blob: 037e60021b2961d992bc6b71628c969d72b29d08 [file] [log] [blame]
//===-- Single-precision e^x - 1 function ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "src/math/expm1f.h"
#include "common_constants.h" // Lookup tables EXP_M1 and EXP_M2.
#include "src/__support/FPUtil/BasicOperations.h"
#include "src/__support/FPUtil/FEnvImpl.h"
#include "src/__support/FPUtil/FMA.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/PolyEval.h"
#include "src/__support/FPUtil/multiply_add.h"
#include "src/__support/FPUtil/nearest_integer.h"
#include "src/__support/FPUtil/rounding_mode.h"
#include "src/__support/common.h"
#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
#include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA
#include <errno.h>
namespace LIBC_NAMESPACE {
LLVM_LIBC_FUNCTION(float, expm1f, (float x)) {
using FPBits = typename fputil::FPBits<float>;
FPBits xbits(x);
uint32_t x_u = xbits.uintval();
uint32_t x_abs = x_u & 0x7fff'ffffU;
// Exceptional value
if (LIBC_UNLIKELY(x_u == 0x3e35'bec5U)) { // x = 0x1.6b7d8ap-3f
int round_mode = fputil::quick_get_round();
if (round_mode == FE_TONEAREST || round_mode == FE_UPWARD)
return 0x1.8dbe64p-3f;
return 0x1.8dbe62p-3f;
}
#if !defined(LIBC_TARGET_CPU_HAS_FMA)
if (LIBC_UNLIKELY(x_u == 0xbdc1'c6cbU)) { // x = -0x1.838d96p-4f
int round_mode = fputil::quick_get_round();
if (round_mode == FE_TONEAREST || round_mode == FE_DOWNWARD)
return -0x1.71c884p-4f;
return -0x1.71c882p-4f;
}
#endif // LIBC_TARGET_CPU_HAS_FMA
// When |x| > 25*log(2), or nan
if (LIBC_UNLIKELY(x_abs >= 0x418a'a123U)) {
// x < log(2^-25)
if (xbits.is_neg()) {
// exp(-Inf) = 0
if (xbits.is_inf())
return -1.0f;
// exp(nan) = nan
if (xbits.is_nan())
return x;
int round_mode = fputil::quick_get_round();
if (round_mode == FE_UPWARD || round_mode == FE_TOWARDZERO)
return -0x1.ffff'fep-1f; // -1.0f + 0x1.0p-24f
return -1.0f;
} else {
// x >= 89 or nan
if (xbits.uintval() >= 0x42b2'0000) {
if (xbits.uintval() < 0x7f80'0000U) {
int rounding = fputil::quick_get_round();
if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO)
return FPBits::max_normal().get_val();
fputil::set_errno_if_required(ERANGE);
fputil::raise_except_if_required(FE_OVERFLOW);
}
return x + FPBits::inf().get_val();
}
}
}
// |x| < 2^-4
if (x_abs < 0x3d80'0000U) {
// |x| < 2^-25
if (x_abs < 0x3300'0000U) {
// x = -0.0f
if (LIBC_UNLIKELY(xbits.uintval() == 0x8000'0000U))
return x;
// When |x| < 2^-25, the relative error of the approximation e^x - 1 ~ x
// is:
// |(e^x - 1) - x| / |e^x - 1| < |x^2| / |x|
// = |x|
// < 2^-25
// < epsilon(1)/2.
// So the correctly rounded values of expm1(x) are:
// = x + eps(x) if rounding mode = FE_UPWARD,
// or (rounding mode = FE_TOWARDZERO and x is
// negative),
// = x otherwise.
// To simplify the rounding decision and make it more efficient, we use
// fma(x, x, x) ~ x + x^2 instead.
// Note: to use the formula x + x^2 to decide the correct rounding, we
// do need fma(x, x, x) to prevent underflow caused by x*x when |x| <
// 2^-76. For targets without FMA instructions, we simply use double for
// intermediate results as it is more efficient than using an emulated
// version of FMA.
#if defined(LIBC_TARGET_CPU_HAS_FMA)
return fputil::fma(x, x, x);
#else
double xd = x;
return static_cast<float>(fputil::multiply_add(xd, xd, xd));
#endif // LIBC_TARGET_CPU_HAS_FMA
}
constexpr double COEFFS[] = {0x1p-1,
0x1.55555555557ddp-3,
0x1.55555555552fap-5,
0x1.111110fcd58b7p-7,
0x1.6c16c1717660bp-10,
0x1.a0241f0006d62p-13,
0x1.a01e3f8d3c06p-16};
// 2^-25 <= |x| < 2^-4
double xd = static_cast<double>(x);
double xsq = xd * xd;
// Degree-8 minimax polynomial generated by Sollya with:
// > display = hexadecimal;
// > P = fpminimax((expm1(x) - x)/x^2, 6, [|D...|], [-2^-4, 2^-4]);
double c0 = fputil::multiply_add(xd, COEFFS[1], COEFFS[0]);
double c1 = fputil::multiply_add(xd, COEFFS[3], COEFFS[2]);
double c2 = fputil::multiply_add(xd, COEFFS[5], COEFFS[4]);
double r = fputil::polyeval(xsq, c0, c1, c2, COEFFS[6]);
return static_cast<float>(fputil::multiply_add(r, xsq, xd));
}
// For -18 < x < 89, to compute expm1(x), we perform the following range
// reduction: find hi, mid, lo such that:
// x = hi + mid + lo, in which
// hi is an integer,
// mid * 2^7 is an integer
// -2^(-8) <= lo < 2^-8.
// In particular,
// hi + mid = round(x * 2^7) * 2^(-7).
// Then,
// expm1(x) = exp(hi + mid + lo) - 1 = exp(hi) * exp(mid) * exp(lo) - 1.
// We store exp(hi) and exp(mid) in the lookup tables EXP_M1 and EXP_M2
// respectively. exp(lo) is computed using a degree-4 minimax polynomial
// generated by Sollya.
// x_hi = hi + mid.
float kf = fputil::nearest_integer(x * 0x1.0p7f);
int x_hi = static_cast<int>(kf);
// Subtract (hi + mid) from x to get lo.
double xd = static_cast<double>(fputil::multiply_add(kf, -0x1.0p-7f, x));
x_hi += 104 << 7;
// hi = x_hi >> 7
double exp_hi = EXP_M1[x_hi >> 7];
// lo = x_hi & 0x0000'007fU;
double exp_mid = EXP_M2[x_hi & 0x7f];
double exp_hi_mid = exp_hi * exp_mid;
// Degree-4 minimax polynomial generated by Sollya with the following
// commands:
// > display = hexadecimal;
// > Q = fpminimax(expm1(x)/x, 3, [|D...|], [-2^-8, 2^-8]);
// > Q;
double exp_lo =
fputil::polyeval(xd, 0x1.0p0, 0x1.ffffffffff777p-1, 0x1.000000000071cp-1,
0x1.555566668e5e7p-3, 0x1.55555555ef243p-5);
return static_cast<float>(fputil::multiply_add(exp_hi_mid, exp_lo, -1.0));
}
} // namespace LIBC_NAMESPACE