blob: dd482f305fcbc8765222f56d87e9c420a64db5d5 [file] [log] [blame]
//===- GPUDialect.cpp - MLIR Dialect for GPU Kernels implementation -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the GPU kernel-related dialect and its operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/SymbolTable.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Interfaces/FunctionImplementation.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Transforms/InliningUtils.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/StringSaver.h"
#include <cassert>
using namespace mlir;
using namespace mlir::gpu;
#include "mlir/Dialect/GPU/IR/GPUOpsDialect.cpp.inc"
//===----------------------------------------------------------------------===//
// GPU Device Mapping Attributes
//===----------------------------------------------------------------------===//
int64_t GPUBlockMappingAttr::getMappingId() const {
return static_cast<int64_t>(getBlock());
}
bool GPUBlockMappingAttr::isLinearMapping() const {
return getMappingId() >= static_cast<int64_t>(MappingId::LinearDim0);
}
int64_t GPUBlockMappingAttr::getRelativeIndex() const {
return isLinearMapping()
? getMappingId() - static_cast<int64_t>(MappingId::LinearDim0)
: getMappingId();
}
int64_t GPUWarpgroupMappingAttr::getMappingId() const {
return static_cast<int64_t>(getWarpgroup());
}
bool GPUWarpgroupMappingAttr::isLinearMapping() const {
return getMappingId() >= static_cast<int64_t>(MappingId::LinearDim0);
}
int64_t GPUWarpgroupMappingAttr::getRelativeIndex() const {
return isLinearMapping()
? getMappingId() - static_cast<int64_t>(MappingId::LinearDim0)
: getMappingId();
}
int64_t GPUWarpMappingAttr::getMappingId() const {
return static_cast<int64_t>(getWarp());
}
bool GPUWarpMappingAttr::isLinearMapping() const {
return getMappingId() >= static_cast<int64_t>(MappingId::LinearDim0);
}
int64_t GPUWarpMappingAttr::getRelativeIndex() const {
return isLinearMapping()
? getMappingId() - static_cast<int64_t>(MappingId::LinearDim0)
: getMappingId();
}
int64_t GPUThreadMappingAttr::getMappingId() const {
return static_cast<int64_t>(getThread());
}
bool GPUThreadMappingAttr::isLinearMapping() const {
return getMappingId() >= static_cast<int64_t>(MappingId::LinearDim0);
}
int64_t GPUThreadMappingAttr::getRelativeIndex() const {
return isLinearMapping()
? getMappingId() - static_cast<int64_t>(MappingId::LinearDim0)
: getMappingId();
}
int64_t GPUMemorySpaceMappingAttr::getMappingId() const {
return static_cast<int64_t>(getAddressSpace());
}
bool GPUMemorySpaceMappingAttr::isLinearMapping() const {
llvm_unreachable("GPUMemorySpaceMappingAttr does not support linear mapping");
}
int64_t GPUMemorySpaceMappingAttr::getRelativeIndex() const {
llvm_unreachable("GPUMemorySpaceMappingAttr does not support relative index");
}
//===----------------------------------------------------------------------===//
// MMAMatrixType
//===----------------------------------------------------------------------===//
MMAMatrixType MMAMatrixType::get(ArrayRef<int64_t> shape, Type elementType,
StringRef operand) {
return Base::get(elementType.getContext(), shape, elementType, operand);
}
MMAMatrixType
MMAMatrixType::getChecked(function_ref<InFlightDiagnostic()> emitError,
ArrayRef<int64_t> shape, Type elementType,
StringRef operand) {
return Base::getChecked(emitError, elementType.getContext(), shape,
elementType, operand);
}
unsigned MMAMatrixType::getNumDims() const { return getImpl()->numDims; }
ArrayRef<int64_t> MMAMatrixType::getShape() const {
return getImpl()->getShape();
}
Type MMAMatrixType::getElementType() const { return getImpl()->elementType; }
StringRef MMAMatrixType::getOperand() const { return getImpl()->getOperand(); }
bool MMAMatrixType::isValidElementType(Type elementType) {
return elementType.isF16() || elementType.isF32() ||
elementType.isUnsignedInteger(8) || elementType.isSignedInteger(8) ||
elementType.isInteger(32);
}
LogicalResult
MMAMatrixType::verify(function_ref<InFlightDiagnostic()> emitError,
ArrayRef<int64_t> shape, Type elementType,
StringRef operand) {
if (!operand.equals("AOp") && !operand.equals("BOp") &&
!operand.equals("COp"))
return emitError() << "operand expected to be one of AOp, BOp or COp";
if (shape.size() != 2)
return emitError() << "MMAMatrixType must have exactly two dimensions";
if (!MMAMatrixType::isValidElementType(elementType))
return emitError()
<< "MMAMatrixType elements must be SI8, UI8, I32, F16, or F32";
return success();
}
//===----------------------------------------------------------------------===//
// GPUDialect
//===----------------------------------------------------------------------===//
bool GPUDialect::isWorkgroupMemoryAddressSpace(Attribute memorySpace) {
if (!memorySpace)
return false;
if (auto gpuAttr = llvm::dyn_cast<gpu::AddressSpaceAttr>(memorySpace))
return gpuAttr.getValue() == getWorkgroupAddressSpace();
return false;
}
bool GPUDialect::hasWorkgroupMemoryAddressSpace(MemRefType type) {
Attribute memorySpace = type.getMemorySpace();
return isWorkgroupMemoryAddressSpace(memorySpace);
}
bool GPUDialect::isKernel(Operation *op) {
UnitAttr isKernelAttr = op->getAttrOfType<UnitAttr>(getKernelFuncAttrName());
return static_cast<bool>(isKernelAttr);
}
namespace {
/// This class defines the interface for handling inlining with gpu
/// operations.
struct GPUInlinerInterface : public DialectInlinerInterface {
using DialectInlinerInterface::DialectInlinerInterface;
/// All gpu dialect ops can be inlined.
bool isLegalToInline(Operation *, Region *, bool, IRMapping &) const final {
return true;
}
};
} // namespace
void GPUDialect::initialize() {
addTypes<AsyncTokenType>();
addTypes<MMAMatrixType>();
addTypes<SparseDnTensorHandleType>();
addTypes<SparseSpMatHandleType>();
addTypes<SparseSpGEMMOpHandleType>();
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/GPU/IR/GPUOps.cpp.inc"
>();
addAttributes<
#define GET_ATTRDEF_LIST
#include "mlir/Dialect/GPU/IR/GPUOpsAttributes.cpp.inc"
>();
addInterfaces<GPUInlinerInterface>();
}
static std::string getSparseHandleKeyword(SparseHandleKind kind) {
switch (kind) {
case SparseHandleKind::DnTensor:
return "sparse.dntensor_handle";
case SparseHandleKind::SpMat:
return "sparse.spmat_handle";
case SparseHandleKind::SpGEMMOp:
return "sparse.spgemmop_handle";
}
llvm_unreachable("unknown sparse handle kind");
return "";
}
Type GPUDialect::parseType(DialectAsmParser &parser) const {
// Parse the main keyword for the type.
StringRef keyword;
if (parser.parseKeyword(&keyword))
return Type();
MLIRContext *context = getContext();
// Handle 'async token' types.
if (keyword == "async.token")
return AsyncTokenType::get(context);
if (keyword == "mma_matrix") {
SMLoc beginLoc = parser.getNameLoc();
// Parse '<'.
if (parser.parseLess())
return nullptr;
// Parse the size and elementType.
SmallVector<int64_t> shape;
Type elementType;
if (parser.parseDimensionList(shape, /*allowDynamic=*/false) ||
parser.parseType(elementType))
return nullptr;
// Parse ','
if (parser.parseComma())
return nullptr;
// Parse operand.
std::string operand;
if (failed(parser.parseOptionalString(&operand)))
return nullptr;
// Parse '>'.
if (parser.parseGreater())
return nullptr;
return MMAMatrixType::getChecked(mlir::detail::getDefaultDiagnosticEmitFn(
parser.getEncodedSourceLoc(beginLoc)),
shape, elementType, operand);
}
if (keyword == getSparseHandleKeyword(SparseHandleKind::DnTensor))
return SparseDnTensorHandleType::get(context);
if (keyword == getSparseHandleKeyword(SparseHandleKind::SpMat))
return SparseSpMatHandleType::get(context);
if (keyword == getSparseHandleKeyword(SparseHandleKind::SpGEMMOp))
return SparseSpGEMMOpHandleType::get(context);
parser.emitError(parser.getNameLoc(), "unknown gpu type: " + keyword);
return Type();
}
// TODO: print refined type here. Notice that should be corresponding to the
// parser
void GPUDialect::printType(Type type, DialectAsmPrinter &os) const {
TypeSwitch<Type>(type)
.Case<AsyncTokenType>([&](Type) { os << "async.token"; })
.Case<SparseDnTensorHandleType>([&](Type) {
os << getSparseHandleKeyword(SparseHandleKind::DnTensor);
})
.Case<SparseSpMatHandleType>(
[&](Type) { os << getSparseHandleKeyword(SparseHandleKind::SpMat); })
.Case<SparseSpGEMMOpHandleType>([&](Type) {
os << getSparseHandleKeyword(SparseHandleKind::SpGEMMOp);
})
.Case<MMAMatrixType>([&](MMAMatrixType fragTy) {
os << "mma_matrix<";
auto shape = fragTy.getShape();
for (auto dim = shape.begin(), e = shape.end() - 1; dim != e; ++dim)
os << *dim << 'x';
os << shape.back() << 'x' << fragTy.getElementType();
os << ", \"" << fragTy.getOperand() << "\"" << '>';
})
.Default([](Type) { llvm_unreachable("unexpected 'gpu' type kind"); });
}
LogicalResult GPUDialect::verifyOperationAttribute(Operation *op,
NamedAttribute attr) {
if (!llvm::isa<UnitAttr>(attr.getValue()) ||
attr.getName() != getContainerModuleAttrName())
return success();
auto module = dyn_cast<ModuleOp>(op);
if (!module)
return op->emitError("expected '")
<< getContainerModuleAttrName() << "' attribute to be attached to '"
<< ModuleOp::getOperationName() << '\'';
auto walkResult = module.walk([&module](LaunchFuncOp launchOp) -> WalkResult {
// Ignore launches that are nested more or less deep than functions in the
// module we are currently checking.
if (!launchOp->getParentOp() ||
launchOp->getParentOp()->getParentOp() != module)
return success();
// Ignore launch ops with missing attributes here. The errors will be
// reported by the verifiers of those ops.
if (!launchOp->getAttrOfType<SymbolRefAttr>(
LaunchFuncOp::getKernelAttrName(launchOp->getName())))
return success();
// Check that `launch_func` refers to a well-formed GPU kernel container.
StringAttr kernelContainerName = launchOp.getKernelModuleName();
Operation *kernelContainer = module.lookupSymbol(kernelContainerName);
if (!kernelContainer)
return launchOp.emitOpError()
<< "kernel container '" << kernelContainerName.getValue()
<< "' is undefined";
// If the container is a GPU binary op return success.
if (isa<BinaryOp>(kernelContainer))
return success();
auto kernelModule = dyn_cast<GPUModuleOp>(kernelContainer);
if (!kernelModule)
return launchOp.emitOpError()
<< "kernel module '" << kernelContainerName.getValue()
<< "' is undefined";
// Check that `launch_func` refers to a well-formed kernel function.
Operation *kernelFunc = module.lookupSymbol(launchOp.getKernelAttr());
if (!kernelFunc)
return launchOp.emitOpError("kernel function '")
<< launchOp.getKernel() << "' is undefined";
auto kernelConvertedFunction = dyn_cast<FunctionOpInterface>(kernelFunc);
if (!kernelConvertedFunction) {
InFlightDiagnostic diag = launchOp.emitOpError()
<< "referenced kernel '" << launchOp.getKernel()
<< "' is not a function";
diag.attachNote(kernelFunc->getLoc()) << "see the kernel definition here";
return diag;
}
if (!kernelFunc->getAttrOfType<mlir::UnitAttr>(
GPUDialect::getKernelFuncAttrName()))
return launchOp.emitOpError("kernel function is missing the '")
<< GPUDialect::getKernelFuncAttrName() << "' attribute";
// TODO: If the kernel isn't a GPU function (which happens during separate
// compilation), do not check type correspondence as it would require the
// verifier to be aware of the type conversion.
auto kernelGPUFunction = dyn_cast<gpu::GPUFuncOp>(kernelFunc);
if (!kernelGPUFunction)
return success();
unsigned actualNumArguments = launchOp.getNumKernelOperands();
unsigned expectedNumArguments = kernelGPUFunction.getNumArguments();
if (expectedNumArguments != actualNumArguments)
return launchOp.emitOpError("got ")
<< actualNumArguments << " kernel operands but expected "
<< expectedNumArguments;
auto functionType = kernelGPUFunction.getFunctionType();
for (unsigned i = 0; i < expectedNumArguments; ++i) {
if (launchOp.getKernelOperand(i).getType() != functionType.getInput(i)) {
return launchOp.emitOpError("type of function argument ")
<< i << " does not match";
}
}
return success();
});
return walkResult.wasInterrupted() ? failure() : success();
}
/// Parses an optional list of async operands with an optional leading keyword.
/// (`async`)? (`[` ssa-id-list `]`)?
///
/// This method is used by the tablegen assembly format for async ops as well.
static ParseResult parseAsyncDependencies(
OpAsmParser &parser, Type &asyncTokenType,
SmallVectorImpl<OpAsmParser::UnresolvedOperand> &asyncDependencies) {
auto loc = parser.getCurrentLocation();
if (succeeded(parser.parseOptionalKeyword("async"))) {
if (parser.getNumResults() == 0)
return parser.emitError(loc, "needs to be named when marked 'async'");
asyncTokenType = parser.getBuilder().getType<AsyncTokenType>();
}
return parser.parseOperandList(asyncDependencies,
OpAsmParser::Delimiter::OptionalSquare);
}
/// Prints optional async dependencies with its leading keyword.
/// (`async`)? (`[` ssa-id-list `]`)?
// Used by the tablegen assembly format for several async ops.
static void printAsyncDependencies(OpAsmPrinter &printer, Operation *op,
Type asyncTokenType,
OperandRange asyncDependencies) {
if (asyncTokenType)
printer << "async";
if (asyncDependencies.empty())
return;
if (asyncTokenType)
printer << ' ';
printer << '[';
llvm::interleaveComma(asyncDependencies, printer);
printer << ']';
}
// GPU Memory attributions functions shared by LaunchOp and GPUFuncOp.
/// Parses a GPU function memory attribution.
///
/// memory-attribution ::= (`workgroup` `(` ssa-id-and-type-list `)`)?
/// (`private` `(` ssa-id-and-type-list `)`)?
///
/// Note that this function parses only one of the two similar parts, with the
/// keyword provided as argument.
static ParseResult
parseAttributions(OpAsmParser &parser, StringRef keyword,
SmallVectorImpl<OpAsmParser::Argument> &args) {
// If we could not parse the keyword, just assume empty list and succeed.
if (failed(parser.parseOptionalKeyword(keyword)))
return success();
return parser.parseArgumentList(args, OpAsmParser::Delimiter::Paren,
/*allowType=*/true);
}
/// Prints a GPU function memory attribution.
static void printAttributions(OpAsmPrinter &p, StringRef keyword,
ArrayRef<BlockArgument> values) {
if (values.empty())
return;
p << ' ' << keyword << '(';
llvm::interleaveComma(
values, p, [&p](BlockArgument v) { p << v << " : " << v.getType(); });
p << ')';
}
/// Verifies a GPU function memory attribution.
static LogicalResult verifyAttributions(Operation *op,
ArrayRef<BlockArgument> attributions,
gpu::AddressSpace memorySpace) {
for (Value v : attributions) {
auto type = llvm::dyn_cast<MemRefType>(v.getType());
if (!type)
return op->emitOpError() << "expected memref type in attribution";
// We can only verify the address space if it hasn't already been lowered
// from the AddressSpaceAttr to a target-specific numeric value.
auto addressSpace =
llvm::dyn_cast_or_null<gpu::AddressSpaceAttr>(type.getMemorySpace());
if (!addressSpace)
continue;
if (addressSpace.getValue() != memorySpace)
return op->emitOpError()
<< "expected memory space " << stringifyAddressSpace(memorySpace)
<< " in attribution";
}
return success();
}
//===----------------------------------------------------------------------===//
// AllReduceOp
//===----------------------------------------------------------------------===//
static LogicalResult verifyReduceOpAndType(gpu::AllReduceOperation opName,
Type resType) {
using Kind = gpu::AllReduceOperation;
if (llvm::is_contained(
{Kind::MINNUMF, Kind::MAXNUMF, Kind::MINIMUMF, Kind::MAXIMUMF},
opName)) {
if (!isa<FloatType>(resType))
return failure();
}
if (llvm::is_contained({Kind::MINSI, Kind::MINUI, Kind::MAXSI, Kind::MAXUI,
Kind::AND, Kind::OR, Kind::XOR},
opName)) {
if (!isa<IntegerType>(resType))
return failure();
}
return success();
}
LogicalResult gpu::AllReduceOp::verifyRegions() {
if (getBody().empty() != getOp().has_value())
return emitError("expected either an op attribute or a non-empty body");
if (!getBody().empty()) {
if (getBody().getNumArguments() != 2)
return emitError("expected two region arguments");
for (auto argument : getBody().getArguments()) {
if (argument.getType() != getType())
return emitError("incorrect region argument type");
}
unsigned yieldCount = 0;
for (Block &block : getBody()) {
if (auto yield = dyn_cast<gpu::YieldOp>(block.getTerminator())) {
if (yield.getNumOperands() != 1)
return emitError("expected one gpu.yield operand");
if (yield.getOperand(0).getType() != getType())
return emitError("incorrect gpu.yield type");
++yieldCount;
}
}
if (yieldCount == 0)
return emitError("expected gpu.yield op in region");
} else {
gpu::AllReduceOperation opName = *getOp();
if (failed(verifyReduceOpAndType(opName, getType()))) {
return emitError() << '`' << gpu::stringifyAllReduceOperation(opName)
<< "` reduction operation is not compatible with type "
<< getType();
}
}
return success();
}
static bool canMakeGroupOpUniform(Operation *op) {
auto launchOp = dyn_cast<gpu::LaunchOp>(op->getParentOp());
if (!launchOp)
return false;
Region &body = launchOp.getBody();
assert(!body.empty() && "Invalid region");
// Only convert ops in gpu::launch entry block for now.
return op->getBlock() == &body.front();
}
OpFoldResult gpu::AllReduceOp::fold(FoldAdaptor /*adaptor*/) {
if (!getUniform() && canMakeGroupOpUniform(*this)) {
setUniform(true);
return getResult();
}
return nullptr;
}
// TODO: Support optional custom attributes (without dialect prefix).
static ParseResult parseAllReduceOperation(AsmParser &parser,
AllReduceOperationAttr &attr) {
StringRef enumStr;
if (!parser.parseOptionalKeyword(&enumStr)) {
std::optional<AllReduceOperation> op =
gpu::symbolizeAllReduceOperation(enumStr);
if (!op)
return parser.emitError(parser.getCurrentLocation(), "invalid op kind");
attr = AllReduceOperationAttr::get(parser.getContext(), *op);
}
return success();
}
static void printAllReduceOperation(AsmPrinter &printer, Operation *op,
AllReduceOperationAttr attr) {
if (attr)
attr.print(printer);
}
//===----------------------------------------------------------------------===//
// SubgroupReduceOp
//===----------------------------------------------------------------------===//
LogicalResult gpu::SubgroupReduceOp::verify() {
Type elemType = getType();
if (auto vecTy = dyn_cast<VectorType>(elemType)) {
if (vecTy.isScalable())
return emitOpError() << "is not compatible with scalable vector types";
elemType = vecTy.getElementType();
}
gpu::AllReduceOperation opName = getOp();
if (failed(verifyReduceOpAndType(opName, elemType))) {
return emitError() << '`' << gpu::stringifyAllReduceOperation(opName)
<< "` reduction operation is not compatible with type "
<< getType();
}
return success();
}
OpFoldResult gpu::SubgroupReduceOp::fold(FoldAdaptor /*adaptor*/) {
if (!getUniform() && canMakeGroupOpUniform(*this)) {
setUniform(true);
return getResult();
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// AsyncOpInterface
//===----------------------------------------------------------------------===//
void gpu::addAsyncDependency(Operation *op, Value token) {
op->insertOperands(0, {token});
if (!op->template hasTrait<OpTrait::AttrSizedOperandSegments>())
return;
auto attrName =
OpTrait::AttrSizedOperandSegments<void>::getOperandSegmentSizeAttr();
auto sizeAttr = op->template getAttrOfType<DenseI32ArrayAttr>(attrName);
// Async dependencies is the only variadic operand.
if (!sizeAttr)
return;
SmallVector<int32_t, 8> sizes(sizeAttr.asArrayRef());
++sizes.front();
op->setAttr(attrName, Builder(op->getContext()).getDenseI32ArrayAttr(sizes));
}
//===----------------------------------------------------------------------===//
// LaunchOp
//===----------------------------------------------------------------------===//
void LaunchOp::build(OpBuilder &builder, OperationState &result,
Value gridSizeX, Value gridSizeY, Value gridSizeZ,
Value getBlockSizeX, Value getBlockSizeY,
Value getBlockSizeZ, Value dynamicSharedMemorySize,
Type asyncTokenType, ValueRange asyncDependencies,
TypeRange workgroupAttributions,
TypeRange privateAttributions) {
// Add a WorkGroup attribution attribute. This attribute is required to
// identify private attributions in the list of block argguments.
result.addAttribute(getNumWorkgroupAttributionsAttrName(),
builder.getI64IntegerAttr(workgroupAttributions.size()));
// Add Op operands.
result.addOperands(asyncDependencies);
if (asyncTokenType)
result.types.push_back(builder.getType<AsyncTokenType>());
// Add grid and block sizes as op operands, followed by the data operands.
result.addOperands({gridSizeX, gridSizeY, gridSizeZ, getBlockSizeX,
getBlockSizeY, getBlockSizeZ});
if (dynamicSharedMemorySize)
result.addOperands(dynamicSharedMemorySize);
// Create a kernel body region with kNumConfigRegionAttributes + N memory
// attributions, where the first kNumConfigRegionAttributes arguments have
// `index` type and the rest have the same types as the data operands.
Region *kernelRegion = result.addRegion();
Block *body = new Block();
// TODO: Allow passing in proper locations here.
for (unsigned i = 0; i < kNumConfigRegionAttributes; ++i)
body->addArgument(builder.getIndexType(), result.location);
// Add WorkGroup & Private attributions to the region arguments.
for (Type argTy : workgroupAttributions)
body->addArgument(argTy, result.location);
for (Type argTy : privateAttributions)
body->addArgument(argTy, result.location);
kernelRegion->push_back(body);
// Fill OperandSegmentSize Attribute.
SmallVector<int32_t, 8> segmentSizes(8, 1);
segmentSizes.front() = asyncDependencies.size();
segmentSizes.back() = dynamicSharedMemorySize ? 1 : 0;
result.addAttribute(getOperandSegmentSizeAttr(),
builder.getDenseI32ArrayAttr(segmentSizes));
}
KernelDim3 LaunchOp::getBlockIds() {
assert(!getBody().empty() && "LaunchOp body must not be empty.");
auto args = getBody().getArguments();
return KernelDim3{args[0], args[1], args[2]};
}
KernelDim3 LaunchOp::getThreadIds() {
assert(!getBody().empty() && "LaunchOp body must not be empty.");
auto args = getBody().getArguments();
return KernelDim3{args[3], args[4], args[5]};
}
KernelDim3 LaunchOp::getGridSize() {
assert(!getBody().empty() && "LaunchOp body must not be empty.");
auto args = getBody().getArguments();
return KernelDim3{args[6], args[7], args[8]};
}
KernelDim3 LaunchOp::getBlockSize() {
assert(!getBody().empty() && "LaunchOp body must not be empty.");
auto args = getBody().getArguments();
return KernelDim3{args[9], args[10], args[11]};
}
KernelDim3 LaunchOp::getGridSizeOperandValues() {
auto operands = getOperands().drop_front(getAsyncDependencies().size());
return KernelDim3{operands[0], operands[1], operands[2]};
}
KernelDim3 LaunchOp::getBlockSizeOperandValues() {
auto operands = getOperands().drop_front(getAsyncDependencies().size());
return KernelDim3{operands[3], operands[4], operands[5]};
}
LogicalResult LaunchOp::verifyRegions() {
// Kernel launch takes kNumConfigOperands leading operands for grid/block
// sizes and transforms them into kNumConfigRegionAttributes region arguments
// for block/thread identifiers and grid/block sizes.
if (!getBody().empty()) {
if (getBody().getNumArguments() <
kNumConfigRegionAttributes + getNumWorkgroupAttributions())
return emitOpError("unexpected number of region arguments");
}
// Verify Attributions Address Spaces.
if (failed(verifyAttributions(getOperation(), getWorkgroupAttributions(),
GPUDialect::getWorkgroupAddressSpace())) ||
failed(verifyAttributions(getOperation(), getPrivateAttributions(),
GPUDialect::getPrivateAddressSpace())))
return failure();
// Block terminators without successors are expected to exit the kernel region
// and must be `gpu.terminator`.
for (Block &block : getBody()) {
if (block.empty())
continue;
if (block.back().getNumSuccessors() != 0)
continue;
if (!isa<gpu::TerminatorOp>(&block.back())) {
return block.back()
.emitError()
.append("expected '", gpu::TerminatorOp::getOperationName(),
"' or a terminator with successors")
.attachNote(getLoc())
.append("in '", LaunchOp::getOperationName(), "' body region");
}
}
if (getNumResults() == 0 && getAsyncToken())
return emitOpError("needs to be named when async keyword is specified");
return success();
}
// Pretty-print the kernel grid/block size assignment as
// (%iter-x, %iter-y, %iter-z) in
// (%size-x = %ssa-use, %size-y = %ssa-use, %size-z = %ssa-use)
// where %size-* and %iter-* will correspond to the body region arguments.
static void printSizeAssignment(OpAsmPrinter &p, KernelDim3 size,
KernelDim3 operands, KernelDim3 ids) {
p << '(' << ids.x << ", " << ids.y << ", " << ids.z << ") in (";
p << size.x << " = " << operands.x << ", ";
p << size.y << " = " << operands.y << ", ";
p << size.z << " = " << operands.z << ')';
}
void LaunchOp::print(OpAsmPrinter &p) {
if (getAsyncToken()) {
p << " async";
if (!getAsyncDependencies().empty())
p << " [" << getAsyncDependencies() << ']';
}
// Print the launch configuration.
p << ' ' << getBlocksKeyword();
printSizeAssignment(p, getGridSize(), getGridSizeOperandValues(),
getBlockIds());
p << ' ' << getThreadsKeyword();
printSizeAssignment(p, getBlockSize(), getBlockSizeOperandValues(),
getThreadIds());
if (getDynamicSharedMemorySize())
p << ' ' << getDynamicSharedMemorySizeKeyword() << ' '
<< getDynamicSharedMemorySize();
printAttributions(p, getWorkgroupKeyword(), getWorkgroupAttributions());
printAttributions(p, getPrivateKeyword(), getPrivateAttributions());
p << ' ';
p.printRegion(getBody(), /*printEntryBlockArgs=*/false);
p.printOptionalAttrDict((*this)->getAttrs(), /*elidedAttrs=*/{
LaunchOp::getOperandSegmentSizeAttr(),
getNumWorkgroupAttributionsAttrName()});
}
// Parse the size assignment blocks for blocks and threads. These have the form
// (%region_arg, %region_arg, %region_arg) in
// (%region_arg = %operand, %region_arg = %operand, %region_arg = %operand)
// where %region_arg are percent-identifiers for the region arguments to be
// introduced further (SSA defs), and %operand are percent-identifiers for the
// SSA value uses.
static ParseResult
parseSizeAssignment(OpAsmParser &parser,
MutableArrayRef<OpAsmParser::UnresolvedOperand> sizes,
MutableArrayRef<OpAsmParser::UnresolvedOperand> regionSizes,
MutableArrayRef<OpAsmParser::UnresolvedOperand> indices) {
assert(indices.size() == 3 && "space for three indices expected");
SmallVector<OpAsmParser::UnresolvedOperand, 3> args;
if (parser.parseOperandList(args, OpAsmParser::Delimiter::Paren,
/*allowResultNumber=*/false) ||
parser.parseKeyword("in") || parser.parseLParen())
return failure();
std::move(args.begin(), args.end(), indices.begin());
for (int i = 0; i < 3; ++i) {
if (i != 0 && parser.parseComma())
return failure();
if (parser.parseOperand(regionSizes[i], /*allowResultNumber=*/false) ||
parser.parseEqual() || parser.parseOperand(sizes[i]))
return failure();
}
return parser.parseRParen();
}
/// Parses a Launch operation.
/// operation ::= `gpu.launch` (`async` `[` ssa-id-list `]`)?
/// `blocks` `(` ssa-id-list `)` `in` ssa-reassignment
/// `threads` `(` ssa-id-list `)` `in` ssa-reassignment
/// memory-attribution
/// region attr-dict?
/// ssa-reassignment ::= `(` ssa-id `=` ssa-use (`,` ssa-id `=` ssa-use)* `)`
ParseResult LaunchOp::parse(OpAsmParser &parser, OperationState &result) {
// Sizes of the grid and block.
SmallVector<OpAsmParser::UnresolvedOperand, LaunchOp::kNumConfigOperands>
sizes(LaunchOp::kNumConfigOperands);
MutableArrayRef<OpAsmParser::UnresolvedOperand> sizesRef(sizes);
// Actual (data) operands passed to the kernel.
SmallVector<OpAsmParser::UnresolvedOperand, 4> dataOperands;
// Region arguments to be created.
SmallVector<OpAsmParser::UnresolvedOperand, 16> regionArgs(
LaunchOp::kNumConfigRegionAttributes);
MutableArrayRef<OpAsmParser::UnresolvedOperand> regionArgsRef(regionArgs);
// Parse optional async dependencies.
SmallVector<OpAsmParser::UnresolvedOperand, 4> asyncDependencies;
Type asyncTokenType;
if (failed(
parseAsyncDependencies(parser, asyncTokenType, asyncDependencies)) ||
parser.resolveOperands(asyncDependencies, asyncTokenType,
result.operands))
return failure();
if (parser.getNumResults() > 0)
result.types.push_back(asyncTokenType);
// Parse the size assignment segments: the first segment assigns grid sizes
// and defines values for block identifiers; the second segment assigns block
// sizes and defines values for thread identifiers. In the region argument
// list, identifiers precede sizes, and block-related values precede
// thread-related values.
if (parser.parseKeyword(LaunchOp::getBlocksKeyword().data()) ||
parseSizeAssignment(parser, sizesRef.take_front(3),
regionArgsRef.slice(6, 3),
regionArgsRef.slice(0, 3)) ||
parser.parseKeyword(LaunchOp::getThreadsKeyword().data()) ||
parseSizeAssignment(parser, sizesRef.drop_front(3),
regionArgsRef.slice(9, 3),
regionArgsRef.slice(3, 3)) ||
parser.resolveOperands(sizes, parser.getBuilder().getIndexType(),
result.operands))
return failure();
OpAsmParser::UnresolvedOperand dynamicSharedMemorySize;
bool hasDynamicSharedMemorySize = false;
if (!parser.parseOptionalKeyword(
LaunchOp::getDynamicSharedMemorySizeKeyword())) {
hasDynamicSharedMemorySize = true;
if (parser.parseOperand(dynamicSharedMemorySize) ||
parser.resolveOperand(dynamicSharedMemorySize,
parser.getBuilder().getI32Type(),
result.operands))
return failure();
}
// Create the region arguments, it has kNumConfigRegionAttributes arguments
// that correspond to block/thread identifiers and grid/block sizes, all
// having `index` type, a variadic number of WorkGroup Attributions and
// a variadic number of Private Attributions. The number of WorkGroup
// Attributions is stored in the attr with name:
// LaunchOp::getNumWorkgroupAttributionsAttrName().
Type index = parser.getBuilder().getIndexType();
SmallVector<Type, LaunchOp::kNumConfigRegionAttributes> dataTypes(
LaunchOp::kNumConfigRegionAttributes, index);
SmallVector<OpAsmParser::Argument> regionArguments;
for (auto ssaValueAndType : llvm::zip(regionArgs, dataTypes)) {
OpAsmParser::Argument arg;
arg.ssaName = std::get<0>(ssaValueAndType);
arg.type = std::get<1>(ssaValueAndType);
regionArguments.push_back(arg);
}
Builder &builder = parser.getBuilder();
// Parse workgroup memory attributions.
if (failed(parseAttributions(parser, LaunchOp::getWorkgroupKeyword(),
regionArguments)))
return failure();
// Store the number of operands we just parsed as the number of workgroup
// memory attributions.
unsigned numWorkgroupAttrs =
regionArguments.size() - LaunchOp::kNumConfigRegionAttributes;
result.addAttribute(LaunchOp::getNumWorkgroupAttributionsAttrName(),
builder.getI64IntegerAttr(numWorkgroupAttrs));
// Parse private memory attributions.
if (failed(parseAttributions(parser, LaunchOp::getPrivateKeyword(),
regionArguments)))
return failure();
// Introduce the body region and parse it. The region has
// kNumConfigRegionAttributes arguments that correspond to
// block/thread identifiers and grid/block sizes, all having `index` type.
Region *body = result.addRegion();
if (parser.parseRegion(*body, regionArguments) ||
parser.parseOptionalAttrDict(result.attributes))
return failure();
SmallVector<int32_t, 8> segmentSizes(8, 1);
segmentSizes.front() = asyncDependencies.size();
segmentSizes.back() = hasDynamicSharedMemorySize ? 1 : 0;
result.addAttribute(LaunchOp::getOperandSegmentSizeAttr(),
parser.getBuilder().getDenseI32ArrayAttr(segmentSizes));
return success();
}
/// Simplify the gpu.launch when the range of a thread or block ID is
/// trivially known to be one.
struct FoldLaunchArguments : public OpRewritePattern<LaunchOp> {
using OpRewritePattern<LaunchOp>::OpRewritePattern;
LogicalResult matchAndRewrite(LaunchOp op,
PatternRewriter &rewriter) const override {
// If the range implies a single value for `id`, replace `id`'s uses by
// zero.
Value zero;
bool simplified = false;
auto constPropIdUses = [&](Value id, Value size) {
// Check if size is trivially one.
if (!matchPattern(size, m_One()))
return;
if (id.getUses().empty())
return;
if (!simplified) {
// Create a zero value the first time.
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(&op.getBody().front());
zero =
rewriter.create<arith::ConstantIndexOp>(op.getLoc(), /*value=*/0);
}
rewriter.replaceAllUsesWith(id, zero);
simplified = true;
};
constPropIdUses(op.getBlockIds().x, op.getGridSizeX());
constPropIdUses(op.getBlockIds().y, op.getGridSizeY());
constPropIdUses(op.getBlockIds().z, op.getGridSizeZ());
constPropIdUses(op.getThreadIds().x, op.getBlockSizeX());
constPropIdUses(op.getThreadIds().y, op.getBlockSizeY());
constPropIdUses(op.getThreadIds().z, op.getBlockSizeZ());
return success(simplified);
}
};
void LaunchOp::getCanonicalizationPatterns(RewritePatternSet &rewrites,
MLIRContext *context) {
rewrites.add<FoldLaunchArguments>(context);
}
/// Adds a new block argument that corresponds to buffers located in
/// workgroup memory.
BlockArgument LaunchOp::addWorkgroupAttribution(Type type, Location loc) {
auto attrName = getNumWorkgroupAttributionsAttrName();
auto attr = (*this)->getAttrOfType<IntegerAttr>(attrName);
(*this)->setAttr(attrName,
IntegerAttr::get(attr.getType(), attr.getValue() + 1));
return getBody().insertArgument(
LaunchOp::kNumConfigRegionAttributes + attr.getInt(), type, loc);
}
/// Adds a new block argument that corresponds to buffers located in
/// private memory.
BlockArgument LaunchOp::addPrivateAttribution(Type type, Location loc) {
// Buffers on the private memory always come after buffers on the workgroup
// memory.
return getBody().addArgument(type, loc);
}
//===----------------------------------------------------------------------===//
// LaunchFuncOp
//===----------------------------------------------------------------------===//
void LaunchFuncOp::build(OpBuilder &builder, OperationState &result,
GPUFuncOp kernelFunc, KernelDim3 gridSize,
KernelDim3 getBlockSize, Value dynamicSharedMemorySize,
ValueRange kernelOperands, Type asyncTokenType,
ValueRange asyncDependencies,
std::optional<KernelDim3> clusterSize) {
result.addOperands(asyncDependencies);
if (asyncTokenType)
result.types.push_back(builder.getType<AsyncTokenType>());
// Add grid and block sizes as op operands, followed by the data operands.
result.addOperands({gridSize.x, gridSize.y, gridSize.z, getBlockSize.x,
getBlockSize.y, getBlockSize.z});
if (clusterSize.has_value())
result.addOperands({clusterSize->x, clusterSize->y, clusterSize->z});
if (dynamicSharedMemorySize)
result.addOperands(dynamicSharedMemorySize);
result.addOperands(kernelOperands);
auto kernelModule = kernelFunc->getParentOfType<GPUModuleOp>();
auto kernelSymbol =
SymbolRefAttr::get(kernelModule.getNameAttr(),
{SymbolRefAttr::get(kernelFunc.getNameAttr())});
Properties &prop = result.getOrAddProperties<Properties>();
prop.kernel = kernelSymbol;
size_t segmentSizesLen = std::size(prop.operandSegmentSizes);
// Initialize the segment sizes to 1.
for (auto &sz : prop.operandSegmentSizes)
sz = 1;
prop.operandSegmentSizes[0] = asyncDependencies.size();
if (!clusterSize.has_value()) {
prop.operandSegmentSizes[segmentSizesLen - 4] = 0;
prop.operandSegmentSizes[segmentSizesLen - 5] = 0;
prop.operandSegmentSizes[segmentSizesLen - 6] = 0;
}
prop.operandSegmentSizes[segmentSizesLen - 3] =
dynamicSharedMemorySize ? 1 : 0;
prop.operandSegmentSizes[segmentSizesLen - 2] =
static_cast<int32_t>(kernelOperands.size());
prop.operandSegmentSizes[segmentSizesLen - 1] = 0;
}
void LaunchFuncOp::build(OpBuilder &builder, OperationState &result,
SymbolRefAttr kernel, KernelDim3 gridSize,
KernelDim3 getBlockSize, Value dynamicSharedMemorySize,
ValueRange kernelOperands, Value asyncObject,
std::optional<KernelDim3> clusterSize) {
// Add grid and block sizes as op operands, followed by the data operands.
result.addOperands({gridSize.x, gridSize.y, gridSize.z, getBlockSize.x,
getBlockSize.y, getBlockSize.z});
if (clusterSize.has_value())
result.addOperands({clusterSize->x, clusterSize->y, clusterSize->z});
if (dynamicSharedMemorySize)
result.addOperands(dynamicSharedMemorySize);
result.addOperands(kernelOperands);
if (asyncObject)
result.addOperands(asyncObject);
Properties &prop = result.getOrAddProperties<Properties>();
prop.kernel = kernel;
size_t segmentSizesLen = std::size(prop.operandSegmentSizes);
// Initialize the segment sizes to 1.
for (auto &sz : prop.operandSegmentSizes)
sz = 1;
prop.operandSegmentSizes[0] = 0;
if (!clusterSize.has_value()) {
prop.operandSegmentSizes[segmentSizesLen - 4] = 0;
prop.operandSegmentSizes[segmentSizesLen - 5] = 0;
prop.operandSegmentSizes[segmentSizesLen - 6] = 0;
}
prop.operandSegmentSizes[segmentSizesLen - 3] =
dynamicSharedMemorySize ? 1 : 0;
prop.operandSegmentSizes[segmentSizesLen - 2] =
static_cast<int32_t>(kernelOperands.size());
prop.operandSegmentSizes[segmentSizesLen - 1] = asyncObject ? 1 : 0;
}
StringAttr LaunchFuncOp::getKernelModuleName() {
return getKernel().getRootReference();
}
StringAttr LaunchFuncOp::getKernelName() {
return getKernel().getLeafReference();
}
unsigned LaunchFuncOp::getNumKernelOperands() {
return getKernelOperands().size();
}
Value LaunchFuncOp::getKernelOperand(unsigned i) {
return getKernelOperands()[i];
}
KernelDim3 LaunchFuncOp::getGridSizeOperandValues() {
auto operands = getOperands().drop_front(getAsyncDependencies().size());
return KernelDim3{operands[0], operands[1], operands[2]};
}
KernelDim3 LaunchFuncOp::getBlockSizeOperandValues() {
auto operands = getOperands().drop_front(getAsyncDependencies().size());
return KernelDim3{operands[3], operands[4], operands[5]};
}
KernelDim3 LaunchFuncOp::getClusterSizeOperandValues() {
assert(hasClusterSize() &&
"cluster size is not set, check hasClusterSize() first");
auto operands = getOperands().drop_front(getAsyncDependencies().size());
return KernelDim3{operands[6], operands[7], operands[8]};
}
LogicalResult LaunchFuncOp::verify() {
auto module = (*this)->getParentOfType<ModuleOp>();
if (!module)
return emitOpError("expected to belong to a module");
if (!module->getAttrOfType<UnitAttr>(
GPUDialect::getContainerModuleAttrName()))
return emitOpError("expected the closest surrounding module to have the '" +
GPUDialect::getContainerModuleAttrName() +
"' attribute");
if (hasClusterSize()) {
if (getClusterSizeY().getType() != getClusterSizeX().getType() ||
getClusterSizeZ().getType() != getClusterSizeX().getType())
return emitOpError()
<< "expects types of the cluster dimensions must be the same";
}
return success();
}
static ParseResult
parseLaunchDimType(OpAsmParser &parser, Type &dimTy,
std::optional<OpAsmParser::UnresolvedOperand> clusterValue,
Type &clusterXTy, Type &clusterYTy, Type &clusterZTy) {
if (succeeded(parser.parseOptionalColon())) {
if (parser.parseType(dimTy))
return failure();
} else {
dimTy = IndexType::get(parser.getContext());
}
if (clusterValue.has_value()) {
clusterXTy = clusterYTy = clusterZTy = dimTy;
}
return success();
}
static void printLaunchDimType(OpAsmPrinter &printer, Operation *op, Type dimTy,
Value clusterValue, Type clusterXTy,
Type clusterYTy, Type clusterZTy) {
if (!dimTy.isIndex())
printer << ": " << dimTy;
}
static ParseResult parseLaunchFuncOperands(
OpAsmParser &parser,
SmallVectorImpl<OpAsmParser::UnresolvedOperand> &argNames,
SmallVectorImpl<Type> &argTypes) {
if (parser.parseOptionalKeyword("args"))
return success();
auto parseElement = [&]() -> ParseResult {
return failure(parser.parseOperand(argNames.emplace_back()) ||
parser.parseColonType(argTypes.emplace_back()));
};
return parser.parseCommaSeparatedList(OpAsmParser::Delimiter::Paren,
parseElement, " in argument list");
}
static void printLaunchFuncOperands(OpAsmPrinter &printer, Operation *,
OperandRange operands, TypeRange types) {
if (operands.empty())
return;
printer << "args(";
llvm::interleaveComma(llvm::zip(operands, types), printer,
[&](const auto &pair) {
printer.printOperand(std::get<0>(pair));
printer << " : ";
printer.printType(std::get<1>(pair));
});
printer << ")";
}
//===----------------------------------------------------------------------===//
// ShuffleOp
//===----------------------------------------------------------------------===//
void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value value,
int32_t offset, int32_t width, ShuffleMode mode) {
build(builder, result, value,
builder.create<arith::ConstantOp>(result.location,
builder.getI32IntegerAttr(offset)),
builder.create<arith::ConstantOp>(result.location,
builder.getI32IntegerAttr(width)),
mode);
}
//===----------------------------------------------------------------------===//
// BarrierOp
//===----------------------------------------------------------------------===//
namespace {
/// Remove gpu.barrier after gpu.barrier, the threads are already synchronized!
LogicalResult eraseRedundantGpuBarrierOps(BarrierOp op,
PatternRewriter &rewriter) {
if (isa_and_nonnull<BarrierOp>(op->getNextNode())) {
rewriter.eraseOp(op);
return success();
}
return failure();
}
} // end anonymous namespace
void BarrierOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add(eraseRedundantGpuBarrierOps);
}
//===----------------------------------------------------------------------===//
// GPUFuncOp
//===----------------------------------------------------------------------===//
/// Adds a new block argument that corresponds to buffers located in
/// workgroup memory.
BlockArgument GPUFuncOp::addWorkgroupAttribution(Type type, Location loc) {
auto attrName = getNumWorkgroupAttributionsAttrName();
auto attr = (*this)->getAttrOfType<IntegerAttr>(attrName);
(*this)->setAttr(attrName,
IntegerAttr::get(attr.getType(), attr.getValue() + 1));
return getBody().insertArgument(
getFunctionType().getNumInputs() + attr.getInt(), type, loc);
}
/// Adds a new block argument that corresponds to buffers located in
/// private memory.
BlockArgument GPUFuncOp::addPrivateAttribution(Type type, Location loc) {
// Buffers on the private memory always come after buffers on the workgroup
// memory.
return getBody().addArgument(type, loc);
}
void GPUFuncOp::build(OpBuilder &builder, OperationState &result,
StringRef name, FunctionType type,
TypeRange workgroupAttributions,
TypeRange privateAttributions,
ArrayRef<NamedAttribute> attrs) {
result.addAttribute(SymbolTable::getSymbolAttrName(),
builder.getStringAttr(name));
result.addAttribute(getFunctionTypeAttrName(result.name),
TypeAttr::get(type));
result.addAttribute(getNumWorkgroupAttributionsAttrName(),
builder.getI64IntegerAttr(workgroupAttributions.size()));
result.addAttributes(attrs);
Region *body = result.addRegion();
Block *entryBlock = new Block;
// TODO: Allow passing in proper locations here.
for (Type argTy : type.getInputs())
entryBlock->addArgument(argTy, result.location);
for (Type argTy : workgroupAttributions)
entryBlock->addArgument(argTy, result.location);
for (Type argTy : privateAttributions)
entryBlock->addArgument(argTy, result.location);
body->getBlocks().push_back(entryBlock);
}
/// Parses a GPU function memory attribution.
///
/// memory-attribution ::= (`workgroup` `(` ssa-id-and-type-list `)`)?
/// (`private` `(` ssa-id-and-type-list `)`)?
///
/// Note that this function parses only one of the two similar parts, with the
/// keyword provided as argument.
static ParseResult
parseAttributions(OpAsmParser &parser, StringRef keyword,
SmallVectorImpl<OpAsmParser::Argument> &args,
Attribute &attributionAttrs) {
// If we could not parse the keyword, just assume empty list and succeed.
if (failed(parser.parseOptionalKeyword(keyword)))
return success();
size_t existingArgs = args.size();
ParseResult result =
parser.parseArgumentList(args, OpAsmParser::Delimiter::Paren,
/*allowType=*/true, /*allowAttrs=*/true);
if (failed(result))
return result;
bool hadAttrs = llvm::any_of(ArrayRef(args).drop_front(existingArgs),
[](const OpAsmParser::Argument &arg) -> bool {
return arg.attrs && !arg.attrs.empty();
});
if (!hadAttrs) {
attributionAttrs = nullptr;
return result;
}
Builder &builder = parser.getBuilder();
SmallVector<Attribute> attributionAttrsVec;
for (const auto &argument : ArrayRef(args).drop_front(existingArgs)) {
if (!argument.attrs)
attributionAttrsVec.push_back(builder.getDictionaryAttr({}));
else
attributionAttrsVec.push_back(argument.attrs);
}
attributionAttrs = builder.getArrayAttr(attributionAttrsVec);
return result;
}
/// Parses a GPU function.
///
/// <operation> ::= `gpu.func` symbol-ref-id `(` argument-list `)`
/// (`->` function-result-list)? memory-attribution `kernel`?
/// function-attributes? region
ParseResult GPUFuncOp::parse(OpAsmParser &parser, OperationState &result) {
SmallVector<OpAsmParser::Argument> entryArgs;
SmallVector<DictionaryAttr> resultAttrs;
SmallVector<Type> resultTypes;
bool isVariadic;
// Parse the function name.
StringAttr nameAttr;
if (parser.parseSymbolName(nameAttr, ::mlir::SymbolTable::getSymbolAttrName(),
result.attributes))
return failure();
auto signatureLocation = parser.getCurrentLocation();
if (failed(function_interface_impl::parseFunctionSignature(
parser, /*allowVariadic=*/false, entryArgs, isVariadic, resultTypes,
resultAttrs)))
return failure();
if (!entryArgs.empty() && entryArgs[0].ssaName.name.empty())
return parser.emitError(signatureLocation)
<< "gpu.func requires named arguments";
// Construct the function type. More types will be added to the region, but
// not to the function type.
Builder &builder = parser.getBuilder();
SmallVector<Type> argTypes;
for (auto &arg : entryArgs)
argTypes.push_back(arg.type);
auto type = builder.getFunctionType(argTypes, resultTypes);
result.addAttribute(getFunctionTypeAttrName(result.name),
TypeAttr::get(type));
function_interface_impl::addArgAndResultAttrs(
builder, result, entryArgs, resultAttrs, getArgAttrsAttrName(result.name),
getResAttrsAttrName(result.name));
Attribute workgroupAttributionAttrs;
// Parse workgroup memory attributions.
if (failed(parseAttributions(parser, GPUFuncOp::getWorkgroupKeyword(),
entryArgs, workgroupAttributionAttrs)))
return failure();
// Store the number of operands we just parsed as the number of workgroup
// memory attributions.
unsigned numWorkgroupAttrs = entryArgs.size() - type.getNumInputs();
result.addAttribute(GPUFuncOp::getNumWorkgroupAttributionsAttrName(),
builder.getI64IntegerAttr(numWorkgroupAttrs));
if (workgroupAttributionAttrs)
result.addAttribute(GPUFuncOp::getWorkgroupAttribAttrsAttrName(result.name),
workgroupAttributionAttrs);
Attribute privateAttributionAttrs;
// Parse private memory attributions.
if (failed(parseAttributions(parser, GPUFuncOp::getPrivateKeyword(),
entryArgs, privateAttributionAttrs)))
return failure();
if (privateAttributionAttrs)
result.addAttribute(GPUFuncOp::getPrivateAttribAttrsAttrName(result.name),
privateAttributionAttrs);
// Parse the kernel attribute if present.
if (succeeded(parser.parseOptionalKeyword(GPUFuncOp::getKernelKeyword())))
result.addAttribute(GPUDialect::getKernelFuncAttrName(),
builder.getUnitAttr());
// Parse attributes.
if (failed(parser.parseOptionalAttrDictWithKeyword(result.attributes)))
return failure();
// Parse the region. If no argument names were provided, take all names
// (including those of attributions) from the entry block.
auto *body = result.addRegion();
return parser.parseRegion(*body, entryArgs);
}
static void printAttributions(OpAsmPrinter &p, StringRef keyword,
ArrayRef<BlockArgument> values,
ArrayAttr attributes) {
if (values.empty())
return;
p << ' ' << keyword << '(';
llvm::interleaveComma(
llvm::enumerate(values), p, [&p, attributes](auto pair) {
BlockArgument v = pair.value();
p << v << " : " << v.getType();
size_t attributionIndex = pair.index();
DictionaryAttr attrs;
if (attributes && attributionIndex < attributes.size())
attrs = llvm::cast<DictionaryAttr>(attributes[attributionIndex]);
if (attrs)
p.printOptionalAttrDict(attrs.getValue());
});
p << ')';
}
void GPUFuncOp::print(OpAsmPrinter &p) {
p << ' ';
p.printSymbolName(getName());
FunctionType type = getFunctionType();
function_interface_impl::printFunctionSignature(p, *this, type.getInputs(),
/*isVariadic=*/false,
type.getResults());
printAttributions(p, getWorkgroupKeyword(), getWorkgroupAttributions(),
getWorkgroupAttribAttrs().value_or(nullptr));
printAttributions(p, getPrivateKeyword(), getPrivateAttributions(),
getPrivateAttribAttrs().value_or(nullptr));
if (isKernel())
p << ' ' << getKernelKeyword();
function_interface_impl::printFunctionAttributes(
p, *this,
{getNumWorkgroupAttributionsAttrName(),
GPUDialect::getKernelFuncAttrName(), getFunctionTypeAttrName(),
getArgAttrsAttrName(), getResAttrsAttrName(),
getWorkgroupAttribAttrsAttrName(), getPrivateAttribAttrsAttrName()});
p << ' ';
p.printRegion(getBody(), /*printEntryBlockArgs=*/false);
}
static DictionaryAttr getAttributionAttrs(GPUFuncOp op, unsigned index,
StringAttr attrName) {
auto allAttrs = llvm::dyn_cast_or_null<ArrayAttr>(op->getAttr(attrName));
if (!allAttrs || index >= allAttrs.size())
return DictionaryAttr();
return llvm::cast<DictionaryAttr>(allAttrs[index]);
}
DictionaryAttr GPUFuncOp::getworkgroupAttributionAttrs(unsigned index) {
return getAttributionAttrs(*this, index, getWorkgroupAttribAttrsAttrName());
}
DictionaryAttr GPUFuncOp::getPrivateAttributionAttrs(unsigned index) {
return getAttributionAttrs(*this, index, getPrivateAttribAttrsAttrName());
}
static void setAttributionAttrs(GPUFuncOp op, unsigned index,
DictionaryAttr value, StringAttr attrName) {
MLIRContext *ctx = op.getContext();
auto allAttrs = llvm::dyn_cast_or_null<ArrayAttr>(op->getAttr(attrName));
SmallVector<Attribute> elements;
if (allAttrs)
elements.append(allAttrs.begin(), allAttrs.end());
while (elements.size() <= index)
elements.push_back(DictionaryAttr::get(ctx));
if (!value)
elements[index] = DictionaryAttr::get(ctx);
else
elements[index] = value;
ArrayAttr newValue = ArrayAttr::get(ctx, elements);
op->setAttr(attrName, newValue);
}
void GPUFuncOp::setworkgroupAttributionAttrs(unsigned index,
DictionaryAttr value) {
setAttributionAttrs(*this, index, value, getWorkgroupAttribAttrsAttrName());
}
void GPUFuncOp::setPrivateAttributionAttrs(unsigned int index,
DictionaryAttr value) {
setAttributionAttrs(*this, index, value, getPrivateAttribAttrsAttrName());
}
static Attribute getAttributionAttr(GPUFuncOp op, unsigned index,
StringAttr name, StringAttr attrsName) {
DictionaryAttr dict = getAttributionAttrs(op, index, attrsName);
if (!dict)
return Attribute();
return dict.get(name);
}
Attribute GPUFuncOp::getWorkgroupAttributionAttr(unsigned index,
StringAttr name) {
assert(index < getNumWorkgroupAttributions() &&
"index must map to a workgroup attribution");
return getAttributionAttr(*this, index, name,
getWorkgroupAttribAttrsAttrName());
}
Attribute GPUFuncOp::getPrivateAttributionAttr(unsigned index,
StringAttr name) {
assert(index < getNumPrivateAttributions() &&
"index must map to a private attribution");
return getAttributionAttr(*this, index, name,
getPrivateAttribAttrsAttrName());
}
static void setAttributionAttr(GPUFuncOp op, unsigned index, StringAttr name,
Attribute value, StringAttr attrsName) {
MLIRContext *ctx = op.getContext();
SmallVector<NamedAttribute> elems;
DictionaryAttr oldDict = getAttributionAttrs(op, index, attrsName);
if (oldDict)
elems.append(oldDict.getValue().begin(), oldDict.getValue().end());
bool found = false;
bool mustSort = true;
for (unsigned i = 0, e = elems.size(); i < e; ++i) {
if (elems[i].getName() == name) {
found = true;
if (!value) {
std::swap(elems[i], elems[elems.size() - 1]);
elems.pop_back();
} else {
mustSort = false;
elems[i] = NamedAttribute(elems[i].getName(), value);
}
break;
}
}
if (!found) {
if (!value)
return;
elems.emplace_back(name, value);
}
if (mustSort) {
DictionaryAttr::sortInPlace(elems);
}
auto newDict = DictionaryAttr::getWithSorted(ctx, elems);
setAttributionAttrs(op, index, newDict, attrsName);
}
void GPUFuncOp::setWorkgroupAttributionAttr(unsigned index, StringAttr name,
Attribute value) {
assert(index < getNumWorkgroupAttributions() &&
"index must map to a workgroup attribution");
setAttributionAttr(*this, index, name, value,
getWorkgroupAttribAttrsAttrName());
}
void GPUFuncOp::setPrivateAttributionAttr(unsigned index, StringAttr name,
Attribute value) {
assert(index < getNumPrivateAttributions() &&
"index must map to a private attribution");
setAttributionAttr(*this, index, name, value,
getPrivateAttribAttrsAttrName());
}
LogicalResult GPUFuncOp::verifyType() {
if (isKernel() && getFunctionType().getNumResults() != 0)
return emitOpError() << "expected void return type for kernel function";
return success();
}
/// Verifies the body of the function.
LogicalResult GPUFuncOp::verifyBody() {
if (empty())
return emitOpError() << "expected body with at least one block";
unsigned numFuncArguments = getNumArguments();
unsigned numWorkgroupAttributions = getNumWorkgroupAttributions();
unsigned numBlockArguments = front().getNumArguments();
if (numBlockArguments < numFuncArguments + numWorkgroupAttributions)
return emitOpError() << "expected at least "
<< numFuncArguments + numWorkgroupAttributions
<< " arguments to body region";
ArrayRef<Type> funcArgTypes = getFunctionType().getInputs();
for (unsigned i = 0; i < numFuncArguments; ++i) {
Type blockArgType = front().getArgument(i).getType();
if (funcArgTypes[i] != blockArgType)
return emitOpError() << "expected body region argument #" << i
<< " to be of type " << funcArgTypes[i] << ", got "
<< blockArgType;
}
if (failed(verifyAttributions(getOperation(), getWorkgroupAttributions(),
GPUDialect::getWorkgroupAddressSpace())) ||
failed(verifyAttributions(getOperation(), getPrivateAttributions(),
GPUDialect::getPrivateAddressSpace())))
return failure();
return success();
}
static LogicalResult verifyKnownLaunchSizeAttr(gpu::GPUFuncOp op,
StringRef attrName) {
auto maybeAttr = op->getAttr(attrName);
if (!maybeAttr)
return success();
auto array = llvm::dyn_cast<DenseI32ArrayAttr>(maybeAttr);
if (!array)
return op.emitOpError(attrName + " must be a dense i32 array");
if (array.size() != 3)
return op.emitOpError(attrName + " must contain exactly 3 elements");
return success();
}
LogicalResult GPUFuncOp::verify() {
if (failed(verifyKnownLaunchSizeAttr(*this, getKnownBlockSizeAttrName())))
return failure();
if (failed(verifyKnownLaunchSizeAttr(*this, getKnownGridSizeAttrName())))
return failure();
return success();
}
//===----------------------------------------------------------------------===//
// ReturnOp
//===----------------------------------------------------------------------===//
LogicalResult gpu::ReturnOp::verify() {
GPUFuncOp function = (*this)->getParentOfType<GPUFuncOp>();
FunctionType funType = function.getFunctionType();
if (funType.getNumResults() != getOperands().size())
return emitOpError()
.append("expected ", funType.getNumResults(), " result operands")
.attachNote(function.getLoc())
.append("return type declared here");
for (const auto &pair : llvm::enumerate(
llvm::zip(function.getFunctionType().getResults(), getOperands()))) {
auto [type, operand] = pair.value();
if (type != operand.getType())
return emitOpError() << "unexpected type `" << operand.getType()
<< "' for operand #" << pair.index();
}
return success();
}
//===----------------------------------------------------------------------===//
// GPUModuleOp
//===----------------------------------------------------------------------===//
void GPUModuleOp::build(OpBuilder &builder, OperationState &result,
StringRef name, ArrayAttr targets) {
ensureTerminator(*result.addRegion(), builder, result.location);
result.attributes.push_back(builder.getNamedAttr(
::mlir::SymbolTable::getSymbolAttrName(), builder.getStringAttr(name)));
if (targets)
result.getOrAddProperties<Properties>().targets = targets;
}
void GPUModuleOp::build(OpBuilder &builder, OperationState &result,
StringRef name, ArrayRef<Attribute> targets) {
build(builder, result, name,
targets.empty() ? ArrayAttr() : builder.getArrayAttr(targets));
}
ParseResult GPUModuleOp::parse(OpAsmParser &parser, OperationState &result) {
StringAttr nameAttr;
ArrayAttr targetsAttr;
if (parser.parseSymbolName(nameAttr, mlir::SymbolTable::getSymbolAttrName(),
result.attributes))
return failure();
// Parse the optional array of target attributes.
OptionalParseResult targetsAttrResult =
parser.parseOptionalAttribute(targetsAttr, Type{});
if (targetsAttrResult.has_value()) {
if (failed(*targetsAttrResult)) {
return failure();
}
result.getOrAddProperties<Properties>().targets = targetsAttr;
}
// If module attributes are present, parse them.
if (parser.parseOptionalAttrDictWithKeyword(result.attributes))
return failure();
// Parse the module body.
auto *body = result.addRegion();
if (parser.parseRegion(*body, {}))
return failure();
// Ensure that this module has a valid terminator.
GPUModuleOp::ensureTerminator(*body, parser.getBuilder(), result.location);
return success();
}
void GPUModuleOp::print(OpAsmPrinter &p) {
p << ' ';
p.printSymbolName(getName());
if (Attribute attr = getTargetsAttr()) {
p << ' ';
p.printAttribute(attr);
p << ' ';
}
p.printOptionalAttrDictWithKeyword(
(*this)->getAttrs(),
{mlir::SymbolTable::getSymbolAttrName(), getTargetsAttrName()});
p << ' ';
p.printRegion(getRegion(), /*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/false);
}
bool GPUModuleOp::hasTarget(Attribute target) {
if (ArrayAttr targets = getTargetsAttr())
return llvm::count(targets.getValue(), target);
return false;
}
void GPUModuleOp::setTargets(ArrayRef<TargetAttrInterface> targets) {
ArrayAttr &targetsAttr = getProperties().targets;
SmallVector<Attribute> targetsVector(targets);
targetsAttr = ArrayAttr::get(getContext(), targetsVector);
}
//===----------------------------------------------------------------------===//
// GPUBinaryOp
//===----------------------------------------------------------------------===//
void BinaryOp::build(OpBuilder &builder, OperationState &result, StringRef name,
Attribute offloadingHandler, ArrayAttr objects) {
auto &properties = result.getOrAddProperties<Properties>();
result.attributes.push_back(builder.getNamedAttr(
SymbolTable::getSymbolAttrName(), builder.getStringAttr(name)));
properties.objects = objects;
if (offloadingHandler)
properties.offloadingHandler = offloadingHandler;
else
properties.offloadingHandler = builder.getAttr<SelectObjectAttr>(nullptr);
}
void BinaryOp::build(OpBuilder &builder, OperationState &result, StringRef name,
Attribute offloadingHandler, ArrayRef<Attribute> objects) {
build(builder, result, name, offloadingHandler,
objects.empty() ? ArrayAttr() : builder.getArrayAttr(objects));
}
static ParseResult parseOffloadingHandler(OpAsmParser &parser,
Attribute &offloadingHandler) {
if (succeeded(parser.parseOptionalLess())) {
if (parser.parseAttribute(offloadingHandler))
return failure();
if (parser.parseGreater())
return failure();
}
if (!offloadingHandler)
offloadingHandler = parser.getBuilder().getAttr<SelectObjectAttr>(nullptr);
return success();
}
static void printOffloadingHandler(OpAsmPrinter &printer, Operation *op,
Attribute offloadingHandler) {
if (offloadingHandler != SelectObjectAttr::get(op->getContext(), nullptr))
printer << '<' << offloadingHandler << '>';
}
//===----------------------------------------------------------------------===//
// GPUMemcpyOp
//===----------------------------------------------------------------------===//
LogicalResult MemcpyOp::verify() {
auto srcType = getSrc().getType();
auto dstType = getDst().getType();
if (getElementTypeOrSelf(srcType) != getElementTypeOrSelf(dstType))
return emitOpError("arguments have incompatible element type");
if (failed(verifyCompatibleShape(srcType, dstType)))
return emitOpError("arguments have incompatible shape");
return success();
}
namespace {
/// Erases a common case of copy ops where a destination value is used only by
/// the copy op, alloc and dealloc ops.
struct EraseTrivialCopyOp : public OpRewritePattern<MemcpyOp> {
using OpRewritePattern<MemcpyOp>::OpRewritePattern;
LogicalResult matchAndRewrite(MemcpyOp op,
PatternRewriter &rewriter) const override {
Value dest = op.getDst();
Operation *destDefOp = dest.getDefiningOp();
// `dest` must be defined by an op having Allocate memory effect in order to
// perform the folding.
if (!destDefOp ||
!hasSingleEffect<MemoryEffects::Allocate>(destDefOp, dest))
return failure();
// We can erase `op` iff `dest` has no other use apart from its
// use by `op` and dealloc ops.
if (llvm::any_of(dest.getUsers(), [op, dest](Operation *user) {
return user != op &&
!hasSingleEffect<MemoryEffects::Free>(user, dest);
}))
return failure();
// We can perform the folding if and only if op has a single async
// dependency and produces an async token as result, or if it does not have
// any async dependency and does not produce any async token result.
if (op.getAsyncDependencies().size() > 1 ||
((op.getAsyncDependencies().empty() && op.getAsyncToken()) ||
(!op.getAsyncDependencies().empty() && !op.getAsyncToken())))
return failure();
rewriter.replaceOp(op, op.getAsyncDependencies());
return success();
}
};
} // end anonymous namespace
void MemcpyOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<EraseTrivialCopyOp>(context);
}
//===----------------------------------------------------------------------===//
// GPU_SubgroupMmaLoadMatrixOp
//===----------------------------------------------------------------------===//
LogicalResult SubgroupMmaLoadMatrixOp::verify() {
auto srcType = getSrcMemref().getType();
auto resType = getRes().getType();
auto resMatrixType = llvm::cast<gpu::MMAMatrixType>(resType);
auto operand = resMatrixType.getOperand();
auto srcMemrefType = llvm::cast<MemRefType>(srcType);
if (!isLastMemrefDimUnitStride(srcMemrefType))
return emitError(
"expected source memref most minor dim must have unit stride");
if (!operand.equals("AOp") && !operand.equals("BOp") &&
!operand.equals("COp"))
return emitError("only AOp, BOp and COp can be loaded");
return success();
}
//===----------------------------------------------------------------------===//
// GPU_SubgroupMmaStoreMatrixOp
//===----------------------------------------------------------------------===//
LogicalResult SubgroupMmaStoreMatrixOp::verify() {
auto srcType = getSrc().getType();
auto dstType = getDstMemref().getType();
auto srcMatrixType = llvm::cast<gpu::MMAMatrixType>(srcType);
auto dstMemrefType = llvm::cast<MemRefType>(dstType);
if (!isLastMemrefDimUnitStride(dstMemrefType))
return emitError(
"expected destination memref most minor dim must have unit stride");
if (!srcMatrixType.getOperand().equals("COp"))
return emitError(
"expected the operand matrix being stored to have 'COp' operand type");
return success();
}
//===----------------------------------------------------------------------===//
// GPU_SubgroupMmaComputeOp
//===----------------------------------------------------------------------===//
LogicalResult SubgroupMmaComputeOp::verify() {
enum OperandMap { A, B, C };
SmallVector<MMAMatrixType, 3> opTypes;
opTypes.push_back(llvm::cast<MMAMatrixType>(getOpA().getType()));
opTypes.push_back(llvm::cast<MMAMatrixType>(getOpB().getType()));
opTypes.push_back(llvm::cast<MMAMatrixType>(getOpC().getType()));
if (!opTypes[A].getOperand().equals("AOp") ||
!opTypes[B].getOperand().equals("BOp") ||
!opTypes[C].getOperand().equals("COp"))
return emitError("operands must be in the order AOp, BOp, COp");
ArrayRef<int64_t> aShape, bShape, cShape;
aShape = opTypes[A].getShape();
bShape = opTypes[B].getShape();
cShape = opTypes[C].getShape();
if (aShape[1] != bShape[0] || aShape[0] != cShape[0] ||
bShape[1] != cShape[1])
return emitError("operand shapes do not satisfy matmul constraints");
return success();
}
LogicalResult MemcpyOp::fold(FoldAdaptor adaptor,
SmallVectorImpl<::mlir::OpFoldResult> &results) {
return memref::foldMemRefCast(*this);
}
LogicalResult MemsetOp::fold(FoldAdaptor adaptor,
SmallVectorImpl<::mlir::OpFoldResult> &results) {
return memref::foldMemRefCast(*this);
}
//===----------------------------------------------------------------------===//
// GPU_WaitOp
//===----------------------------------------------------------------------===//
namespace {
/// Remove gpu.wait op use of gpu.wait op def without async dependencies.
/// %t = gpu.wait async [] // No async dependencies.
/// ... gpu.wait ... [%t, ...] // %t can be removed.
struct EraseRedundantGpuWaitOpPairs : public OpRewritePattern<WaitOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(WaitOp op,
PatternRewriter &rewriter) const final {
auto predicate = [](Value value) {
auto waitOp = value.getDefiningOp<WaitOp>();
return waitOp && waitOp->getNumOperands() == 0;
};
if (llvm::none_of(op.getAsyncDependencies(), predicate))
return failure();
SmallVector<Value> validOperands;
for (Value operand : op->getOperands()) {
if (predicate(operand))
continue;
validOperands.push_back(operand);
}
rewriter.updateRootInPlace(op, [&]() { op->setOperands(validOperands); });
return success();
}
};
/// Simplify trivial gpu.wait ops for the following patterns.
/// 1. %t = gpu.wait async ... ops, where %t has no uses (regardless of async
/// dependencies).
/// 2. %t1 = gpu.wait async [%t0], in this case, we can replace uses of %t1 with
/// %t0.
/// 3. gpu.wait [] ops, i.e gpu.wait ops that neither have any async
/// dependencies nor return any token.
struct SimplifyGpuWaitOp : public OpRewritePattern<WaitOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(WaitOp op,
PatternRewriter &rewriter) const final {
// Erase gpu.wait ops that neither have any async dependencies nor return
// any async token.
if (op.getAsyncDependencies().empty() && !op.getAsyncToken()) {
rewriter.eraseOp(op);
return success();
}
// Replace uses of %t1 = gpu.wait async [%t0] ops with %t0 and erase the op.
if (llvm::hasSingleElement(op.getAsyncDependencies()) &&
op.getAsyncToken()) {
rewriter.replaceOp(op, op.getAsyncDependencies());
return success();
}
// Erase %t = gpu.wait async ... ops, where %t has no uses.
if (op.getAsyncToken() && op.getAsyncToken().use_empty()) {
rewriter.eraseOp(op);
return success();
}
return failure();
}
};
} // end anonymous namespace
void WaitOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<EraseRedundantGpuWaitOpPairs, SimplifyGpuWaitOp>(context);
}
//===----------------------------------------------------------------------===//
// GPU_AllocOp
//===----------------------------------------------------------------------===//
LogicalResult AllocOp::verify() {
auto memRefType = llvm::cast<MemRefType>(getMemref().getType());
if (static_cast<int64_t>(getDynamicSizes().size()) !=
memRefType.getNumDynamicDims())
return emitOpError("dimension operand count does not equal memref "
"dynamic dimension count");
unsigned numSymbols = 0;
if (!memRefType.getLayout().isIdentity())
numSymbols = memRefType.getLayout().getAffineMap().getNumSymbols();
if (getSymbolOperands().size() != numSymbols) {
return emitOpError(
"symbol operand count does not equal memref symbol count");
}
return success();
}
namespace {
/// Folding of memref.dim(gpu.alloc(%size), %idx) -> %size similar to
/// `memref::AllocOp`.
struct SimplifyDimOfAllocOp : public OpRewritePattern<memref::DimOp> {
using OpRewritePattern<memref::DimOp>::OpRewritePattern;
LogicalResult matchAndRewrite(memref::DimOp dimOp,
PatternRewriter &rewriter) const override {
std::optional<int64_t> index = dimOp.getConstantIndex();
if (!index)
return failure();
auto memrefType = llvm::dyn_cast<MemRefType>(dimOp.getSource().getType());
if (!memrefType || !memrefType.isDynamicDim(index.value()))
return failure();
auto alloc = dimOp.getSource().getDefiningOp<AllocOp>();
if (!alloc)
return failure();
Value substituteOp = *(alloc.getDynamicSizes().begin() +
memrefType.getDynamicDimIndex(index.value()));
rewriter.replaceOp(dimOp, substituteOp);
return success();
}
};
} // namespace
void AllocOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<SimplifyDimOfAllocOp>(context);
}
//===----------------------------------------------------------------------===//
// GPU object attribute
//===----------------------------------------------------------------------===//
LogicalResult ObjectAttr::verify(function_ref<InFlightDiagnostic()> emitError,
Attribute target, CompilationTarget format,
StringAttr object, DictionaryAttr properties) {
if (!target)
return emitError() << "the target attribute cannot be null";
if (target.hasPromiseOrImplementsInterface<TargetAttrInterface>())
return success();
return emitError() << "the target attribute must implement or promise the "
"`gpu::TargetAttrInterface`";
}
namespace {
LogicalResult parseObject(AsmParser &odsParser, CompilationTarget &format,
StringAttr &object) {
std::optional<CompilationTarget> formatResult;
StringRef enumKeyword;
auto loc = odsParser.getCurrentLocation();
if (failed(odsParser.parseOptionalKeyword(&enumKeyword)))
formatResult = CompilationTarget::Fatbin;
if (!formatResult &&
(formatResult =
gpu::symbolizeEnum<gpu::CompilationTarget>(enumKeyword)) &&
odsParser.parseEqual())
return odsParser.emitError(loc, "expected an equal sign");
if (!formatResult)
return odsParser.emitError(loc, "expected keyword for GPU object format");
FailureOr<StringAttr> objectResult =
FieldParser<StringAttr>::parse(odsParser);
if (failed(objectResult))
return odsParser.emitError(odsParser.getCurrentLocation(),
"failed to parse GPU_ObjectAttr parameter "
"'object' which is to be a `StringAttr`");
format = *formatResult;
object = *objectResult;
return success();
}
void printObject(AsmPrinter &odsParser, CompilationTarget format,
StringAttr object) {
if (format != CompilationTarget::Fatbin)
odsParser << stringifyEnum(format) << " = ";
odsParser << object;
}
} // namespace
//===----------------------------------------------------------------------===//
// GPU select object attribute
//===----------------------------------------------------------------------===//
LogicalResult
gpu::SelectObjectAttr::verify(function_ref<InFlightDiagnostic()> emitError,
Attribute target) {
// Check `target`, it can be null, an integer attr or a GPU Target attribute.
if (target) {
if (auto intAttr = mlir::dyn_cast<IntegerAttr>(target)) {
if (intAttr.getInt() < 0) {
return emitError() << "the object index must be positive";
}
} else if (!target.hasPromiseOrImplementsInterface<TargetAttrInterface>()) {
return emitError()
<< "the target attribute must be a GPU Target attribute";
}
}
return success();
}
//===----------------------------------------------------------------------===//
// DynamicSharedMemoryOp
//===----------------------------------------------------------------------===//
LogicalResult gpu::DynamicSharedMemoryOp::verify() {
if (!getOperation()->getParentWithTrait<OpTrait::SymbolTable>())
return emitOpError() << "must be inside an op with symbol table";
MemRefType memrefType = getResultMemref().getType();
// Check address space
if (!GPUDialect::hasWorkgroupMemoryAddressSpace(memrefType)) {
return emitOpError() << "address space must be "
<< gpu::AddressSpaceAttr::getMnemonic() << "<"
<< stringifyEnum(gpu::AddressSpace::Workgroup) << ">";
}
if (memrefType.hasStaticShape()) {
return emitOpError() << "result memref type must be memref<?xi8, "
"#gpu.address_space<workgroup>>";
}
return success();
}
//===----------------------------------------------------------------------===//
// GPU target options
//===----------------------------------------------------------------------===//
TargetOptions::TargetOptions(
StringRef toolkitPath, ArrayRef<std::string> linkFiles,
StringRef cmdOptions, CompilationTarget compilationTarget,
function_ref<SymbolTable *()> getSymbolTableCallback)
: TargetOptions(TypeID::get<TargetOptions>(), toolkitPath, linkFiles,
cmdOptions, compilationTarget, getSymbolTableCallback) {}
TargetOptions::TargetOptions(
TypeID typeID, StringRef toolkitPath, ArrayRef<std::string> linkFiles,
StringRef cmdOptions, CompilationTarget compilationTarget,
function_ref<SymbolTable *()> getSymbolTableCallback)
: toolkitPath(toolkitPath.str()), linkFiles(linkFiles),
cmdOptions(cmdOptions.str()), compilationTarget(compilationTarget),
getSymbolTableCallback(getSymbolTableCallback), typeID(typeID) {}
TypeID TargetOptions::getTypeID() const { return typeID; }
StringRef TargetOptions::getToolkitPath() const { return toolkitPath; }
ArrayRef<std::string> TargetOptions::getLinkFiles() const { return linkFiles; }
StringRef TargetOptions::getCmdOptions() const { return cmdOptions; }
SymbolTable *TargetOptions::getSymbolTable() const {
return getSymbolTableCallback ? getSymbolTableCallback() : nullptr;
}
CompilationTarget TargetOptions::getCompilationTarget() const {
return compilationTarget;
}
CompilationTarget TargetOptions::getDefaultCompilationTarget() {
return CompilationTarget::Fatbin;
}
std::pair<llvm::BumpPtrAllocator, SmallVector<const char *>>
TargetOptions::tokenizeCmdOptions() const {
std::pair<llvm::BumpPtrAllocator, SmallVector<const char *>> options;
llvm::StringSaver stringSaver(options.first);
StringRef opts = cmdOptions;
// For a correct tokenization of the command line options `opts` must be
// unquoted, otherwise the tokenization function returns a single string: the
// unquoted `cmdOptions` -which is not the desired behavior.
// Remove any quotes if they are at the beginning and end of the string:
if (!opts.empty() && opts.front() == '"' && opts.back() == '"')
opts.consume_front("\""), opts.consume_back("\"");
if (!opts.empty() && opts.front() == '\'' && opts.back() == '\'')
opts.consume_front("'"), opts.consume_back("'");
#ifdef _WIN32
llvm::cl::TokenizeWindowsCommandLine(opts, stringSaver, options.second,
/*MarkEOLs=*/false);
#else
llvm::cl::TokenizeGNUCommandLine(opts, stringSaver, options.second,
/*MarkEOLs=*/false);
#endif // _WIN32
return options;
}
MLIR_DEFINE_EXPLICIT_TYPE_ID(::mlir::gpu::TargetOptions)
#include "mlir/Dialect/GPU/IR/GPUOpInterfaces.cpp.inc"
#include "mlir/Dialect/GPU/IR/GPUOpsEnums.cpp.inc"
#define GET_ATTRDEF_CLASSES
#include "mlir/Dialect/GPU/IR/GPUOpsAttributes.cpp.inc"
#define GET_OP_CLASSES
#include "mlir/Dialect/GPU/IR/GPUOps.cpp.inc"
#include "mlir/Dialect/GPU/IR/CompilationAttrInterfaces.cpp.inc"