSK_Instr);
MD = M.getProfileSummary(/* IsCS */ false);
ASSERT_TRUE(MD);
PSFromMD = ProfileSummary::getFromMD(MD);
ASSERT_TRUE(PSFromMD);
VerifySummary(*PSFromMD);
delete PSFromMD;
}
TEST_F(InstrProfTest, test_writer_merge) {
Writer.addRecord({"func1", 0x1234, {42}}, Err);
InstrProfWriter Writer2;
Writer2.addRecord({"func2", 0x1234, {0, 0}}, Err);
Writer.mergeRecordsFromWriter(std::move(Writer2), Err);
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile));
Expected<InstrProfRecord> R = Reader->getInstrProfRecord("func1", 0x1234);
EXPECT_THAT_ERROR(R.takeError(), Succeeded());
ASSERT_EQ(1U, R->Counts.size());
ASSERT_EQ(42U, R->Counts[0]);
R = Reader->getInstrProfRecord("func2", 0x1234);
EXPECT_THAT_ERROR(R.takeError(), Succeeded());
ASSERT_EQ(2U, R->Counts.size());
ASSERT_EQ(0U, R->Counts[0]);
ASSERT_EQ(0U, R->Counts[1]);
}
TEST_F(InstrProfTest, test_merge_temporal_prof_traces_truncated) {
uint64_t ReservoirSize = 10;
uint64_t MaxTraceLength = 2;
InstrProfWriter Writer(/*Sparse=*/false, ReservoirSize, MaxTraceLength);
ASSERT_THAT_ERROR(Writer.mergeProfileKind(InstrProfKind::TemporalProfile),
Succeeded());
TemporalProfTraceTy LargeTrace, SmallTrace;
LargeTrace.FunctionNameRefs = {IndexedInstrProf::ComputeHash("foo"),
IndexedInstrProf::ComputeHash("bar"),
IndexedInstrProf::ComputeHash("goo")};
SmallTrace.FunctionNameRefs = {IndexedInstrProf::ComputeHash("foo"),
IndexedInstrProf::ComputeHash("bar")};
SmallVector<TemporalProfTraceTy, 4> Traces = {LargeTrace, SmallTrace};
Writer.addTemporalProfileTraces(Traces, 2);
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile));
ASSERT_TRUE(Reader->hasTemporalProfile());
EXPECT_EQ(Reader->getTemporalProfTraceStreamSize(), 2U);
EXPECT_THAT(Reader->getTemporalProfTraces(),
UnorderedElementsAre(SmallTrace, SmallTrace));
}
TEST_F(InstrProfTest, test_merge_traces_from_writer) {
uint64_t ReservoirSize = 10;
uint64_t MaxTraceLength = 10;
InstrProfWriter Writer(/*Sparse=*/false, ReservoirSize, MaxTraceLength);
InstrProfWriter Writer2(/*Sparse=*/false, ReservoirSize, MaxTraceLength);
ASSERT_THAT_ERROR(Writer.mergeProfileKind(InstrProfKind::TemporalProfile),
Succeeded());
ASSERT_THAT_ERROR(Writer2.mergeProfileKind(InstrProfKind::TemporalProfile),
Succeeded());
TemporalProfTraceTy FooTrace, BarTrace;
FooTrace.FunctionNameRefs = {IndexedInstrProf::ComputeHash("foo")};
BarTrace.FunctionNameRefs = {IndexedInstrProf::ComputeHash("bar")};
SmallVector<TemporalProfTraceTy, 4> Traces1({FooTrace}), Traces2({BarTrace});
Writer.addTemporalProfileTraces(Traces1, 1);
Writer2.addTemporalProfileTraces(Traces2, 1);
Writer.mergeRecordsFromWriter(std::move(Writer2), Err);
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile));
ASSERT_TRUE(Reader->hasTemporalProfile());
EXPECT_EQ(Reader->getTemporalProfTraceStreamSize(), 2U);
EXPECT_THAT(Reader->getTemporalProfTraces(),
UnorderedElementsAre(FooTrace, BarTrace));
}
TEST_F(InstrProfTest, test_merge_traces_sampled) {
uint64_t ReservoirSize = 3;
uint64_t MaxTraceLength = 10;
InstrProfWriter Writer(/*Sparse=*/false, ReservoirSize, MaxTraceLength);
ASSERT_THAT_ERROR(Writer.mergeProfileKind(InstrProfKind::TemporalProfile),
Succeeded());
TemporalProfTraceTy FooTrace, BarTrace, GooTrace;
FooTrace.FunctionNameRefs = {IndexedInstrProf::ComputeHash("foo")};
BarTrace.FunctionNameRefs = {IndexedInstrProf::ComputeHash("bar")};
GooTrace.FunctionNameRefs = {IndexedInstrProf::ComputeHash("Goo")};
// Add some sampled traces
SmallVector<TemporalProfTraceTy, 4> SampledTraces = {FooTrace, BarTrace,
GooTrace};
Writer.addTemporalProfileTraces(SampledTraces, 5);
// Add some unsampled traces
SmallVector<TemporalProfTraceTy, 4> UnsampledTraces = {BarTrace, GooTrace};
Writer.addTemporalProfileTraces(UnsampledTraces, 2);
UnsampledTraces = {FooTrace};
Writer.addTemporalProfileTraces(UnsampledTraces, 1);
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile));
ASSERT_TRUE(Reader->hasTemporalProfile());
EXPECT_EQ(Reader->getTemporalProfTraceStreamSize(), 8U);
// Check that we have a subset of all the traces we added
EXPECT_THAT(Reader->getTemporalProfTraces(), SizeIs(ReservoirSize));
EXPECT_THAT(
Reader->getTemporalProfTraces(),
IsSubsetOf({FooTrace, BarTrace, GooTrace, BarTrace, GooTrace, FooTrace}));
}
using ::llvm::memprof::IndexedMemProfRecord;
using ::llvm::memprof::MemInfoBlock;
using FrameIdMapTy =
llvm::DenseMap<::llvm::memprof::FrameId, ::llvm::memprof::Frame>;
using CallStackIdMapTy =
llvm::DenseMap<::llvm::memprof::CallStackId,
::llvm::SmallVector<::llvm::memprof::FrameId>>;
static FrameIdMapTy getFrameMapping() {
FrameIdMapTy Mapping;
Mapping.insert({0, {0x123, 1, 2, false}});
Mapping.insert({1, {0x345, 3, 4, true}});
Mapping.insert({2, {0x125, 5, 6, false}});
Mapping.insert({3, {0x567, 7, 8, true}});
Mapping.insert({4, {0x124, 5, 6, false}});
Mapping.insert({5, {0x789, 8, 9, true}});
return Mapping;
}
static CallStackIdMapTy getCallStackMapping() {
CallStackIdMapTy Mapping;
Mapping.insert({0x111, {0, 1}});
Mapping.insert({0x222, {2, 3}});
Mapping.insert({0x333, {4, 5}});
return Mapping;
}
// Populate all of the fields of MIB.
MemInfoBlock makeFullMIB() {
MemInfoBlock MIB;
#define MIBEntryDef(NameTag, Name, Type) MIB.NameTag;
#include "llvm/ProfileData/MIBEntryDef.inc"
#undef MIBEntryDef
return MIB;
}
// Populate those fields returned by getHotColdSchema.
MemInfoBlock makePartialMIB() {
MemInfoBlock MIB;
MIB.AllocCount = 1;
MIB.TotalSize = 5;
MIB.TotalLifetime = 10;
MIB.TotalLifetimeAccessDensity = 23;
return MIB;
}
IndexedMemProfRecord makeRecord(
std::initializer_list<std::initializer_list<::llvm::memprof::FrameId>>
AllocFrames,
std::initializer_list<std::initializer_list<::llvm::memprof::FrameId>>
CallSiteFrames,
const MemInfoBlock &Block = makeFullMIB()) {
llvm::memprof::IndexedMemProfRecord MR;
for (const auto &Frames : AllocFrames)
MR.AllocSites.emplace_back(Frames, llvm::memprof::hashCallStack(Frames),
Block);
for (const auto &Frames : CallSiteFrames)
MR.CallSites.push_back(Frames);
return MR;
}
IndexedMemProfRecord
makeRecordV2(std::initializer_list<::llvm::memprof::CallStackId> AllocFrames,
std::initializer_list<::llvm::memprof::CallStackId> CallSiteFrames,
const MemInfoBlock &Block, const memprof::MemProfSchema &Schema) {
llvm::memprof::IndexedMemProfRecord MR;
for (const auto &CSId : AllocFrames)
// We don't populate IndexedAllocationInfo::CallStack because we use it only
// in Version0 and Version1.
MR.AllocSites.emplace_back(::llvm::SmallVector<memprof::FrameId>(), CSId,
Block, Schema);
for (const auto &CSId : CallSiteFrames)
MR.CallSiteIds.push_back(CSId);
return MR;
}
MATCHER_P(EqualsRecord, Want, "") {
const memprof::MemProfRecord &Got = arg;
auto PrintAndFail = [&]() {
std::string Buffer;
llvm::raw_string_ostream OS(Buffer);
OS << "Want:\n";
Want.print(OS);
OS << "Got:\n";
Got.print(OS);
OS.flush();
*result_listener << "MemProf Record differs!\n" << Buffer;
return false;
};
if (Want.AllocSites.size() != Got.AllocSites.size())
return PrintAndFail();
if (Want.CallSites.size() != Got.CallSites.size())
return PrintAndFail();
for (size_t I = 0; I < Got.AllocSites.size(); I++) {
if (Want.AllocSites[I].Info != Got.AllocSites[I].Info)
return PrintAndFail();
if (Want.AllocSites[I].CallStack != Got.AllocSites[I].CallStack)
return PrintAndFail();
}
for (size_t I = 0; I < Got.CallSites.size(); I++) {
if (Want.CallSites[I] != Got.CallSites[I])
return PrintAndFail();
}
return true;
}
TEST_F(InstrProfTest, test_memprof_v0) {
ASSERT_THAT_ERROR(Writer.mergeProfileKind(InstrProfKind::MemProf),
Succeeded());
const IndexedMemProfRecord IndexedMR = makeRecord(
/*AllocFrames=*/
{
{0, 1},
{2, 3},
},
/*CallSiteFrames=*/{
{4, 5},
});
const FrameIdMapTy IdToFrameMap = getFrameMapping();
for (const auto &I : IdToFrameMap) {
Writer.addMemProfFrame(I.first, I.getSecond(), Err);
}
Writer.addMemProfRecord(/*Id=*/0x9999, IndexedMR);
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile));
auto RecordOr = Reader->getMemProfRecord(0x9999);
ASSERT_THAT_ERROR(RecordOr.takeError(), Succeeded());
const memprof::MemProfRecord &Record = RecordOr.get();
std::optional<memprof::FrameId> LastUnmappedFrameId;
auto IdToFrameCallback = [&](const memprof::FrameId Id) {
auto Iter = IdToFrameMap.find(Id);
if (Iter == IdToFrameMap.end()) {
LastUnmappedFrameId = Id;
return memprof::Frame(0, 0, 0, false);
}
return Iter->second;
};
const memprof::MemProfRecord WantRecord(IndexedMR, IdToFrameCallback);
ASSERT_EQ(LastUnmappedFrameId, std::nullopt)
<< "could not map frame id: " << *LastUnmappedFrameId;
EXPECT_THAT(WantRecord, EqualsRecord(Record));
}
TEST_F(InstrProfTest, test_memprof_v2_full_schema) {
const MemInfoBlock MIB = makeFullMIB();
Writer.setMemProfVersionRequested(memprof::Version2);
Writer.setMemProfFullSchema(true);
ASSERT_THAT_ERROR(Writer.mergeProfileKind(InstrProfKind::MemProf),
Succeeded());
const IndexedMemProfRecord IndexedMR = makeRecordV2(
/*AllocFrames=*/{0x111, 0x222},
/*CallSiteFrames=*/{0x333}, MIB, memprof::getFullSchema());
const FrameIdMapTy IdToFrameMap = getFrameMapping();
const auto CSIdToCallStackMap = getCallStackMapping();
for (const auto &I : IdToFrameMap) {
Writer.addMemProfFrame(I.first, I.getSecond(), Err);
}
for (const auto &I : CSIdToCallStackMap) {
Writer.addMemProfCallStack(I.first, I.getSecond(), Err);
}
Writer.addMemProfRecord(/*Id=*/0x9999, IndexedMR);
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile));
auto RecordOr = Reader->getMemProfRecord(0x9999);
ASSERT_THAT_ERROR(RecordOr.takeError(), Succeeded());
const memprof::MemProfRecord &Record = RecordOr.get();
memprof::FrameIdConverter<decltype(IdToFrameMap)> FrameIdConv(IdToFrameMap);
memprof::CallStackIdConverter<decltype(CSIdToCallStackMap)> CSIdConv(
CSIdToCallStackMap, FrameIdConv);
const ::llvm::memprof::MemProfRecord WantRecord =
IndexedMR.toMemProfRecord(CSIdConv);
ASSERT_EQ(FrameIdConv.LastUnmappedId, std::nullopt)
<< "could not map frame id: " << *FrameIdConv.LastUnmappedId;
ASSERT_EQ(CSIdConv.LastUnmappedId, std::nullopt)
<< "could not map call stack id: " << *CSIdConv.LastUnmappedId;
EXPECT_THAT(WantRecord, EqualsRecord(Record));
}
TEST_F(InstrProfTest, test_memprof_v2_partial_schema) {
const MemInfoBlock MIB = makePartialMIB();
Writer.setMemProfVersionRequested(memprof::Version2);
Writer.setMemProfFullSchema(false);
ASSERT_THAT_ERROR(Writer.mergeProfileKind(InstrProfKind::MemProf),
Succeeded());
const IndexedMemProfRecord IndexedMR = makeRecordV2(
/*AllocFrames=*/{0x111, 0x222},
/*CallSiteFrames=*/{0x333}, MIB, memprof::getHotColdSchema());
const FrameIdMapTy IdToFrameMap = getFrameMapping();
const auto CSIdToCallStackMap = getCallStackMapping();
for (const auto &I : IdToFrameMap) {
Writer.addMemProfFrame(I.first, I.getSecond(), Err);
}
for (const auto &I : CSIdToCallStackMap) {
Writer.addMemProfCallStack(I.first, I.getSecond(), Err);
}
Writer.addMemProfRecord(/*Id=*/0x9999, IndexedMR);
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile));
auto RecordOr = Reader->getMemProfRecord(0x9999);
ASSERT_THAT_ERROR(RecordOr.takeError(), Succeeded());
const memprof::MemProfRecord &Record = RecordOr.get();
memprof::FrameIdConverter<decltype(IdToFrameMap)> FrameIdConv(IdToFrameMap);
memprof::CallStackIdConverter<decltype(CSIdToCallStackMap)> CSIdConv(
CSIdToCallStackMap, FrameIdConv);
const ::llvm::memprof::MemProfRecord WantRecord =
IndexedMR.toMemProfRecord(CSIdConv);
ASSERT_EQ(FrameIdConv.LastUnmappedId, std::nullopt)
<< "could not map frame id: " << *FrameIdConv.LastUnmappedId;
ASSERT_EQ(CSIdConv.LastUnmappedId, std::nullopt)
<< "could not map call stack id: " << *CSIdConv.LastUnmappedId;
EXPECT_THAT(WantRecord, EqualsRecord(Record));
}
TEST_F(InstrProfTest, test_memprof_getrecord_error) {
ASSERT_THAT_ERROR(Writer.mergeProfileKind(InstrProfKind::MemProf),
Succeeded());
const IndexedMemProfRecord IndexedMR = makeRecord(
/*AllocFrames=*/
{
{0, 1},
{2, 3},
},
/*CallSiteFrames=*/{
{4, 5},
});
// We skip adding the frame mappings here unlike the test_memprof unit test
// above to exercise the failure path when getMemProfRecord is invoked.
Writer.addMemProfRecord(/*Id=*/0x9999, IndexedMR);
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile));
// Missing frames give a hash_mismatch error.
auto RecordOr = Reader->getMemProfRecord(0x9999);
ASSERT_TRUE(
ErrorEquals(instrprof_error::hash_mismatch, RecordOr.takeError()));
// Missing functions give a unknown_function error.
RecordOr = Reader->getMemProfRecord(0x1111);
ASSERT_TRUE(
ErrorEquals(instrprof_error::unknown_function, RecordOr.takeError()));
}
TEST_F(InstrProfTest, test_memprof_merge) {
Writer.addRecord({"func1", 0x1234, {42}}, Err);
InstrProfWriter Writer2;
ASSERT_THAT_ERROR(Writer2.mergeProfileKind(InstrProfKind::MemProf),
Succeeded());
const IndexedMemProfRecord IndexedMR = makeRecord(
/*AllocFrames=*/
{
{0, 1},
{2, 3},
},
/*CallSiteFrames=*/{
{4, 5},
});
const FrameIdMapTy IdToFrameMap = getFrameMapping();
for (const auto &I : IdToFrameMap) {
Writer.addMemProfFrame(I.first, I.getSecond(), Err);
}
Writer2.addMemProfRecord(/*Id=*/0x9999, IndexedMR);
ASSERT_THAT_ERROR(Writer.mergeProfileKind(Writer2.getProfileKind()),
Succeeded());
Writer.mergeRecordsFromWriter(std::move(Writer2), Err);
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile));
Expected<InstrProfRecord> R = Reader->getInstrProfRecord("func1", 0x1234);
EXPECT_THAT_ERROR(R.takeError(), Succeeded());
ASSERT_EQ(1U, R->Counts.size());
ASSERT_EQ(42U, R->Counts[0]);
auto RecordOr = Reader->getMemProfRecord(0x9999);
ASSERT_THAT_ERROR(RecordOr.takeError(), Succeeded());
const memprof::MemProfRecord &Record = RecordOr.get();
std::optional<memprof::FrameId> LastUnmappedFrameId;
auto IdToFrameCallback = [&](const memprof::FrameId Id) {
auto Iter = IdToFrameMap.find(Id);
if (Iter == IdToFrameMap.end()) {
LastUnmappedFrameId = Id;
return memprof::Frame(0, 0, 0, false);
}
return Iter->second;
};
const memprof::MemProfRecord WantRecord(IndexedMR, IdToFrameCallback);
ASSERT_EQ(LastUnmappedFrameId, std::nullopt)
<< "could not map frame id: " << *LastUnmappedFrameId;
EXPECT_THAT(WantRecord, EqualsRecord(Record));
}
TEST_F(InstrProfTest, test_irpgo_function_name) {
LLVMContext Ctx;
auto M = std::make_unique<Module>("MyModule.cpp", Ctx);
auto *FTy = FunctionType::get(Type::getVoidTy(Ctx), /*isVarArg=*/false);
std::vector<std::tuple<StringRef, Function::LinkageTypes, StringRef>> Data;
Data.emplace_back("ExternalFoo", Function::ExternalLinkage, "ExternalFoo");
Data.emplace_back("InternalFoo", Function::InternalLinkage,
"MyModule.cpp;InternalFoo");
Data.emplace_back("\01-[C dynamicFoo:]", Function::ExternalLinkage,
"-[C dynamicFoo:]");
Data.emplace_back("\01-[C internalFoo:]", Function::InternalLinkage,
"MyModule.cpp;-[C internalFoo:]");
for (auto &[Name, Linkage, ExpectedIRPGOFuncName] : Data)
Function::Create(FTy, Linkage, Name, M.get());
for (auto &[Name, Linkage, ExpectedIRPGOFuncName] : Data) {
auto *F = M->getFunction(Name);
auto IRPGOFuncName = getIRPGOFuncName(*F);
EXPECT_EQ(IRPGOFuncName, ExpectedIRPGOFuncName);
auto [Filename, ParsedIRPGOFuncName] = getParsedIRPGOName(IRPGOFuncName);
StringRef ExpectedParsedIRPGOFuncName = IRPGOFuncName;
if (ExpectedParsedIRPGOFuncName.consume_front("MyModule.cpp;")) {
EXPECT_EQ(Filename, "MyModule.cpp");
} else {
EXPECT_EQ(Filename, "");
}
EXPECT_EQ(ParsedIRPGOFuncName, ExpectedParsedIRPGOFuncName);
}
}
TEST_F(InstrProfTest, test_pgo_function_name) {
LLVMContext Ctx;
auto M = std::make_unique<Module>("MyModule.cpp", Ctx);
auto *FTy = FunctionType::get(Type::getVoidTy(Ctx), /*isVarArg=*/false);
std::vector<std::tuple<StringRef, Function::LinkageTypes, StringRef>> Data;
Data.emplace_back("ExternalFoo", Function::ExternalLinkage, "ExternalFoo");
Data.emplace_back("InternalFoo", Function::InternalLinkage,
"MyModule.cpp:InternalFoo");
Data.emplace_back("\01-[C externalFoo:]", Function::ExternalLinkage,
"-[C externalFoo:]");
Data.emplace_back("\01-[C internalFoo:]", Function::InternalLinkage,
"MyModule.cpp:-[C internalFoo:]");
for (auto &[Name, Linkage, ExpectedPGOFuncName] : Data)
Function::Create(FTy, Linkage, Name, M.get());
for (auto &[Name, Linkage, ExpectedPGOFuncName] : Data) {
auto *F = M->getFunction(Name);
EXPECT_EQ(getPGOFuncName(*F), ExpectedPGOFuncName);
}
}
TEST_F(InstrProfTest, test_irpgo_read_deprecated_names) {
LLVMContext Ctx;
auto M = std::make_unique<Module>("MyModule.cpp", Ctx);
auto *FTy = FunctionType::get(Type::getVoidTy(Ctx), /*isVarArg=*/false);
auto *InternalFooF =
Function::Create(FTy, Function::InternalLinkage, "InternalFoo", M.get());
auto *ExternalFooF =
Function::Create(FTy, Function::ExternalLinkage, "ExternalFoo", M.get());
auto *InternalBarF =
Function::Create(FTy, Function::InternalLinkage, "InternalBar", M.get());
auto *ExternalBarF =
Function::Create(FTy, Function::ExternalLinkage, "ExternalBar", M.get());
Writer.addRecord({getIRPGOFuncName(*InternalFooF), 0x1234, {1}}, Err);
Writer.addRecord({getIRPGOFuncName(*ExternalFooF), 0x5678, {1}}, Err);
// Write a record with a deprecated name
Writer.addRecord({getPGOFuncName(*InternalBarF), 0x1111, {2}}, Err);
Writer.addRecord({getPGOFuncName(*ExternalBarF), 0x2222, {2}}, Err);
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile));
EXPECT_THAT_EXPECTED(
Reader->getInstrProfRecord(getIRPGOFuncName(*InternalFooF), 0x1234,
getPGOFuncName(*InternalFooF)),
Succeeded());
EXPECT_THAT_EXPECTED(
Reader->getInstrProfRecord(getIRPGOFuncName(*ExternalFooF), 0x5678,
getPGOFuncName(*ExternalFooF)),
Succeeded());
// Ensure we can still read this old record name
EXPECT_THAT_EXPECTED(
Reader->getInstrProfRecord(getIRPGOFuncName(*InternalBarF), 0x1111,
getPGOFuncName(*InternalBarF)),
Succeeded());
EXPECT_THAT_EXPECTED(
Reader->getInstrProfRecord(getIRPGOFuncName(*ExternalBarF), 0x2222,
getPGOFuncName(*ExternalBarF)),
Succeeded());
}
// callee1 to callee6 are from vtable1 to vtable6 respectively.
static const char callee1[] = "callee1";
static const char callee2[] = "callee2";
static const char callee3[] = "callee3";
static const char callee4[] = "callee4";
static const char callee5[] = "callee5";
static const char callee6[] = "callee6";
// callee7 and callee8 are not from any vtables.
static const char callee7[] = "callee7";
static const char callee8[] = "callee8";
// 'callee' is primarily used to create multiple-element vtables.
static const char callee[] = "callee";
static const uint64_t vtable1[] = {uint64_t(callee), uint64_t(callee1)};
static const uint64_t vtable2[] = {uint64_t(callee2), uint64_t(callee)};
static const uint64_t vtable3[] = {
uint64_t(callee),
uint64_t(callee3),
};
static const uint64_t vtable4[] = {uint64_t(callee4), uint64_t(callee)};
static const uint64_t vtable5[] = {uint64_t(callee5), uint64_t(callee)};
static const uint64_t vtable6[] = {uint64_t(callee6), uint64_t(callee)};
// Returns the address of callee with a numbered suffix in vtable.
static uint64_t getCalleeAddress(const uint64_t *vtableAddr) {
uint64_t CalleeAddr;
// Callee with a numbered suffix is the 2nd element in vtable1 and vtable3,
// and the 1st element in the rest of vtables.
if (vtableAddr == vtable1 || vtableAddr == vtable3)
CalleeAddr = uint64_t(vtableAddr) + 8;
else
CalleeAddr = uint64_t(vtableAddr);
return CalleeAddr;
}
TEST_P(InstrProfReaderWriterTest, icall_and_vtable_data_read_write) {
NamedInstrProfRecord Record1("caller", 0x1234, {1, 2});
// 4 indirect call value sites.
{
Record1.reserveSites(IPVK_IndirectCallTarget, 4);
InstrProfValueData VD0[] = {
{(uint64_t)callee1, 1}, {(uint64_t)callee2, 2}, {(uint64_t)callee3, 3}};
Record1.addValueData(IPVK_IndirectCallTarget, 0, VD0, 3, nullptr);
// No value profile data at the second site.
Record1.addValueData(IPVK_IndirectCallTarget, 1, nullptr, 0, nullptr);
InstrProfValueData VD2[] = {{(uint64_t)callee1, 1}, {(uint64_t)callee2, 2}};
Record1.addValueData(IPVK_IndirectCallTarget, 2, VD2, 2, nullptr);
InstrProfValueData VD3[] = {{(uint64_t)callee7, 1}, {(uint64_t)callee8, 2}};
Record1.addValueData(IPVK_IndirectCallTarget, 3, VD3, 2, nullptr);
}
// 2 vtable value sites.
{
InstrProfValueData VD0[] = {
{getCalleeAddress(vtable1), 1},
{getCalleeAddress(vtable2), 2},
{getCalleeAddress(vtable3), 3},
};
InstrProfValueData VD2[] = {
{getCalleeAddress(vtable1), 1},
{getCalleeAddress(vtable2), 2},
};
Record1.addValueData(IPVK_VTableTarget, 0, VD0, 3, nullptr);
Record1.addValueData(IPVK_VTableTarget, 2, VD2, 2, nullptr);
}
Writer.addRecord(std::move(Record1), getProfWeight(), Err);
Writer.addRecord({"callee1", 0x1235, {3, 4}}, Err);
Writer.addRecord({"callee2", 0x1235, {3, 4}}, Err);
Writer.addRecord({"callee3", 0x1235, {3, 4}}, Err);
Writer.addRecord({"callee7", 0x1235, {3, 4}}, Err);
Writer.addRecord({"callee8", 0x1235, {3, 4}}, Err);
// Set writer value prof data endianness.
Writer.setValueProfDataEndianness(getEndianness());
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile));
// Set reader value prof data endianness.
Reader->setValueProfDataEndianness(getEndianness());
Expected<InstrProfRecord> R = Reader->getInstrProfRecord("caller", 0x1234);
ASSERT_THAT_ERROR(R.takeError(), Succeeded());
// Test the number of instrumented indirect call sites and the number of
// profiled values at each site.
ASSERT_EQ(4U, R->getNumValueSites(IPVK_IndirectCallTarget));
EXPECT_EQ(3U, R->getNumValueDataForSite(IPVK_IndirectCallTarget, 0));
EXPECT_EQ(0U, R->getNumValueDataForSite(IPVK_IndirectCallTarget, 1));
EXPECT_EQ(2U, R->getNumValueDataForSite(IPVK_IndirectCallTarget, 2));
EXPECT_EQ(2U, R->getNumValueDataForSite(IPVK_IndirectCallTarget, 3));
// Test the number of instrumented vtable sites and the number of profiled
// values at each site.
ASSERT_EQ(R->getNumValueSites(IPVK_VTableTarget), 2U);
EXPECT_EQ(R->getNumValueDataForSite(IPVK_VTableTarget, 0), 3U);
EXPECT_EQ(R->getNumValueDataForSite(IPVK_VTableTarget, 1), 2U);
// First indirect site.
{
uint64_t TotalC;
auto VD = R->getValueForSite(IPVK_IndirectCallTarget, 0, &TotalC);
EXPECT_EQ(VD[0].Count, 3U * getProfWeight());
EXPECT_EQ(VD[1].Count, 2U * getProfWeight());
EXPECT_EQ(VD[2].Count, 1U * getProfWeight());
EXPECT_EQ(TotalC, 6U * getProfWeight());
EXPECT_STREQ((const char *)VD[0].Value, "callee3");
EXPECT_STREQ((const char *)VD[1].Value, "callee2");
EXPECT_STREQ((const char *)VD[2].Value, "callee1");
}
// First vtable site.
{
uint64_t TotalC;
auto VD = R->getValueForSite(IPVK_VTableTarget, 0, &TotalC);
EXPECT_EQ(VD[0].Count, 3U * getProfWeight());
EXPECT_EQ(VD[1].Count, 2U * getProfWeight());
EXPECT_EQ(VD[2].Count, 1U * getProfWeight());
EXPECT_EQ(TotalC, 6U * getProfWeight());
EXPECT_EQ(VD[0].Value, getCalleeAddress(vtable3));
EXPECT_EQ(VD[1].Value, getCalleeAddress(vtable2));
EXPECT_EQ(VD[2].Value, getCalleeAddress(vtable1));
}
// Second vtable site.
{
uint64_t TotalC;
auto VD = R->getValueForSite(IPVK_VTableTarget, 1, &TotalC);
EXPECT_EQ(VD[0].Count, 2U * getProfWeight());
EXPECT_EQ(VD[1].Count, 1U * getProfWeight());
EXPECT_EQ(TotalC, 3U * getProfWeight());
EXPECT_EQ(VD[0].Value, getCalleeAddress(vtable2));
EXPECT_EQ(VD[1].Value, getCalleeAddress(vtable1));
}
}
INSTANTIATE_TEST_SUITE_P(
WeightAndEndiannessTest, InstrProfReaderWriterTest,
::testing::Combine(
::testing::Bool(), /* Sparse */
::testing::Values(1U, 10U), /* ProfWeight */
::testing::Values(llvm::endianness::big,
llvm::endianness::little) /* Endianness */
));
TEST_P(MaybeSparseInstrProfTest, annotate_vp_data) {
NamedInstrProfRecord Record("caller", 0x1234, {1, 2});
Record.reserveSites(IPVK_IndirectCallTarget, 1);
InstrProfValueData VD0[] = {{1000, 1}, {2000, 2}, {3000, 3}, {5000, 5},
{4000, 4}, {6000, 6}};
Record.addValueData(IPVK_IndirectCallTarget, 0, VD0, 6, nullptr);
Writer.addRecord(std::move(Record), Err);
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile));
Expected<InstrProfRecord> R = Reader->getInstrProfRecord("caller", 0x1234);
EXPECT_THAT_ERROR(R.takeError(), Succeeded());
LLVMContext Ctx;
std::unique_ptr<Module> M(new Module("MyModule", Ctx));
FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx),
/*isVarArg=*/false);
Function *F =
Function::Create(FTy, Function::ExternalLinkage, "caller", M.get());
BasicBlock *BB = BasicBlock::Create(Ctx, "", F);
IRBuilder<> Builder(BB);
BasicBlock *TBB = BasicBlock::Create(Ctx, "", F);
BasicBlock *FBB = BasicBlock::Create(Ctx, "", F);
// Use branch instruction to annotate with value profile data for simplicity
Instruction *Inst = Builder.CreateCondBr(Builder.getTrue(), TBB, FBB);
Instruction *Inst2 = Builder.CreateCondBr(Builder.getTrue(), TBB, FBB);
annotateValueSite(*M, *Inst, R.get(), IPVK_IndirectCallTarget, 0);
InstrProfValueData ValueData[5];
uint32_t N;
uint64_t T;
bool Res = getValueProfDataFromInst(*Inst, IPVK_IndirectCallTarget, 5,
ValueData, N, T);
ASSERT_TRUE(Res);
ASSERT_EQ(3U, N);
ASSERT_EQ(21U, T);
// The result should be sorted already:
ASSERT_EQ(6000U, ValueData[0].Value);
ASSERT_EQ(6U, ValueData[0].Count);
ASSERT_EQ(5000U, ValueData[1].Value);
ASSERT_EQ(5U, ValueData[1].Count);
ASSERT_EQ(4000U, ValueData[2].Value);
ASSERT_EQ(4U, ValueData[2].Count);
Res = getValueProfDataFromInst(*Inst, IPVK_IndirectCallTarget, 1, ValueData,
N, T);
ASSERT_TRUE(Res);
ASSERT_EQ(1U, N);
ASSERT_EQ(21U, T);
Res = getValueProfDataFromInst(*Inst2, IPVK_IndirectCallTarget, 5, ValueData,
N, T);
ASSERT_FALSE(Res);
// Remove the MD_prof metadata
Inst->setMetadata(LLVMContext::MD_prof, 0);
// Annotate 5 records this time.
annotateValueSite(*M, *Inst, R.get(), IPVK_IndirectCallTarget, 0, 5);
Res = getValueProfDataFromInst(*Inst, IPVK_IndirectCallTarget, 5,
ValueData, N, T);
ASSERT_TRUE(Res);
ASSERT_EQ(5U, N);
ASSERT_EQ(21U, T);
ASSERT_EQ(6000U, ValueData[0].Value);
ASSERT_EQ(6U, ValueData[0].Count);
ASSERT_EQ(5000U, ValueData[1].Value);
ASSERT_EQ(5U, ValueData[1].Count);
ASSERT_EQ(4000U, ValueData[2].Value);
ASSERT_EQ(4U, ValueData[2].Count);
ASSERT_EQ(3000U, ValueData[3].Value);
ASSERT_EQ(3U, ValueData[3].Count);
ASSERT_EQ(2000U, ValueData[4].Value);
ASSERT_EQ(2U, ValueData[4].Count);
// Remove the MD_prof metadata
Inst->setMetadata(LLVMContext::MD_prof, 0);
// Annotate with 4 records.
InstrProfValueData VD0Sorted[] = {{1000, 6}, {2000, 5}, {3000, 4}, {4000, 3},
{5000, 2}, {6000, 1}};
annotateValueSite(*M, *Inst, ArrayRef(VD0Sorted).slice(2), 10,
IPVK_IndirectCallTarget, 5);
Res = getValueProfDataFromInst(*Inst, IPVK_IndirectCallTarget, 5,
ValueData, N, T);
ASSERT_TRUE(Res);
ASSERT_EQ(4U, N);
ASSERT_EQ(10U, T);
ASSERT_EQ(3000U, ValueData[0].Value);
ASSERT_EQ(4U, ValueData[0].Count);
ASSERT_EQ(4000U, ValueData[1].Value);
ASSERT_EQ(3U, ValueData[1].Count);
ASSERT_EQ(5000U, ValueData[2].Value);
ASSERT_EQ(2U, ValueData[2].Count);
ASSERT_EQ(6000U, ValueData[3].Value);
ASSERT_EQ(1U, ValueData[3].Count);
}
TEST_P(MaybeSparseInstrProfTest, icall_and_vtable_data_merge) {
static const char caller[] = "caller";
NamedInstrProfRecord Record11(caller, 0x1234, {1, 2});
NamedInstrProfRecord Record12(caller, 0x1234, {1, 2});
// 5 value sites for indirect calls.
{
Record11.reserveSites(IPVK_IndirectCallTarget, 5);
InstrProfValueData VD0[] = {{uint64_t(callee1), 1},
{uint64_t(callee2), 2},
{uint64_t(callee3), 3},
{uint64_t(callee4), 4}};
Record11.addValueData(IPVK_IndirectCallTarget, 0, VD0, 4, nullptr);
// No value profile data at the second site.
Record11.addValueData(IPVK_IndirectCallTarget, 1, nullptr, 0, nullptr);
InstrProfValueData VD2[] = {
{uint64_t(callee1), 1}, {uint64_t(callee2), 2}, {uint64_t(callee3), 3}};
Record11.addValueData(IPVK_IndirectCallTarget, 2, VD2, 3, nullptr);
InstrProfValueData VD3[] = {{uint64_t(callee7), 1}, {uint64_t(callee8), 2}};
Record11.addValueData(IPVK_IndirectCallTarget, 3, VD3, 2, nullptr);
InstrProfValueData VD4[] = {
{uint64_t(callee1), 1}, {uint64_t(callee2), 2}, {uint64_t(callee3), 3}};
Record11.addValueData(IPVK_IndirectCallTarget, 4, VD4, 3, nullptr);
}
// 3 value sites for vtables.
{
Record11.reserveSites(IPVK_VTableTarget, 3);
InstrProfValueData VD0[] = {{getCalleeAddress(vtable1), 1},
{getCalleeAddress(vtable2), 2},
{getCalleeAddress(vtable3), 3},
{getCalleeAddress(vtable4), 4}};
Record11.addValueData(IPVK_VTableTarget, 0, VD0, 4, nullptr);
InstrProfValueData VD2[] = {{getCalleeAddress(vtable1), 1},
{getCalleeAddress(vtable2), 2},
{getCalleeAddress(vtable3), 3}};
Record11.addValueData(IPVK_VTableTarget, 1, VD2, 3, nullptr);
InstrProfValueData VD4[] = {{getCalleeAddress(vtable1), 1},
{getCalleeAddress(vtable2), 2},
{getCalleeAddress(vtable3), 3}};
Record11.addValueData(IPVK_VTableTarget, 3, VD4, 3, nullptr);
}
// A different record for the same caller.
Record12.reserveSites(IPVK_IndirectCallTarget, 5);
InstrProfValueData VD02[] = {{uint64_t(callee2), 5}, {uint64_t(callee3), 3}};
Record12.addValueData(IPVK_IndirectCallTarget, 0, VD02, 2, nullptr);
// No value profile data at the second site.
Record12.addValueData(IPVK_IndirectCallTarget, 1, nullptr, 0, nullptr);
InstrProfValueData VD22[] = {
{uint64_t(callee2), 1}, {uint64_t(callee3), 3}, {uint64_t(callee4), 4}};
Record12.addValueData(IPVK_IndirectCallTarget, 2, VD22, 3, nullptr);
Record12.addValueData(IPVK_IndirectCallTarget, 3, nullptr, 0, nullptr);
InstrProfValueData VD42[] = {
{uint64_t(callee1), 1}, {uint64_t(callee2), 2}, {uint64_t(callee3), 3}};
Record12.addValueData(IPVK_IndirectCallTarget, 4, VD42, 3, nullptr);
// 3 value sites for vtables.
{
Record12.reserveSites(IPVK_VTableTarget, 3);
InstrProfValueData VD0[] = {{getCalleeAddress(vtable2), 5},
{getCalleeAddress(vtable3), 3}};
Record12.addValueData(IPVK_VTableTarget, 0, VD0, 2, nullptr);
InstrProfValueData VD2[] = {{getCalleeAddress(vtable2), 1},
{getCalleeAddress(vtable3), 3},
{getCalleeAddress(vtable4), 4}};
Record12.addValueData(IPVK_VTableTarget, 1, VD2, 3, nullptr);
InstrProfValueData VD4[] = {{getCalleeAddress(vtable1), 1},
{getCalleeAddress(vtable2), 2},
{getCalleeAddress(vtable3), 3}};
Record12.addValueData(IPVK_VTableTarget, 3, VD4, 3, nullptr);
}
Writer.addRecord(std::move(Record11), Err);
// Merge profile data.
Writer.addRecord(std::move(Record12), Err);
Writer.addRecord({callee1, 0x1235, {3, 4}}, Err);
Writer.addRecord({callee2, 0x1235, {3, 4}}, Err);
Writer.addRecord({callee3, 0x1235, {3, 4}}, Err);
Writer.addRecord({callee3, 0x1235, {3, 4}}, Err);
Writer.addRecord({callee4, 0x1235, {3, 5}}, Err);
Writer.addRecord({callee7, 0x1235, {3, 5}}, Err);
Writer.addRecord({callee8, 0x1235, {3, 5}}, Err);
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile));
// Test the number of instrumented value sites and the number of profiled
// values for each site.
Expected<InstrProfRecord> R = Reader->getInstrProfRecord("caller", 0x1234);
EXPECT_THAT_ERROR(R.takeError(), Succeeded());
// For indirect calls.
ASSERT_EQ(5U, R->getNumValueSites(IPVK_IndirectCallTarget));
ASSERT_EQ(4U, R->getNumValueDataForSite(IPVK_IndirectCallTarget, 0));
ASSERT_EQ(0U, R->getNumValueDataForSite(IPVK_IndirectCallTarget, 1));
ASSERT_EQ(4U, R->getNumValueDataForSite(IPVK_IndirectCallTarget, 2));
ASSERT_EQ(2U, R->getNumValueDataForSite(IPVK_IndirectCallTarget, 3));
ASSERT_EQ(3U, R->getNumValueDataForSite(IPVK_IndirectCallTarget, 4));
// For vtables.
ASSERT_EQ(R->getNumValueSites(IPVK_VTableTarget), 3U);
ASSERT_EQ(R->getNumValueDataForSite(IPVK_VTableTarget, 0), 4U);
ASSERT_EQ(R->getNumValueDataForSite(IPVK_VTableTarget, 1), 4U);
ASSERT_EQ(R->getNumValueDataForSite(IPVK_VTableTarget, 2), 3U);
// Test the merged values for indirect calls.
{
auto VD = R->getValueForSite(IPVK_IndirectCallTarget, 0);
EXPECT_STREQ((const char *)VD[0].Value, "callee2");
EXPECT_EQ(VD[0].Count, 7U);
EXPECT_STREQ((const char *)VD[1].Value, "callee3");
EXPECT_EQ(VD[1].Count, 6U);
EXPECT_STREQ((const char *)VD[2].Value, "callee4");
EXPECT_EQ(VD[2].Count, 4U);
EXPECT_STREQ((const char *)VD[3].Value, "callee1");
EXPECT_EQ(VD[3].Count, 1U);
auto VD_2(R->getValueForSite(IPVK_IndirectCallTarget, 2));
EXPECT_STREQ((const char *)VD_2[0].Value, "callee3");
EXPECT_EQ(VD_2[0].Count, 6U);
EXPECT_STREQ((const char *)VD_2[1].Value, "callee4");
EXPECT_EQ(VD_2[1].Count, 4U);
EXPECT_STREQ((const char *)VD_2[2].Value, "callee2");
EXPECT_EQ(VD_2[2].Count, 3U);
EXPECT_STREQ((const char *)VD_2[3].Value, "callee1");
EXPECT_EQ(VD_2[3].Count, 1U);
auto VD_3(R->getValueForSite(IPVK_IndirectCallTarget, 3));
EXPECT_STREQ((const char *)VD_3[0].Value, "callee8");
EXPECT_EQ(VD_3[0].Count, 2U);
EXPECT_STREQ((const char *)VD_3[1].Value, "callee7");
EXPECT_EQ(VD_3[1].Count, 1U);
auto VD_4(R->getValueForSite(IPVK_IndirectCallTarget, 4));
EXPECT_STREQ((const char *)VD_4[0].Value, "callee3");
EXPECT_EQ(VD_4[0].Count, 6U);
EXPECT_STREQ((const char *)VD_4[1].Value, "callee2");
EXPECT_EQ(VD_4[1].Count, 4U);
EXPECT_STREQ((const char *)VD_4[2].Value, "callee1");
EXPECT_EQ(VD_4[2].Count, 2U);
}
// Test the merged values for vtables
{
auto VD0 = R->getValueForSite(IPVK_VTableTarget, 0);
EXPECT_EQ(VD0[0].Value, getCalleeAddress(vtable2));
EXPECT_EQ(VD0[0].Count, 7U);
EXPECT_EQ(VD0[1].Value, getCalleeAddress(vtable3));
EXPECT_EQ(VD0[1].Count, 6U);
EXPECT_EQ(VD0[2].Value, getCalleeAddress(vtable4));
EXPECT_EQ(VD0[2].Count, 4U);
EXPECT_EQ(VD0[3].Value, getCalleeAddress(vtable1));
EXPECT_EQ(VD0[3].Count, 1U);
auto VD1 = R->getValueForSite(IPVK_VTableTarget, 1);
EXPECT_EQ(VD1[0].Value, getCalleeAddress(vtable3));
EXPECT_EQ(VD1[0].Count, 6U);
EXPECT_EQ(VD1[1].Value, getCalleeAddress(vtable4));
EXPECT_EQ(VD1[1].Count, 4U);
EXPECT_EQ(VD1[2].Value, getCalleeAddress(vtable2));
EXPECT_EQ(VD1[2].Count, 3U);
EXPECT_EQ(VD1[3].Value, getCalleeAddress(vtable1));
EXPECT_EQ(VD1[3].Count, 1U);
auto VD2 = R->getValueForSite(IPVK_VTableTarget, 2);
EXPECT_EQ(VD2[0].Value, getCalleeAddress(vtable3));
EXPECT_EQ(VD2[0].Count, 6U);
EXPECT_EQ(VD2[1].Value, getCalleeAddress(vtable2));
EXPECT_EQ(VD2[1].Count, 4U);
EXPECT_EQ(VD2[2].Value, getCalleeAddress(vtable1));
EXPECT_EQ(VD2[2].Count, 2U);
}
}
struct ValueProfileMergeEdgeCaseTest
: public InstrProfTest,
public ::testing::WithParamInterface<std::tuple<bool, uint32_t>> {
void SetUp() override { Writer.setOutputSparse(std::get<0>(GetParam())); }
uint32_t getValueProfileKind() const { return std::get<1>(GetParam()); }
};
TEST_P(ValueProfileMergeEdgeCaseTest, value_profile_data_merge_saturation) {
const uint32_t ValueKind = getValueProfileKind();
static const char bar[] = "bar";
const uint64_t ProfiledValue = 0x5678;
const uint64_t MaxValCount = std::numeric_limits<uint64_t>::max();
const uint64_t MaxEdgeCount = getInstrMaxCountValue();
instrprof_error Result;
auto Err = [&](Error E) {
Result = std::get<0>(InstrProfError::take(std::move(E)));
};
Result = instrprof_error::success;
Writer.addRecord({"foo", 0x1234, {1}}, Err);
ASSERT_EQ(Result, instrprof_error::success);
// Verify counter overflow.
Result = instrprof_error::success;
Writer.addRecord({"foo", 0x1234, {MaxEdgeCount}}, Err);
ASSERT_EQ(Result, instrprof_error::counter_overflow);
Result = instrprof_error::success;
Writer.addRecord({bar, 0x9012, {8}}, Err);
ASSERT_EQ(Result, instrprof_error::success);
NamedInstrProfRecord Record4("baz", 0x5678, {3, 4});
Record4.reserveSites(ValueKind, 1);
InstrProfValueData VD4[] = {{ProfiledValue, 1}};
Record4.addValueData(ValueKind, 0, VD4, 1, nullptr);
Result = instrprof_error::success;
Writer.addRecord(std::move(Record4), Err);
ASSERT_EQ(Result, instrprof_error::success);
// Verify value data counter overflow.
NamedInstrProfRecord Record5("baz", 0x5678, {5, 6});
Record5.reserveSites(ValueKind, 1);
InstrProfValueData VD5[] = {{ProfiledValue, MaxValCount}};
Record5.addValueData(ValueKind, 0, VD5, 1, nullptr);
Result = instrprof_error::success;
Writer.addRecord(std::move(Record5), Err);
ASSERT_EQ(Result, instrprof_error::counter_overflow);
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile));
// Verify saturation of counts.
Expected<InstrProfRecord> ReadRecord1 =
Reader->getInstrProfRecord("foo", 0x1234);
ASSERT_THAT_ERROR(ReadRecord1.takeError(), Succeeded());
EXPECT_EQ(MaxEdgeCount, ReadRecord1->Counts[0]);
Expected<InstrProfRecord> ReadRecord2 =
Reader->getInstrProfRecord("baz", 0x5678);
ASSERT_TRUE(bool(ReadRecord2));
ASSERT_EQ(1U, ReadRecord2->getNumValueSites(ValueKind));
std::unique_ptr<InstrProfValueData[]> VD =
ReadRecord2->getValueForSite(ValueKind, 0);
EXPECT_EQ(ProfiledValue, VD[0].Value);
EXPECT_EQ(MaxValCount, VD[0].Count);
}
// This test tests that when there are too many values for a given site, the
// merged results are properly truncated.
TEST_P(ValueProfileMergeEdgeCaseTest, value_profile_data_merge_site_trunc) {
const uint32_t ValueKind = getValueProfileKind();
static const char caller[] = "caller";
NamedInstrProfRecord Record11(caller, 0x1234, {1, 2});
NamedInstrProfRecord Record12(caller, 0x1234, {1, 2});
// 2 value sites.
Record11.reserveSites(ValueKind, 2);
InstrProfValueData VD0[255];
for (int I = 0; I < 255; I++) {
VD0[I].Value = 2 * I;
VD0[I].Count = 2 * I + 1000;
}
Record11.addValueData(ValueKind, 0, VD0, 255, nullptr);
Record11.addValueData(ValueKind, 1, nullptr, 0, nullptr);
Record12.reserveSites(ValueKind, 2);
InstrProfValueData VD1[255];
for (int I = 0; I < 255; I++) {
VD1[I].Value = 2 * I + 1;
VD1[I].Count = 2 * I + 1001;
}
Record12.addValueData(ValueKind, 0, VD1, 255, nullptr);
Record12.addValueData(ValueKind, 1, nullptr, 0, nullptr);
Writer.addRecord(std::move(Record11), Err);
// Merge profile data.
Writer.addRecord(std::move(Record12), Err);
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile));
Expected<InstrProfRecord> R = Reader->getInstrProfRecord("caller", 0x1234);
ASSERT_THAT_ERROR(R.takeError(), Succeeded());
std::unique_ptr<InstrProfValueData[]> VD(R->getValueForSite(ValueKind, 0));
ASSERT_EQ(2U, R->getNumValueSites(ValueKind));
EXPECT_EQ(255U, R->getNumValueDataForSite(ValueKind, 0));
for (unsigned I = 0; I < 255; I++) {
EXPECT_EQ(VD[I].Value, 509 - I);
EXPECT_EQ(VD[I].Count, 1509 - I);
}
}
INSTANTIATE_TEST_SUITE_P(
EdgeCaseTest, ValueProfileMergeEdgeCaseTest,
::testing::Combine(::testing::Bool(), /* Sparse */
::testing::Values(IPVK_IndirectCallTarget,
IPVK_MemOPSize,
IPVK_VTableTarget) /* ValueKind */
));
static void addValueProfData(InstrProfRecord &Record) {
// Add test data for indirect calls.
{
Record.reserveSites(IPVK_IndirectCallTarget, 6);
InstrProfValueData VD0[] = {{uint64_t(callee1), 400},
{uint64_t(callee2), 1000},
{uint64_t(callee3), 500},
{uint64_t(callee4), 300},
{uint64_t(callee5), 100}};
Record.addValueData(IPVK_IndirectCallTarget, 0, VD0, 5, nullptr);
InstrProfValueData VD1[] = {{uint64_t(callee5), 800},
{uint64_t(callee3), 1000},
{uint64_t(callee2), 2500},
{uint64_t(callee1), 1300}};
Record.addValueData(IPVK_IndirectCallTarget, 1, VD1, 4, nullptr);
InstrProfValueData VD2[] = {{uint64_t(callee6), 800},
{uint64_t(callee3), 1000},
{uint64_t(callee4), 5500}};
Record.addValueData(IPVK_IndirectCallTarget, 2, VD2, 3, nullptr);
InstrProfValueData VD3[] = {{uint64_t(callee2), 1800},
{uint64_t(callee3), 2000}};
Record.addValueData(IPVK_IndirectCallTarget, 3, VD3, 2, nullptr);
Record.addValueData(IPVK_IndirectCallTarget, 4, nullptr, 0, nullptr);
InstrProfValueData VD5[] = {{uint64_t(callee7), 1234},
{uint64_t(callee8), 5678}};
Record.addValueData(IPVK_IndirectCallTarget, 5, VD5, 2, nullptr);
}
// Add test data for vtables
{
Record.reserveSites(IPVK_VTableTarget, 4);
InstrProfValueData VD0[] = {
{getCalleeAddress(vtable1), 400}, {getCalleeAddress(vtable2), 1000},
{getCalleeAddress(vtable3), 500}, {getCalleeAddress(vtable4), 300},
{getCalleeAddress(vtable5), 100},
};
InstrProfValueData VD1[] = {{getCalleeAddress(vtable5), 800},
{getCalleeAddress(vtable3), 1000},
{getCalleeAddress(vtable2), 2500},
{getCalleeAddress(vtable1), 1300}};
InstrProfValueData VD2[] = {
{getCalleeAddress(vtable6), 800},
{getCalleeAddress(vtable3), 1000},
{getCalleeAddress(vtable4), 5500},
};
InstrProfValueData VD3[] = {{getCalleeAddress(vtable2), 1800},
{getCalleeAddress(vtable3), 2000}};
Record.addValueData(IPVK_VTableTarget, 0, VD0, 5, nullptr);
Record.addValueData(IPVK_VTableTarget, 1, VD1, 4, nullptr);
Record.addValueData(IPVK_VTableTarget, 2, VD2, 3, nullptr);
Record.addValueData(IPVK_VTableTarget, 3, VD3, 2, nullptr);
}
}
TEST(ValueProfileReadWriteTest, value_prof_data_read_write) {
InstrProfRecord SrcRecord({1ULL << 31, 2});
addValueProfData(SrcRecord);
std::unique_ptr<ValueProfData> VPData =
ValueProfData::serializeFrom(SrcRecord);
InstrProfRecord Record({1ULL << 31, 2});
VPData->deserializeTo(Record, nullptr);
// Now read data from Record and sanity check the data
ASSERT_EQ(6U, Record.getNumValueSites(IPVK_IndirectCallTarget));
ASSERT_EQ(5U, Record.getNumValueDataForSite(IPVK_IndirectCallTarget, 0));
ASSERT_EQ(4U, Record.getNumValueDataForSite(IPVK_IndirectCallTarget, 1));
ASSERT_EQ(3U, Record.getNumValueDataForSite(IPVK_IndirectCallTarget, 2));
ASSERT_EQ(2U, Record.getNumValueDataForSite(IPVK_IndirectCallTarget, 3));
ASSERT_EQ(0U, Record.getNumValueDataForSite(IPVK_IndirectCallTarget, 4));
ASSERT_EQ(2U, Record.getNumValueDataForSite(IPVK_IndirectCallTarget, 5));
auto Cmp = [](const InstrProfValueData &VD1, const InstrProfValueData &VD2) {
return VD1.Count > VD2.Count;
};
std::unique_ptr<InstrProfValueData[]> VD_0(
Record.getValueForSite(IPVK_IndirectCallTarget, 0));
llvm::sort(&VD_0[0], &VD_0[5], Cmp);
EXPECT_STREQ((const char *)VD_0[0].Value, "callee2");
EXPECT_EQ(1000U, VD_0[0].Count);
EXPECT_STREQ((const char *)VD_0[1].Value, "callee3");
EXPECT_EQ(500U, VD_0[1].Count);
EXPECT_STREQ((const char *)VD_0[2].Value, "callee1");
EXPECT_EQ(400U, VD_0[2].Count);
EXPECT_STREQ((const char *)VD_0[3].Value, "callee4");
EXPECT_EQ(300U, VD_0[3].Count);
EXPECT_STREQ((const char *)VD_0[4].Value, "callee5");
EXPECT_EQ(100U, VD_0[4].Count);
std::unique_ptr<InstrProfValueData[]> VD_1(
Record.getValueForSite(IPVK_IndirectCallTarget, 1));
llvm::sort(&VD_1[0], &VD_1[4], Cmp);
EXPECT_STREQ((const char *)VD_1[0].Value, "callee2");
EXPECT_EQ(VD_1[0].Count, 2500U);
EXPECT_STREQ((const char *)VD_1[1].Value, "callee1");
EXPECT_EQ(VD_1[1].Count, 1300U);
EXPECT_STREQ((const char *)VD_1[2].Value, "callee3");
EXPECT_EQ(VD_1[2].Count, 1000U);
EXPECT_STREQ((const char *)VD_1[3].Value, "callee5");
EXPECT_EQ(VD_1[3].Count, 800U);
std::unique_ptr<InstrProfValueData[]> VD_2(
Record.getValueForSite(IPVK_IndirectCallTarget, 2));
llvm::sort(&VD_2[0], &VD_2[3], Cmp);
EXPECT_STREQ((const char *)VD_2[0].Value, "callee4");
EXPECT_EQ(VD_2[0].Count, 5500U);
EXPECT_STREQ((const char *)VD_2[1].Value, "callee3");
EXPECT_EQ(VD_2[1].Count, 1000U);
EXPECT_STREQ((const char *)VD_2[2].Value, "callee6");
EXPECT_EQ(VD_2[2].Count, 800U);
std::unique_ptr<InstrProfValueData[]> VD_3(
Record.getValueForSite(IPVK_IndirectCallTarget, 3));
llvm::sort(&VD_3[0], &VD_3[2], Cmp);
EXPECT_STREQ((const char *)VD_3[0].Value, "callee3");
EXPECT_EQ(VD_3[0].Count, 2000U);
EXPECT_STREQ((const char *)VD_3[1].Value, "callee2");
EXPECT_EQ(VD_3[1].Count, 1800U);
ASSERT_EQ(Record.getNumValueSites(IPVK_VTableTarget), 4U);
ASSERT_EQ(Record.getNumValueDataForSite(IPVK_VTableTarget, 0), 5U);
ASSERT_EQ(Record.getNumValueDataForSite(IPVK_VTableTarget, 1), 4U);
ASSERT_EQ(Record.getNumValueDataForSite(IPVK_VTableTarget, 2), 3U);
ASSERT_EQ(Record.getNumValueDataForSite(IPVK_VTableTarget, 3), 2U);
auto VD0(Record.getValueForSite(IPVK_VTableTarget, 0));
llvm::sort(&VD0[0], &VD0[5], Cmp);
EXPECT_EQ(VD0[0].Value, getCalleeAddress(vtable2));
EXPECT_EQ(VD0[0].Count, 1000U);
EXPECT_EQ(VD0[1].Value, getCalleeAddress(vtable3));
EXPECT_EQ(VD0[1].Count, 500U);
EXPECT_EQ(VD0[2].Value, getCalleeAddress(vtable1));
EXPECT_EQ(VD0[2].Count, 400U);
EXPECT_EQ(VD0[3].Value, getCalleeAddress(vtable4));
EXPECT_EQ(VD0[3].Count, 300U);
EXPECT_EQ(VD0[4].Value, getCalleeAddress(vtable5));
EXPECT_EQ(VD0[4].Count, 100U);
auto VD1(Record.getValueForSite(IPVK_VTableTarget, 1));
llvm::sort(&VD1[0], &VD1[4], Cmp);
EXPECT_EQ(VD1[0].Value, getCalleeAddress(vtable2));
EXPECT_EQ(VD1[0].Count, 2500U);
EXPECT_EQ(VD1[1].Value, getCalleeAddress(vtable1));
EXPECT_EQ(VD1[1].Count, 1300U);
EXPECT_EQ(VD1[2].Value, getCalleeAddress(vtable3));
EXPECT_EQ(VD1[2].Count, 1000U);
EXPECT_EQ(VD1[3].Value, getCalleeAddress(vtable5));
EXPECT_EQ(VD1[3].Count, 800U);
auto VD2(Record.getValueForSite(IPVK_VTableTarget, 2));
llvm::sort(&VD2[0], &VD2[3], Cmp);
EXPECT_EQ(VD2[0].Value, getCalleeAddress(vtable4));
EXPECT_EQ(VD2[0].Count, 5500U);
EXPECT_EQ(VD2[1].Value, getCalleeAddress(vtable3));
EXPECT_EQ(VD2[1].Count, 1000U);
EXPECT_EQ(VD2[2].Value, getCalleeAddress(vtable6));
EXPECT_EQ(VD2[2].Count, 800U);
auto VD3(Record.getValueForSite(IPVK_VTableTarget, 3));
llvm::sort(&VD3[0], &VD3[2], Cmp);
EXPECT_EQ(VD3[0].Value, getCalleeAddress(vtable3));
EXPECT_EQ(VD3[0].Count, 2000U);
EXPECT_EQ(VD3[1].Value, getCalleeAddress(vtable2));
EXPECT_EQ(VD3[1].Count, 1800U);
}
TEST(ValueProfileReadWriteTest, symtab_mapping) {
NamedInstrProfRecord SrcRecord("caller", 0x1234, {1ULL << 31, 2});
addValueProfData(SrcRecord);
std::unique_ptr<ValueProfData> VPData =
ValueProfData::serializeFrom(SrcRecord);
NamedInstrProfRecord Record("caller", 0x1234, {1ULL << 31, 2});
InstrProfSymtab Symtab;
Symtab.mapAddress(uint64_t(callee1), 0x1000ULL);
Symtab.mapAddress(uint64_t(callee2), 0x2000ULL);
Symtab.mapAddress(uint64_t(callee3), 0x3000ULL);
Symtab.mapAddress(uint64_t(callee4), 0x4000ULL);
// Missing mapping for callee5
auto getVTableStartAddr = [](const uint64_t *vtable) -> uint64_t {
return uint64_t(vtable);
};
auto getVTableEndAddr = [](const uint64_t *vtable) -> uint64_t {
return uint64_t(vtable) + 16;
};
auto getVTableMidAddr = [](const uint64_t *vtable) -> uint64_t {
return uint64_t(vtable) + 8;
};
// vtable1, vtable2, vtable3, vtable4 get mapped; vtable5, vtable6 are not
// mapped.
Symtab.mapVTableAddress(getVTableStartAddr(vtable1),
getVTableEndAddr(vtable1), MD5Hash("vtable1"));
Symtab.mapVTableAddress(getVTableStartAddr(vtable2),
getVTableEndAddr(vtable2), MD5Hash("vtable2"));
Symtab.mapVTableAddress(getVTableStartAddr(vtable3),
getVTableEndAddr(vtable3), MD5Hash("vtable3"));
Symtab.mapVTableAddress(getVTableStartAddr(vtable4),
getVTableEndAddr(vtable4), MD5Hash("vtable4"));
VPData->deserializeTo(Record, &Symtab);
// Now read data from Record and sanity check the data
ASSERT_EQ(Record.getNumValueSites(IPVK_IndirectCallTarget), 6U);
ASSERT_EQ(Record.getNumValueDataForSite(IPVK_IndirectCallTarget, 0), 5U);
// Look up the value correpsonding to the middle of a vtable in symtab and
// test that it's the hash of the name.
EXPECT_EQ(Symtab.getVTableHashFromAddress(getVTableMidAddr(vtable1)),
MD5Hash("vtable1"));
EXPECT_EQ(Symtab.getVTableHashFromAddress(getVTableMidAddr(vtable2)),
MD5Hash("vtable2"));
EXPECT_EQ(Symtab.getVTableHashFromAddress(getVTableMidAddr(vtable3)),
MD5Hash("vtable3"));
EXPECT_EQ(Symtab.getVTableHashFromAddress(getVTableMidAddr(vtable4)),
MD5Hash("vtable4"));
auto Cmp = [](const InstrProfValueData &VD1, const InstrProfValueData &VD2) {
return VD1.Count > VD2.Count;
};
auto VD_0(Record.getValueForSite(IPVK_IndirectCallTarget, 0));
llvm::sort(&VD_0[0], &VD_0[5], Cmp);
ASSERT_EQ(VD_0[0].Value, 0x2000ULL);
ASSERT_EQ(VD_0[0].Count, 1000U);
ASSERT_EQ(VD_0[1].Value, 0x3000ULL);
ASSERT_EQ(VD_0[1].Count, 500U);
ASSERT_EQ(VD_0[2].Value, 0x1000ULL);
ASSERT_EQ(VD_0[2].Count, 400U);
// callee5 does not have a mapped value -- default to 0.
ASSERT_EQ(VD_0[4].Value, 0ULL);
// Sanity check the vtable value data
ASSERT_EQ(Record.getNumValueSites(IPVK_VTableTarget), 4U);
{
// The first vtable site.
auto VD(Record.getValueForSite(IPVK_VTableTarget, 0));
ASSERT_EQ(Record.getNumValueDataForSite(IPVK_VTableTarget, 0), 5U);
llvm::sort(&VD[0], &VD[5], Cmp);
EXPECT_EQ(VD[0].Count, 1000U);
EXPECT_EQ(VD[0].Value, MD5Hash("vtable2"));
EXPECT_EQ(VD[1].Count, 500U);
EXPECT_EQ(VD[1].Value, MD5Hash("vtable3"));
EXPECT_EQ(VD[2].Value, MD5Hash("vtable1"));
EXPECT_EQ(VD[2].Count, 400U);
EXPECT_EQ(VD[3].Value, MD5Hash("vtable4"));
EXPECT_EQ(VD[3].Count, 300U);
// vtable5 isn't mapped -- default to 0.
EXPECT_EQ(VD[4].Value, 0U);
EXPECT_EQ(VD[4].Count, 100U);
}
{
// The second vtable site.
auto VD(Record.getValueForSite(IPVK_VTableTarget, 1));
ASSERT_EQ(Record.getNumValueDataForSite(IPVK_VTableTarget, 1), 4U);
llvm::sort(&VD[0], &VD[4], Cmp);
EXPECT_EQ(VD[0].Value, MD5Hash("vtable2"));
EXPECT_EQ(VD[0].Count, 2500U);
EXPECT_EQ(VD[1].Value, MD5Hash("vtable1"));
EXPECT_EQ(VD[1].Count, 1300U);
EXPECT_EQ(VD[2].Value, MD5Hash("vtable3"));
EXPECT_EQ(VD[2].Count, 1000U);
// vtable5 isn't mapped -- default to 0.
EXPECT_EQ(VD[3].Value, 0U);
EXPECT_EQ(VD[3].Count, 800U);
}
{
// The third vtable site.
auto VD(Record.getValueForSite(IPVK_VTableTarget, 2));
ASSERT_EQ(Record.getNumValueDataForSite(IPVK_VTableTarget, 2), 3U);
llvm::sort(&VD[0], &VD[3], Cmp);
EXPECT_EQ(VD[0].Count, 5500U);
EXPECT_EQ(VD[0].Value, MD5Hash("vtable4"));
EXPECT_EQ(VD[1].Count, 1000U);
EXPECT_EQ(VD[1].Value, MD5Hash("vtable3"));
// vtable6 isn't mapped -- default to 0.
EXPECT_EQ(VD[2].Value, 0U);
EXPECT_EQ(VD[2].Count, 800U);
}
{
// The fourth vtable site.
auto VD(Record.getValueForSite(IPVK_VTableTarget, 3));
ASSERT_EQ(Record.getNumValueDataForSite(IPVK_VTableTarget, 3), 2U);
llvm::sort(&VD[0], &VD[2], Cmp);
EXPECT_EQ(VD[0].Count, 2000U);
EXPECT_EQ(VD[0].Value, MD5Hash("vtable3"));
EXPECT_EQ(VD[1].Count, 1800U);
EXPECT_EQ(VD[1].Value, MD5Hash("vtable2"));
}
}
TEST_P(MaybeSparseInstrProfTest, get_max_function_count) {
Writer.addRecord({"foo", 0x1234, {1ULL << 31, 2}}, Err);
Writer.addRecord({"bar", 0, {1ULL << 63}}, Err);
Writer.addRecord({"baz", 0x5678, {0, 0, 0, 0}}, Err);
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile));
ASSERT_EQ(1ULL << 63, Reader->getMaximumFunctionCount(/* IsCS */ false));
}
TEST_P(MaybeSparseInstrProfTest, get_weighted_function_counts) {
Writer.addRecord({"foo", 0x1234, {1, 2}}, 3, Err);
Writer.addRecord({"foo", 0x1235, {3, 4}}, 5, Err);
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile));
std::vector<uint64_t> Counts;
EXPECT_THAT_ERROR(Reader->getFunctionCounts("foo", 0x1234, Counts),
Succeeded());
ASSERT_EQ(2U, Counts.size());
ASSERT_EQ(3U, Counts[0]);
ASSERT_EQ(6U, Counts[1]);
EXPECT_THAT_ERROR(Reader->getFunctionCounts("foo", 0x1235, Counts),
Succeeded());
ASSERT_EQ(2U, Counts.size());
ASSERT_EQ(15U, Counts[0]);
ASSERT_EQ(20U, Counts[1]);
}
// Testing symtab creator interface used by indexed profile reader.
TEST(SymtabTest, instr_prof_symtab_test) {
std::vector<StringRef> FuncNames;
FuncNames.push_back("func1");
FuncNames.push_back("func2");
FuncNames.push_back("func3");
FuncNames.push_back("bar1");
FuncNames.push_back("bar2");
FuncNames.push_back("bar3");
InstrProfSymtab Symtab;
EXPECT_THAT_ERROR(Symtab.create(FuncNames), Succeeded());
StringRef R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("func1"));
ASSERT_EQ(StringRef("func1"), R);
R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("func2"));
ASSERT_EQ(StringRef("func2"), R);
R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("func3"));
ASSERT_EQ(StringRef("func3"), R);
R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("bar1"));
ASSERT_EQ(StringRef("bar1"), R);
R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("bar2"));
ASSERT_EQ(StringRef("bar2"), R);
R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("bar3"));
ASSERT_EQ(StringRef("bar3"), R);
// negative tests
R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("bar4"));
ASSERT_EQ(StringRef(), R);
R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("foo4"));
ASSERT_EQ(StringRef(), R);
// Now incrementally update the symtab
EXPECT_THAT_ERROR(Symtab.addFuncName("blah_1"), Succeeded());
EXPECT_THAT_ERROR(Symtab.addFuncName("blah_2"), Succeeded());
EXPECT_THAT_ERROR(Symtab.addFuncName("blah_3"), Succeeded());
// Check again
R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("blah_1"));
ASSERT_EQ(StringRef("blah_1"), R);
R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("blah_2"));
ASSERT_EQ(StringRef("blah_2"), R);
R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("blah_3"));
ASSERT_EQ(StringRef("blah_3"), R);
R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("func1"));
ASSERT_EQ(StringRef("func1"), R);
R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("func2"));
ASSERT_EQ(StringRef("func2"), R);
R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("func3"));
ASSERT_EQ(StringRef("func3"), R);
R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("bar1"));
ASSERT_EQ(StringRef("bar1"), R);
R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("bar2"));
ASSERT_EQ(StringRef("bar2"), R);
R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("bar3"));
ASSERT_EQ(StringRef("bar3"), R);
}
// Test that we get an error when creating a bogus symtab.
TEST(SymtabTest, instr_prof_bogus_symtab_empty_func_name) {
InstrProfSymtab Symtab;
EXPECT_TRUE(ErrorEquals(instrprof_error::malformed, Symtab.addFuncName("")));
}
// Testing symtab creator interface used by value profile transformer.
TEST(SymtabTest, instr_prof_symtab_module_test) {
LLVMContext Ctx;
std::unique_ptr<Module> M = std::make_unique<Module>("MyModule.cpp", Ctx);
FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx),
/*isVarArg=*/false);
Function::Create(FTy, Function::ExternalLinkage, "Gfoo", M.get());
Function::Create(FTy, Function::ExternalLinkage, "Gblah", M.get());
Function::Create(FTy, Function::ExternalLinkage, "Gbar", M.get());
Function::Create(FTy, Function::InternalLinkage, "Ifoo", M.get());
Function::Create(FTy, Function::InternalLinkage, "Iblah", M.get());
Function::Create(FTy, Function::InternalLinkage, "Ibar", M.get());
Function::Create(FTy, Function::PrivateLinkage, "Pfoo", M.get());
Function::Create(FTy, Function::PrivateLinkage, "Pblah", M.get());
Function::Create(FTy, Function::PrivateLinkage, "Pbar", M.get());
Function::Create(FTy, Function::WeakODRLinkage, "Wfoo", M.get());
Function::Create(FTy, Function::WeakODRLinkage, "Wblah", M.get());
Function::Create(FTy, Function::WeakODRLinkage, "Wbar", M.get());
InstrProfSymtab ProfSymtab;
EXPECT_THAT_ERROR(ProfSymtab.create(*M), Succeeded());
StringRef Funcs[] = {"Gfoo", "Gblah", "Gbar", "Ifoo", "Iblah", "Ibar",
"Pfoo", "Pblah", "Pbar", "Wfoo", "Wblah", "Wbar"};
for (unsigned I = 0; I < std::size(Funcs); I++) {
Function *F = M->getFunction(Funcs[I]);
std::string IRPGOName = getIRPGOFuncName(*F);
auto IRPGOFuncName =
ProfSymtab.getFuncOrVarName(IndexedInstrProf::ComputeHash(IRPGOName));
EXPECT_EQ(IRPGOName, IRPGOFuncName);
EXPECT_EQ(Funcs[I], getParsedIRPGOName(IRPGOFuncName).second);
// Ensure we can still read this old record name.
std::string PGOName = getPGOFuncName(*F);
auto PGOFuncName =
ProfSymtab.getFuncOrVarName(IndexedInstrProf::ComputeHash(PGOName));
EXPECT_EQ(PGOName, PGOFuncName);
EXPECT_THAT(PGOFuncName.str(), EndsWith(Funcs[I].str()));
}
}
// Testing symtab serialization and creator/deserialization interface
// used by coverage map reader, and raw profile reader.
TEST(SymtabTest, instr_prof_symtab_compression_test) {
std::vector<std::string> FuncNames1;
std::vector<std::string> FuncNames2;
for (int I = 0; I < 3; I++) {
std::string str;
raw_string_ostream OS(str);
OS << "func_" << I;
FuncNames1.push_back(OS.str());
str.clear();
OS << "f oooooooooooooo_" << I;
FuncNames1.push_back(OS.str());
str.clear();
OS << "BAR_" << I;
FuncNames2.push_back(OS.str());
str.clear();
OS << "BlahblahBlahblahBar_" << I;
FuncNames2.push_back(OS.str());
}
for (bool DoCompression : {false, true}) {
// Compressing:
std::string FuncNameStrings1;
EXPECT_THAT_ERROR(collectGlobalObjectNameStrings(
FuncNames1,
(DoCompression && compression::zlib::isAvailable()),
FuncNameStrings1),
Succeeded());
// Compressing:
std::string FuncNameStrings2;
EXPECT_THAT_ERROR(collectGlobalObjectNameStrings(
FuncNames2,
(DoCompression && compression::zlib::isAvailable()),
FuncNameStrings2),
Succeeded());
for (int Padding = 0; Padding < 2; Padding++) {
// Join with paddings :
std::string FuncNameStrings = FuncNameStrings1;
for (int P = 0; P < Padding; P++) {
FuncNameStrings.push_back('\0');
}
FuncNameStrings += FuncNameStrings2;
// Now decompress:
InstrProfSymtab Symtab;
EXPECT_THAT_ERROR(Symtab.create(StringRef(FuncNameStrings)), Succeeded());
// Now do the checks:
// First sampling some data points:
StringRef R =
Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash(FuncNames1[0]));
ASSERT_EQ(StringRef("func_0"), R);
R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash(FuncNames1[1]));
ASSERT_EQ(StringRef("f oooooooooooooo_0"), R);
for (int I = 0; I < 3; I++) {
std::string N[4];
N[0] = FuncNames1[2 * I];
N[1] = FuncNames1[2 * I + 1];
N[2] = FuncNames2[2 * I];
N[3] = FuncNames2[2 * I + 1];
for (int J = 0; J < 4; J++) {
StringRef R =
Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash(N[J]));
ASSERT_EQ(StringRef(N[J]), R);
}
}
}
}
}
TEST_P(MaybeSparseInstrProfTest, remapping_test) {
Writer.addRecord({"_Z3fooi", 0x1234, {1, 2, 3, 4}}, Err);
Writer.addRecord({"file;_Z3barf", 0x567, {5, 6, 7}}, Err);
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile), llvm::MemoryBuffer::getMemBuffer(R"(
type i l
name 3bar 4quux
)"));
std::vector<uint64_t> Counts;
for (StringRef FooName : {"_Z3fooi", "_Z3fool"}) {
EXPECT_THAT_ERROR(Reader->getFunctionCounts(FooName, 0x1234, Counts),
Succeeded());
ASSERT_EQ(4u, Counts.size());
EXPECT_EQ(1u, Counts[0]);
EXPECT_EQ(2u, Counts[1]);
EXPECT_EQ(3u, Counts[2]);
EXPECT_EQ(4u, Counts[3]);
}
for (StringRef BarName : {"file;_Z3barf", "file;_Z4quuxf"}) {
EXPECT_THAT_ERROR(Reader->getFunctionCounts(BarName, 0x567, Counts),
Succeeded());
ASSERT_EQ(3u, Counts.size());
EXPECT_EQ(5u, Counts[0]);
EXPECT_EQ(6u, Counts[1]);
EXPECT_EQ(7u, Counts[2]);
}
for (StringRef BadName : {"_Z3foof", "_Z4quuxi", "_Z3barl", "", "_ZZZ",
"_Z3barf", "otherfile:_Z4quuxf"}) {
EXPECT_THAT_ERROR(Reader->getFunctionCounts(BadName, 0x1234, Counts),
Failed());
EXPECT_THAT_ERROR(Reader->getFunctionCounts(BadName, 0x567, Counts),
Failed());
}
}
TEST_F(SparseInstrProfTest, preserve_no_records) {
Writer.addRecord({"foo", 0x1234, {0}}, Err);
Writer.addRecord({"bar", 0x4321, {0, 0}}, Err);
Writer.addRecord({"baz", 0x4321, {0, 0, 0}}, Err);
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile));
auto I = Reader->begin(), E = Reader->end();
ASSERT_TRUE(I == E);
}
INSTANTIATE_TEST_SUITE_P(MaybeSparse, MaybeSparseInstrProfTest,
::testing::Bool());
#if defined(_LP64) && defined(EXPENSIVE_CHECKS)
TEST(ProfileReaderTest, ReadsLargeFiles) {
const size_t LargeSize = 1ULL << 32; // 4GB
auto RawProfile = WritableMemoryBuffer::getNewUninitMemBuffer(LargeSize);
if (!RawProfile)
GTEST_SKIP();
auto RawProfileReaderOrErr = InstrProfReader::create(std::move(RawProfile));
ASSERT_TRUE(
std::get<0>(InstrProfError::take(RawProfileReaderOrErr.takeError())) ==
instrprof_error::unrecognized_format);
auto IndexedProfile = WritableMemoryBuffer::getNewUninitMemBuffer(LargeSize);
if (!IndexedProfile)
GTEST_SKIP();
auto IndexedReaderOrErr =
IndexedInstrProfReader::create(std::move(IndexedProfile), nullptr);
ASSERT_TRUE(
std::get<0>(InstrProfError::take(IndexedReaderOrErr.takeError())) ==
instrprof_error::bad_magic);
}
#endif
} // end anonymous namespace