blob: 92ab3a96d91e6bccc6e8f29f6577086aacdaa8b2 [file] [log] [blame]
//===-- Assembler.cpp -------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Assembler.h"
#include "SnippetRepetitor.h"
#include "SubprocessMemory.h"
#include "Target.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/ExecutionEngine/Orc/LLJIT.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/Object/SymbolSize.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#ifdef HAVE_LIBPFM
#include "perfmon/perf_event.h"
#endif // HAVE_LIBPFM
#ifdef __linux__
#include <unistd.h>
#endif
namespace llvm {
namespace exegesis {
static constexpr const char ModuleID[] = "ExegesisInfoTest";
static constexpr const char FunctionID[] = "foo";
static const Align kFunctionAlignment(4096);
// Fills the given basic block with register setup code, and returns true if
// all registers could be setup correctly.
static bool generateSnippetSetupCode(const ExegesisTarget &ET,
const MCSubtargetInfo *const MSI,
BasicBlockFiller &BBF,
const BenchmarkKey &Key,
bool GenerateMemoryInstructions) {
bool IsSnippetSetupComplete = true;
if (GenerateMemoryInstructions) {
BBF.addInstructions(ET.generateMemoryInitialSetup());
for (const MemoryMapping &MM : Key.MemoryMappings) {
#ifdef __linux__
// The frontend that generates that parses the memory mapping information
// from the user should validate that the requested address is a multiple
// of the page size. Assert that this is true here.
assert(MM.Address % getpagesize() == 0 &&
"Memory mappings need to be aligned to page boundaries.");
#endif
BBF.addInstructions(ET.generateMmap(
MM.Address, Key.MemoryValues.at(MM.MemoryValueName).SizeBytes,
ET.getAuxiliaryMemoryStartAddress() +
sizeof(int) * (Key.MemoryValues.at(MM.MemoryValueName).Index +
SubprocessMemory::AuxiliaryMemoryOffset)));
}
BBF.addInstructions(ET.setStackRegisterToAuxMem());
}
Register StackPointerRegister = BBF.MF.getSubtarget()
.getTargetLowering()
->getStackPointerRegisterToSaveRestore();
for (const RegisterValue &RV : Key.RegisterInitialValues) {
if (GenerateMemoryInstructions) {
// If we're generating memory instructions, don't load in the value for
// the register with the stack pointer as it will be used later to finish
// the setup.
if (RV.Register == StackPointerRegister)
continue;
}
// Load a constant in the register.
const auto SetRegisterCode = ET.setRegTo(*MSI, RV.Register, RV.Value);
if (SetRegisterCode.empty())
IsSnippetSetupComplete = false;
BBF.addInstructions(SetRegisterCode);
}
if (GenerateMemoryInstructions) {
#ifdef HAVE_LIBPFM
BBF.addInstructions(ET.configurePerfCounter(PERF_EVENT_IOC_RESET, true));
#endif // HAVE_LIBPFM
for (const RegisterValue &RV : Key.RegisterInitialValues) {
// Load in the stack register now as we're done using it elsewhere
// and need to set the value in preparation for executing the
// snippet.
if (RV.Register != StackPointerRegister)
continue;
const auto SetRegisterCode = ET.setRegTo(*MSI, RV.Register, RV.Value);
if (SetRegisterCode.empty())
IsSnippetSetupComplete = false;
BBF.addInstructions(SetRegisterCode);
break;
}
}
return IsSnippetSetupComplete;
}
// Small utility function to add named passes.
static bool addPass(PassManagerBase &PM, StringRef PassName,
TargetPassConfig &TPC) {
const PassRegistry *PR = PassRegistry::getPassRegistry();
const PassInfo *PI = PR->getPassInfo(PassName);
if (!PI) {
errs() << " run-pass " << PassName << " is not registered.\n";
return true;
}
if (!PI->getNormalCtor()) {
errs() << " cannot create pass: " << PI->getPassName() << "\n";
return true;
}
Pass *P = PI->getNormalCtor()();
std::string Banner = std::string("After ") + std::string(P->getPassName());
PM.add(P);
TPC.printAndVerify(Banner);
return false;
}
MachineFunction &createVoidVoidPtrMachineFunction(StringRef FunctionName,
Module *Module,
MachineModuleInfo *MMI) {
Type *const ReturnType = Type::getInt32Ty(Module->getContext());
Type *const MemParamType = PointerType::get(
Type::getInt8Ty(Module->getContext()), 0 /*default address space*/);
FunctionType *FunctionType =
FunctionType::get(ReturnType, {MemParamType}, false);
Function *const F = Function::Create(
FunctionType, GlobalValue::ExternalLinkage, FunctionName, Module);
BasicBlock *BB = BasicBlock::Create(Module->getContext(), "", F);
new UnreachableInst(Module->getContext(), BB);
return MMI->getOrCreateMachineFunction(*F);
}
BasicBlockFiller::BasicBlockFiller(MachineFunction &MF, MachineBasicBlock *MBB,
const MCInstrInfo *MCII)
: MF(MF), MBB(MBB), MCII(MCII) {}
void BasicBlockFiller::addInstruction(const MCInst &Inst, const DebugLoc &DL) {
const unsigned Opcode = Inst.getOpcode();
const MCInstrDesc &MCID = MCII->get(Opcode);
MachineInstrBuilder Builder = BuildMI(MBB, DL, MCID);
for (unsigned OpIndex = 0, E = Inst.getNumOperands(); OpIndex < E;
++OpIndex) {
const MCOperand &Op = Inst.getOperand(OpIndex);
if (Op.isReg()) {
const bool IsDef = OpIndex < MCID.getNumDefs();
unsigned Flags = 0;
const MCOperandInfo &OpInfo = MCID.operands().begin()[OpIndex];
if (IsDef && !OpInfo.isOptionalDef())
Flags |= RegState::Define;
Builder.addReg(Op.getReg(), Flags);
} else if (Op.isImm()) {
Builder.addImm(Op.getImm());
} else if (!Op.isValid()) {
llvm_unreachable("Operand is not set");
} else {
llvm_unreachable("Not yet implemented");
}
}
}
void BasicBlockFiller::addInstructions(ArrayRef<MCInst> Insts,
const DebugLoc &DL) {
for (const MCInst &Inst : Insts)
addInstruction(Inst, DL);
}
void BasicBlockFiller::addReturn(const ExegesisTarget &ET,
bool SubprocessCleanup, const DebugLoc &DL) {
// Insert cleanup code
if (SubprocessCleanup) {
#ifdef HAVE_LIBPFM
addInstructions(ET.configurePerfCounter(PERF_EVENT_IOC_DISABLE, false));
#endif // HAVE_LIBPFM
#ifdef __linux__
addInstructions(ET.generateExitSyscall(0));
#endif // __linux__
}
// Insert the return code.
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
if (TII->getReturnOpcode() < TII->getNumOpcodes()) {
BuildMI(MBB, DL, TII->get(TII->getReturnOpcode()));
} else {
MachineIRBuilder MIB(MF);
MIB.setMBB(*MBB);
FunctionLoweringInfo FuncInfo;
FuncInfo.CanLowerReturn = true;
MF.getSubtarget().getCallLowering()->lowerReturn(MIB, nullptr, {}, FuncInfo,
0);
}
}
FunctionFiller::FunctionFiller(MachineFunction &MF,
std::vector<unsigned> RegistersSetUp)
: MF(MF), MCII(MF.getTarget().getMCInstrInfo()), Entry(addBasicBlock()),
RegistersSetUp(std::move(RegistersSetUp)) {}
BasicBlockFiller FunctionFiller::addBasicBlock() {
MachineBasicBlock *MBB = MF.CreateMachineBasicBlock();
MF.push_back(MBB);
return BasicBlockFiller(MF, MBB, MCII);
}
ArrayRef<unsigned> FunctionFiller::getRegistersSetUp() const {
return RegistersSetUp;
}
static std::unique_ptr<Module>
createModule(const std::unique_ptr<LLVMContext> &Context, const DataLayout &DL) {
auto Mod = std::make_unique<Module>(ModuleID, *Context);
Mod->setDataLayout(DL);
return Mod;
}
BitVector getFunctionReservedRegs(const TargetMachine &TM) {
std::unique_ptr<LLVMContext> Context = std::make_unique<LLVMContext>();
std::unique_ptr<Module> Module = createModule(Context, TM.createDataLayout());
// TODO: This only works for targets implementing LLVMTargetMachine.
const LLVMTargetMachine &LLVMTM = static_cast<const LLVMTargetMachine &>(TM);
auto MMIWP = std::make_unique<MachineModuleInfoWrapperPass>(&LLVMTM);
MachineFunction &MF = createVoidVoidPtrMachineFunction(
FunctionID, Module.get(), &MMIWP->getMMI());
// Saving reserved registers for client.
return MF.getSubtarget().getRegisterInfo()->getReservedRegs(MF);
}
Error assembleToStream(const ExegesisTarget &ET,
std::unique_ptr<LLVMTargetMachine> TM,
ArrayRef<unsigned> LiveIns, const FillFunction &Fill,
raw_pwrite_stream &AsmStream, const BenchmarkKey &Key,
bool GenerateMemoryInstructions) {
auto Context = std::make_unique<LLVMContext>();
std::unique_ptr<Module> Module =
createModule(Context, TM->createDataLayout());
auto MMIWP = std::make_unique<MachineModuleInfoWrapperPass>(TM.get());
MachineFunction &MF = createVoidVoidPtrMachineFunction(
FunctionID, Module.get(), &MMIWP.get()->getMMI());
MF.ensureAlignment(kFunctionAlignment);
// We need to instruct the passes that we're done with SSA and virtual
// registers.
auto &Properties = MF.getProperties();
Properties.set(MachineFunctionProperties::Property::NoVRegs);
Properties.reset(MachineFunctionProperties::Property::IsSSA);
Properties.set(MachineFunctionProperties::Property::NoPHIs);
for (const unsigned Reg : LiveIns)
MF.getRegInfo().addLiveIn(Reg);
if (GenerateMemoryInstructions) {
for (const unsigned Reg : ET.getArgumentRegisters())
MF.getRegInfo().addLiveIn(Reg);
// Add a live in for registers that need saving so that the machine verifier
// doesn't fail if the register is never defined.
for (const unsigned Reg : ET.getRegistersNeedSaving())
MF.getRegInfo().addLiveIn(Reg);
}
std::vector<unsigned> RegistersSetUp;
for (const auto &InitValue : Key.RegisterInitialValues) {
RegistersSetUp.push_back(InitValue.Register);
}
FunctionFiller Sink(MF, std::move(RegistersSetUp));
auto Entry = Sink.getEntry();
for (const unsigned Reg : LiveIns)
Entry.MBB->addLiveIn(Reg);
if (GenerateMemoryInstructions) {
for (const unsigned Reg : ET.getArgumentRegisters())
Entry.MBB->addLiveIn(Reg);
// Add a live in for registers that need saving so that the machine verifier
// doesn't fail if the register is never defined.
for (const unsigned Reg : ET.getRegistersNeedSaving())
Entry.MBB->addLiveIn(Reg);
}
const bool IsSnippetSetupComplete = generateSnippetSetupCode(
ET, TM->getMCSubtargetInfo(), Entry, Key, GenerateMemoryInstructions);
// If the snippet setup is not complete, we disable liveliness tracking. This
// means that we won't know what values are in the registers.
// FIXME: this should probably be an assertion.
if (!IsSnippetSetupComplete)
Properties.reset(MachineFunctionProperties::Property::TracksLiveness);
Fill(Sink);
// prologue/epilogue pass needs the reserved registers to be frozen, this
// is usually done by the SelectionDAGISel pass.
MF.getRegInfo().freezeReservedRegs();
// We create the pass manager, run the passes to populate AsmBuffer.
MCContext &MCContext = MMIWP->getMMI().getContext();
legacy::PassManager PM;
TargetLibraryInfoImpl TLII(Triple(Module->getTargetTriple()));
PM.add(new TargetLibraryInfoWrapperPass(TLII));
TargetPassConfig *TPC = TM->createPassConfig(PM);
PM.add(TPC);
PM.add(MMIWP.release());
TPC->printAndVerify("MachineFunctionGenerator::assemble");
// Add target-specific passes.
ET.addTargetSpecificPasses(PM);
TPC->printAndVerify("After ExegesisTarget::addTargetSpecificPasses");
// Adding the following passes:
// - postrapseudos: expands pseudo return instructions used on some targets.
// - machineverifier: checks that the MachineFunction is well formed.
// - prologepilog: saves and restore callee saved registers.
for (const char *PassName :
{"postrapseudos", "machineverifier", "prologepilog"})
if (addPass(PM, PassName, *TPC))
return make_error<Failure>("Unable to add a mandatory pass");
TPC->setInitialized();
// AsmPrinter is responsible for generating the assembly into AsmBuffer.
if (TM->addAsmPrinter(PM, AsmStream, nullptr, CodeGenFileType::ObjectFile,
MCContext))
return make_error<Failure>("Cannot add AsmPrinter passes");
PM.run(*Module); // Run all the passes
return Error::success();
}
object::OwningBinary<object::ObjectFile>
getObjectFromBuffer(StringRef InputData) {
// Storing the generated assembly into a MemoryBuffer that owns the memory.
std::unique_ptr<MemoryBuffer> Buffer =
MemoryBuffer::getMemBufferCopy(InputData);
// Create the ObjectFile from the MemoryBuffer.
std::unique_ptr<object::ObjectFile> Obj =
cantFail(object::ObjectFile::createObjectFile(Buffer->getMemBufferRef()));
// Returning both the MemoryBuffer and the ObjectFile.
return object::OwningBinary<object::ObjectFile>(std::move(Obj),
std::move(Buffer));
}
object::OwningBinary<object::ObjectFile> getObjectFromFile(StringRef Filename) {
return cantFail(object::ObjectFile::createObjectFile(Filename));
}
Expected<ExecutableFunction> ExecutableFunction::create(
std::unique_ptr<LLVMTargetMachine> TM,
object::OwningBinary<object::ObjectFile> &&ObjectFileHolder) {
assert(ObjectFileHolder.getBinary() && "cannot create object file");
std::unique_ptr<LLVMContext> Ctx = std::make_unique<LLVMContext>();
auto SymbolSizes = object::computeSymbolSizes(*ObjectFileHolder.getBinary());
// Get the size of the function that we want to call into (with the name of
// FunctionID).
auto SymbolIt = find_if(SymbolSizes, [&](const auto &Pair) {
auto SymbolName = Pair.first.getName();
if (SymbolName)
return *SymbolName == FunctionID;
// We should always succeed in finding the FunctionID, hence we suppress
// the error here and assert later on the search result, rather than
// propagating the Expected<> error back to the caller.
consumeError(SymbolName.takeError());
return false;
});
assert(SymbolIt != SymbolSizes.end() &&
"Cannot find the symbol for FunctionID");
uintptr_t CodeSize = SymbolIt->second;
auto EJITOrErr = orc::LLJITBuilder().create();
if (!EJITOrErr)
return EJITOrErr.takeError();
auto EJIT = std::move(*EJITOrErr);
if (auto ObjErr =
EJIT->addObjectFile(std::get<1>(ObjectFileHolder.takeBinary())))
return std::move(ObjErr);
auto FunctionAddressOrErr = EJIT->lookup(FunctionID);
if (!FunctionAddressOrErr)
return FunctionAddressOrErr.takeError();
const uint64_t FunctionAddress = FunctionAddressOrErr->getValue();
assert(isAligned(kFunctionAlignment, FunctionAddress) &&
"function is not properly aligned");
StringRef FBytes =
StringRef(reinterpret_cast<const char *>(FunctionAddress), CodeSize);
return ExecutableFunction(std::move(Ctx), std::move(EJIT), FBytes);
}
ExecutableFunction::ExecutableFunction(std::unique_ptr<LLVMContext> Ctx,
std::unique_ptr<orc::LLJIT> EJIT,
StringRef FB)
: FunctionBytes(FB), Context(std::move(Ctx)), ExecJIT(std::move(EJIT)) {}
Error getBenchmarkFunctionBytes(const StringRef InputData,
std::vector<uint8_t> &Bytes) {
const auto Holder = getObjectFromBuffer(InputData);
const auto *Obj = Holder.getBinary();
// See RuntimeDyldImpl::loadObjectImpl(Obj) for much more complete
// implementation.
// Find the only function in the object file.
SmallVector<object::SymbolRef, 1> Functions;
for (auto &Sym : Obj->symbols()) {
auto SymType = Sym.getType();
if (SymType && *SymType == object::SymbolRef::Type::ST_Function)
Functions.push_back(Sym);
}
if (Functions.size() != 1)
return make_error<Failure>("Exactly one function expected");
// Find the containing section - it is assumed to contain only this function.
auto SectionOrErr = Functions.front().getSection();
if (!SectionOrErr || *SectionOrErr == Obj->section_end())
return make_error<Failure>("Section not found");
auto Address = Functions.front().getAddress();
if (!Address || *Address != SectionOrErr.get()->getAddress())
return make_error<Failure>("Unexpected layout");
auto ContentsOrErr = SectionOrErr.get()->getContents();
if (!ContentsOrErr)
return ContentsOrErr.takeError();
Bytes.assign(ContentsOrErr->begin(), ContentsOrErr->end());
return Error::success();
}
} // namespace exegesis
} // namespace llvm