blob: d2342e289fcba037f603d0b058ab8adae0496914 [file] [log] [blame]
//===-- Single-precision 2^x function -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_SRC_MATH_GENERIC_EXP2F_IMPL_H
#define LLVM_LIBC_SRC_MATH_GENERIC_EXP2F_IMPL_H
#include "src/__support/FPUtil/FEnvImpl.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/PolyEval.h"
#include "src/__support/FPUtil/except_value_utils.h"
#include "src/__support/FPUtil/multiply_add.h"
#include "src/__support/FPUtil/nearest_integer.h"
#include "src/__support/FPUtil/rounding_mode.h"
#include "src/__support/common.h"
#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
#include "src/__support/macros/properties/cpu_features.h"
#include <errno.h>
#include "explogxf.h"
namespace LIBC_NAMESPACE::generic {
LIBC_INLINE float exp2f(float x) {
constexpr uint32_t EXVAL1 = 0x3b42'9d37U;
constexpr uint32_t EXVAL2 = 0xbcf3'a937U;
constexpr uint32_t EXVAL_MASK = EXVAL1 & EXVAL2;
using FPBits = typename fputil::FPBits<float>;
FPBits xbits(x);
uint32_t x_u = xbits.uintval();
uint32_t x_abs = x_u & 0x7fff'ffffU;
// When |x| >= 128, or x is nan, or |x| <= 2^-5
if (LIBC_UNLIKELY(x_abs >= 0x4300'0000U || x_abs <= 0x3d00'0000U)) {
// |x| <= 2^-5
if (x_abs <= 0x3d00'0000) {
// |x| < 2^-25
if (LIBC_UNLIKELY(x_abs <= 0x3280'0000U)) {
return 1.0f + x;
}
// Check exceptional values.
if (LIBC_UNLIKELY((x_u & EXVAL_MASK) == EXVAL_MASK)) {
if (LIBC_UNLIKELY(x_u == EXVAL1)) { // x = 0x1.853a6ep-9f
return fputil::round_result_slightly_down(0x1.00870ap+0f);
} else if (LIBC_UNLIKELY(x_u == EXVAL2)) { // x = -0x1.e7526ep-6f
return fputil::round_result_slightly_down(0x1.f58d62p-1f);
}
}
// Minimax polynomial generated by Sollya with:
// > P = fpminimax((2^x - 1)/x, 5, [|D...|], [-2^-5, 2^-5]);
constexpr double COEFFS[] = {
0x1.62e42fefa39f3p-1, 0x1.ebfbdff82c57bp-3, 0x1.c6b08d6f2d7aap-5,
0x1.3b2ab6fc92f5dp-7, 0x1.5d897cfe27125p-10, 0x1.43090e61e6af1p-13};
double xd = static_cast<double>(x);
double xsq = xd * xd;
double c0 = fputil::multiply_add(xd, COEFFS[1], COEFFS[0]);
double c1 = fputil::multiply_add(xd, COEFFS[3], COEFFS[2]);
double c2 = fputil::multiply_add(xd, COEFFS[5], COEFFS[4]);
double p = fputil::polyeval(xsq, c0, c1, c2);
double r = fputil::multiply_add(p, xd, 1.0);
return static_cast<float>(r);
}
// x >= 128
if (xbits.is_pos()) {
// x is finite
if (x_u < 0x7f80'0000U) {
int rounding = fputil::quick_get_round();
if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO)
return FPBits::max_normal().get_val();
fputil::set_errno_if_required(ERANGE);
fputil::raise_except_if_required(FE_OVERFLOW);
}
// x is +inf or nan
return x + FPBits::inf().get_val();
}
// x <= -150
if (x_u >= 0xc316'0000U) {
// exp(-Inf) = 0
if (xbits.is_inf())
return 0.0f;
// exp(nan) = nan
if (xbits.is_nan())
return x;
if (fputil::fenv_is_round_up())
return FPBits::min_subnormal().get_val();
if (x != 0.0f) {
fputil::set_errno_if_required(ERANGE);
fputil::raise_except_if_required(FE_UNDERFLOW);
}
return 0.0f;
}
}
// For -150 < x < 128, to compute 2^x, we perform the following range
// reduction: find hi, mid, lo such that:
// x = hi + mid + lo, in which
// hi is an integer,
// 0 <= mid * 2^5 < 32 is an integer
// -2^(-6) <= lo <= 2^-6.
// In particular,
// hi + mid = round(x * 2^5) * 2^(-5).
// Then,
// 2^x = 2^(hi + mid + lo) = 2^hi * 2^mid * 2^lo.
// 2^mid is stored in the lookup table of 32 elements.
// 2^lo is computed using a degree-5 minimax polynomial
// generated by Sollya.
// We perform 2^hi * 2^mid by simply add hi to the exponent field
// of 2^mid.
// kf = (hi + mid) * 2^5 = round(x * 2^5)
float kf;
int k;
#ifdef LIBC_TARGET_CPU_HAS_NEAREST_INT
kf = fputil::nearest_integer(x * 32.0f);
k = static_cast<int>(kf);
#else
constexpr float HALF[2] = {0.5f, -0.5f};
k = static_cast<int>(fputil::multiply_add(x, 32.0f, HALF[x < 0.0f]));
kf = static_cast<float>(k);
#endif // LIBC_TARGET_CPU_HAS_NEAREST_INT
// dx = lo = x - (hi + mid) = x - kf * 2^(-5)
double dx = fputil::multiply_add(-0x1.0p-5f, kf, x);
// hi = floor(kf * 2^(-4))
// exp_hi = shift hi to the exponent field of double precision.
int64_t exp_hi =
static_cast<int64_t>(static_cast<uint64_t>(k >> ExpBase::MID_BITS)
<< fputil::FPBits<double>::FRACTION_LEN);
// mh = 2^hi * 2^mid
// mh_bits = bit field of mh
int64_t mh_bits = ExpBase::EXP_2_MID[k & ExpBase::MID_MASK] + exp_hi;
double mh = fputil::FPBits<double>(uint64_t(mh_bits)).get_val();
// Degree-5 polynomial approximating (2^x - 1)/x generating by Sollya with:
// > P = fpminimax((2^x - 1)/x, 5, [|D...|], [-1/32. 1/32]);
constexpr double COEFFS[5] = {0x1.62e42fefa39efp-1, 0x1.ebfbdff8131c4p-3,
0x1.c6b08d7061695p-5, 0x1.3b2b1bee74b2ap-7,
0x1.5d88091198529p-10};
double dx_sq = dx * dx;
double c1 = fputil::multiply_add(dx, COEFFS[0], 1.0);
double c2 = fputil::multiply_add(dx, COEFFS[2], COEFFS[1]);
double c3 = fputil::multiply_add(dx, COEFFS[4], COEFFS[3]);
double p = fputil::multiply_add(dx_sq, c3, c2);
// 2^x = 2^(hi + mid + lo)
// = 2^(hi + mid) * 2^lo
// ~ mh * (1 + lo * P(lo))
// = mh + (mh*lo) * P(lo)
return static_cast<float>(fputil::multiply_add(p, dx_sq * mh, c1 * mh));
}
} // namespace LIBC_NAMESPACE::generic
#endif // LLVM_LIBC_SRC_MATH_GENERIC_EXP2F_IMPL_H