blob: fff53dd25004a43fabccc261bd532639916532e7 [file] [log] [blame]
//===- bolt/Core/BinaryFunction.cpp - Low-level function ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the BinaryFunction class.
//
//===----------------------------------------------------------------------===//
#include "bolt/Core/BinaryFunction.h"
#include "bolt/Core/BinaryBasicBlock.h"
#include "bolt/Core/DynoStats.h"
#include "bolt/Core/HashUtilities.h"
#include "bolt/Core/MCPlusBuilder.h"
#include "bolt/Utils/NameResolver.h"
#include "bolt/Utils/NameShortener.h"
#include "bolt/Utils/Utils.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Demangle/Demangle.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GenericDomTreeConstruction.h"
#include "llvm/Support/GenericLoopInfoImpl.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/xxhash.h"
#include <functional>
#include <limits>
#include <numeric>
#include <string>
#define DEBUG_TYPE "bolt"
using namespace llvm;
using namespace bolt;
namespace opts {
extern cl::OptionCategory BoltCategory;
extern cl::OptionCategory BoltOptCategory;
extern cl::opt<bool> EnableBAT;
extern cl::opt<bool> Instrument;
extern cl::opt<bool> StrictMode;
extern cl::opt<bool> UpdateDebugSections;
extern cl::opt<unsigned> Verbosity;
extern bool processAllFunctions();
cl::opt<bool> CheckEncoding(
"check-encoding",
cl::desc("perform verification of LLVM instruction encoding/decoding. "
"Every instruction in the input is decoded and re-encoded. "
"If the resulting bytes do not match the input, a warning message "
"is printed."),
cl::Hidden, cl::cat(BoltCategory));
static cl::opt<bool> DotToolTipCode(
"dot-tooltip-code",
cl::desc("add basic block instructions as tool tips on nodes"), cl::Hidden,
cl::cat(BoltCategory));
cl::opt<JumpTableSupportLevel>
JumpTables("jump-tables",
cl::desc("jump tables support (default=basic)"),
cl::init(JTS_BASIC),
cl::values(
clEnumValN(JTS_NONE, "none",
"do not optimize functions with jump tables"),
clEnumValN(JTS_BASIC, "basic",
"optimize functions with jump tables"),
clEnumValN(JTS_MOVE, "move",
"move jump tables to a separate section"),
clEnumValN(JTS_SPLIT, "split",
"split jump tables section into hot and cold based on "
"function execution frequency"),
clEnumValN(JTS_AGGRESSIVE, "aggressive",
"aggressively split jump tables section based on usage "
"of the tables")),
cl::ZeroOrMore,
cl::cat(BoltOptCategory));
static cl::opt<bool> NoScan(
"no-scan",
cl::desc(
"do not scan cold functions for external references (may result in "
"slower binary)"),
cl::Hidden, cl::cat(BoltOptCategory));
cl::opt<bool>
PreserveBlocksAlignment("preserve-blocks-alignment",
cl::desc("try to preserve basic block alignment"),
cl::cat(BoltOptCategory));
static cl::opt<bool> PrintOutputAddressRange(
"print-output-address-range",
cl::desc(
"print output address range for each basic block in the function when"
"BinaryFunction::print is called"),
cl::Hidden, cl::cat(BoltOptCategory));
cl::opt<bool>
PrintDynoStats("dyno-stats",
cl::desc("print execution info based on profile"),
cl::cat(BoltCategory));
static cl::opt<bool>
PrintDynoStatsOnly("print-dyno-stats-only",
cl::desc("while printing functions output dyno-stats and skip instructions"),
cl::init(false),
cl::Hidden,
cl::cat(BoltCategory));
static cl::list<std::string>
PrintOnly("print-only",
cl::CommaSeparated,
cl::desc("list of functions to print"),
cl::value_desc("func1,func2,func3,..."),
cl::Hidden,
cl::cat(BoltCategory));
cl::opt<bool>
TimeBuild("time-build",
cl::desc("print time spent constructing binary functions"),
cl::Hidden, cl::cat(BoltCategory));
cl::opt<bool>
TrapOnAVX512("trap-avx512",
cl::desc("in relocation mode trap upon entry to any function that uses "
"AVX-512 instructions"),
cl::init(false),
cl::ZeroOrMore,
cl::Hidden,
cl::cat(BoltCategory));
bool shouldPrint(const BinaryFunction &Function) {
if (Function.isIgnored())
return false;
if (PrintOnly.empty())
return true;
for (std::string &Name : opts::PrintOnly) {
if (Function.hasNameRegex(Name)) {
return true;
}
}
return false;
}
} // namespace opts
namespace llvm {
namespace bolt {
template <typename R> static bool emptyRange(const R &Range) {
return Range.begin() == Range.end();
}
/// Gets debug line information for the instruction located at the given
/// address in the original binary. The SMLoc's pointer is used
/// to point to this information, which is represented by a
/// DebugLineTableRowRef. The returned pointer is null if no debug line
/// information for this instruction was found.
static SMLoc findDebugLineInformationForInstructionAt(
uint64_t Address, DWARFUnit *Unit,
const DWARFDebugLine::LineTable *LineTable) {
// We use the pointer in SMLoc to store an instance of DebugLineTableRowRef,
// which occupies 64 bits. Thus, we can only proceed if the struct fits into
// the pointer itself.
static_assert(
sizeof(decltype(SMLoc().getPointer())) >= sizeof(DebugLineTableRowRef),
"Cannot fit instruction debug line information into SMLoc's pointer");
SMLoc NullResult = DebugLineTableRowRef::NULL_ROW.toSMLoc();
uint32_t RowIndex = LineTable->lookupAddress(
{Address, object::SectionedAddress::UndefSection});
if (RowIndex == LineTable->UnknownRowIndex)
return NullResult;
assert(RowIndex < LineTable->Rows.size() &&
"Line Table lookup returned invalid index.");
decltype(SMLoc().getPointer()) Ptr;
DebugLineTableRowRef *InstructionLocation =
reinterpret_cast<DebugLineTableRowRef *>(&Ptr);
InstructionLocation->DwCompileUnitIndex = Unit->getOffset();
InstructionLocation->RowIndex = RowIndex + 1;
return SMLoc::getFromPointer(Ptr);
}
static std::string buildSectionName(StringRef Prefix, StringRef Name,
const BinaryContext &BC) {
if (BC.isELF())
return (Prefix + Name).str();
static NameShortener NS;
return (Prefix + Twine(NS.getID(Name))).str();
}
static raw_ostream &operator<<(raw_ostream &OS,
const BinaryFunction::State State) {
switch (State) {
case BinaryFunction::State::Empty: OS << "empty"; break;
case BinaryFunction::State::Disassembled: OS << "disassembled"; break;
case BinaryFunction::State::CFG: OS << "CFG constructed"; break;
case BinaryFunction::State::CFG_Finalized: OS << "CFG finalized"; break;
case BinaryFunction::State::EmittedCFG: OS << "emitted with CFG"; break;
case BinaryFunction::State::Emitted: OS << "emitted"; break;
}
return OS;
}
std::string BinaryFunction::buildCodeSectionName(StringRef Name,
const BinaryContext &BC) {
return buildSectionName(BC.isELF() ? ".local.text." : ".l.text.", Name, BC);
}
std::string BinaryFunction::buildColdCodeSectionName(StringRef Name,
const BinaryContext &BC) {
return buildSectionName(BC.isELF() ? ".local.cold.text." : ".l.c.text.", Name,
BC);
}
uint64_t BinaryFunction::Count = 0;
std::optional<StringRef>
BinaryFunction::hasNameRegex(const StringRef Name) const {
const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str();
Regex MatchName(RegexName);
return forEachName(
[&MatchName](StringRef Name) { return MatchName.match(Name); });
}
std::optional<StringRef>
BinaryFunction::hasRestoredNameRegex(const StringRef Name) const {
const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str();
Regex MatchName(RegexName);
return forEachName([&MatchName](StringRef Name) {
return MatchName.match(NameResolver::restore(Name));
});
}
std::string BinaryFunction::getDemangledName() const {
StringRef MangledName = NameResolver::restore(getOneName());
return demangle(MangledName.str());
}
BinaryBasicBlock *
BinaryFunction::getBasicBlockContainingOffset(uint64_t Offset) {
if (Offset > Size)
return nullptr;
if (BasicBlockOffsets.empty())
return nullptr;
/*
* This is commented out because it makes BOLT too slow.
* assert(std::is_sorted(BasicBlockOffsets.begin(),
* BasicBlockOffsets.end(),
* CompareBasicBlockOffsets())));
*/
auto I =
llvm::upper_bound(BasicBlockOffsets, BasicBlockOffset(Offset, nullptr),
CompareBasicBlockOffsets());
assert(I != BasicBlockOffsets.begin() && "first basic block not at offset 0");
--I;
BinaryBasicBlock *BB = I->second;
return (Offset < BB->getOffset() + BB->getOriginalSize()) ? BB : nullptr;
}
void BinaryFunction::markUnreachableBlocks() {
std::stack<BinaryBasicBlock *> Stack;
for (BinaryBasicBlock &BB : blocks())
BB.markValid(false);
// Add all entries and landing pads as roots.
for (BinaryBasicBlock *BB : BasicBlocks) {
if (isEntryPoint(*BB) || BB->isLandingPad()) {
Stack.push(BB);
BB->markValid(true);
continue;
}
// FIXME:
// Also mark BBs with indirect jumps as reachable, since we do not
// support removing unused jump tables yet (GH-issue20).
for (const MCInst &Inst : *BB) {
if (BC.MIB->getJumpTable(Inst)) {
Stack.push(BB);
BB->markValid(true);
break;
}
}
}
// Determine reachable BBs from the entry point
while (!Stack.empty()) {
BinaryBasicBlock *BB = Stack.top();
Stack.pop();
for (BinaryBasicBlock *Succ : BB->successors()) {
if (Succ->isValid())
continue;
Succ->markValid(true);
Stack.push(Succ);
}
}
}
// Any unnecessary fallthrough jumps revealed after calling eraseInvalidBBs
// will be cleaned up by fixBranches().
std::pair<unsigned, uint64_t>
BinaryFunction::eraseInvalidBBs(const MCCodeEmitter *Emitter) {
DenseSet<const BinaryBasicBlock *> InvalidBBs;
unsigned Count = 0;
uint64_t Bytes = 0;
for (BinaryBasicBlock *const BB : BasicBlocks) {
if (!BB->isValid()) {
assert(!isEntryPoint(*BB) && "all entry blocks must be valid");
InvalidBBs.insert(BB);
++Count;
Bytes += BC.computeCodeSize(BB->begin(), BB->end(), Emitter);
}
}
Layout.eraseBasicBlocks(InvalidBBs);
BasicBlockListType NewBasicBlocks;
for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) {
BinaryBasicBlock *BB = *I;
if (InvalidBBs.contains(BB)) {
// Make sure the block is removed from the list of predecessors.
BB->removeAllSuccessors();
DeletedBasicBlocks.push_back(BB);
} else {
NewBasicBlocks.push_back(BB);
}
}
BasicBlocks = std::move(NewBasicBlocks);
assert(BasicBlocks.size() == Layout.block_size());
// Update CFG state if needed
if (Count > 0)
recomputeLandingPads();
return std::make_pair(Count, Bytes);
}
bool BinaryFunction::isForwardCall(const MCSymbol *CalleeSymbol) const {
// This function should work properly before and after function reordering.
// In order to accomplish this, we use the function index (if it is valid).
// If the function indices are not valid, we fall back to the original
// addresses. This should be ok because the functions without valid indices
// should have been ordered with a stable sort.
const BinaryFunction *CalleeBF = BC.getFunctionForSymbol(CalleeSymbol);
if (CalleeBF) {
if (CalleeBF->isInjected())
return true;
if (hasValidIndex() && CalleeBF->hasValidIndex()) {
return getIndex() < CalleeBF->getIndex();
} else if (hasValidIndex() && !CalleeBF->hasValidIndex()) {
return true;
} else if (!hasValidIndex() && CalleeBF->hasValidIndex()) {
return false;
} else {
return getAddress() < CalleeBF->getAddress();
}
} else {
// Absolute symbol.
ErrorOr<uint64_t> CalleeAddressOrError = BC.getSymbolValue(*CalleeSymbol);
assert(CalleeAddressOrError && "unregistered symbol found");
return *CalleeAddressOrError > getAddress();
}
}
void BinaryFunction::dump() const {
// getDynoStats calls FunctionLayout::updateLayoutIndices and
// BasicBlock::analyzeBranch. The former cannot be const, but should be
// removed, the latter should be made const, but seems to require refactoring.
// Forcing all callers to have a non-const reference to BinaryFunction to call
// dump non-const however is not ideal either. Adding this const_cast is right
// now the best solution. It is safe, because BinaryFunction itself is not
// modified. Only BinaryBasicBlocks are actually modified (if it all) and we
// have mutable pointers to those regardless whether this function is
// const-qualified or not.
const_cast<BinaryFunction &>(*this).print(dbgs(), "");
}
void BinaryFunction::print(raw_ostream &OS, std::string Annotation) {
if (!opts::shouldPrint(*this))
return;
StringRef SectionName =
OriginSection ? OriginSection->getName() : "<no origin section>";
OS << "Binary Function \"" << *this << "\" " << Annotation << " {";
std::vector<StringRef> AllNames = getNames();
if (AllNames.size() > 1) {
OS << "\n All names : ";
const char *Sep = "";
for (const StringRef &Name : AllNames) {
OS << Sep << Name;
Sep = "\n ";
}
}
OS << "\n Number : " << FunctionNumber;
OS << "\n State : " << CurrentState;
OS << "\n Address : 0x" << Twine::utohexstr(Address);
OS << "\n Size : 0x" << Twine::utohexstr(Size);
OS << "\n MaxSize : 0x" << Twine::utohexstr(MaxSize);
OS << "\n Offset : 0x" << Twine::utohexstr(getFileOffset());
OS << "\n Section : " << SectionName;
OS << "\n Orc Section : " << getCodeSectionName();
OS << "\n LSDA : 0x" << Twine::utohexstr(getLSDAAddress());
OS << "\n IsSimple : " << IsSimple;
OS << "\n IsMultiEntry: " << isMultiEntry();
OS << "\n IsSplit : " << isSplit();
OS << "\n BB Count : " << size();
if (HasUnknownControlFlow)
OS << "\n Unknown CF : true";
if (getPersonalityFunction())
OS << "\n Personality : " << getPersonalityFunction()->getName();
if (IsFragment)
OS << "\n IsFragment : true";
if (isFolded())
OS << "\n FoldedInto : " << *getFoldedIntoFunction();
for (BinaryFunction *ParentFragment : ParentFragments)
OS << "\n Parent : " << *ParentFragment;
if (!Fragments.empty()) {
OS << "\n Fragments : ";
ListSeparator LS;
for (BinaryFunction *Frag : Fragments)
OS << LS << *Frag;
}
if (hasCFG())
OS << "\n Hash : " << Twine::utohexstr(computeHash());
if (isMultiEntry()) {
OS << "\n Secondary Entry Points : ";
ListSeparator LS;
for (const auto &KV : SecondaryEntryPoints)
OS << LS << KV.second->getName();
}
if (FrameInstructions.size())
OS << "\n CFI Instrs : " << FrameInstructions.size();
if (!Layout.block_empty()) {
OS << "\n BB Layout : ";
ListSeparator LS;
for (const BinaryBasicBlock *BB : Layout.blocks())
OS << LS << BB->getName();
}
if (getImageAddress())
OS << "\n Image : 0x" << Twine::utohexstr(getImageAddress());
if (ExecutionCount != COUNT_NO_PROFILE) {
OS << "\n Exec Count : " << ExecutionCount;
OS << "\n Branch Count: " << RawBranchCount;
OS << "\n Profile Acc : " << format("%.1f%%", ProfileMatchRatio * 100.0f);
}
if (opts::PrintDynoStats && !getLayout().block_empty()) {
OS << '\n';
DynoStats dynoStats = getDynoStats(*this);
OS << dynoStats;
}
OS << "\n}\n";
if (opts::PrintDynoStatsOnly || !BC.InstPrinter)
return;
// Offset of the instruction in function.
uint64_t Offset = 0;
if (BasicBlocks.empty() && !Instructions.empty()) {
// Print before CFG was built.
for (const std::pair<const uint32_t, MCInst> &II : Instructions) {
Offset = II.first;
// Print label if exists at this offset.
auto LI = Labels.find(Offset);
if (LI != Labels.end()) {
if (const MCSymbol *EntrySymbol =
getSecondaryEntryPointSymbol(LI->second))
OS << EntrySymbol->getName() << " (Entry Point):\n";
OS << LI->second->getName() << ":\n";
}
BC.printInstruction(OS, II.second, Offset, this);
}
}
StringRef SplitPointMsg = "";
for (const FunctionFragment &FF : Layout.fragments()) {
OS << SplitPointMsg;
SplitPointMsg = "------- HOT-COLD SPLIT POINT -------\n\n";
for (const BinaryBasicBlock *BB : FF) {
OS << BB->getName() << " (" << BB->size()
<< " instructions, align : " << BB->getAlignment() << ")\n";
if (opts::PrintOutputAddressRange)
OS << formatv(" Output Address Range: [{0:x}, {1:x}) ({2} bytes)\n",
BB->getOutputAddressRange().first,
BB->getOutputAddressRange().second, BB->getOutputSize());
if (isEntryPoint(*BB)) {
if (MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB))
OS << " Secondary Entry Point: " << EntrySymbol->getName() << '\n';
else
OS << " Entry Point\n";
}
if (BB->isLandingPad())
OS << " Landing Pad\n";
uint64_t BBExecCount = BB->getExecutionCount();
if (hasValidProfile()) {
OS << " Exec Count : ";
if (BB->getExecutionCount() != BinaryBasicBlock::COUNT_NO_PROFILE)
OS << BBExecCount << '\n';
else
OS << "<unknown>\n";
}
if (BB->getCFIState() >= 0)
OS << " CFI State : " << BB->getCFIState() << '\n';
if (opts::EnableBAT) {
OS << " Input offset: 0x" << Twine::utohexstr(BB->getInputOffset())
<< "\n";
}
if (!BB->pred_empty()) {
OS << " Predecessors: ";
ListSeparator LS;
for (BinaryBasicBlock *Pred : BB->predecessors())
OS << LS << Pred->getName();
OS << '\n';
}
if (!BB->throw_empty()) {
OS << " Throwers: ";
ListSeparator LS;
for (BinaryBasicBlock *Throw : BB->throwers())
OS << LS << Throw->getName();
OS << '\n';
}
Offset = alignTo(Offset, BB->getAlignment());
// Note: offsets are imprecise since this is happening prior to
// relaxation.
Offset = BC.printInstructions(OS, BB->begin(), BB->end(), Offset, this);
if (!BB->succ_empty()) {
OS << " Successors: ";
// For more than 2 successors, sort them based on frequency.
std::vector<uint64_t> Indices(BB->succ_size());
std::iota(Indices.begin(), Indices.end(), 0);
if (BB->succ_size() > 2 && BB->getKnownExecutionCount()) {
llvm::stable_sort(Indices, [&](const uint64_t A, const uint64_t B) {
return BB->BranchInfo[B] < BB->BranchInfo[A];
});
}
ListSeparator LS;
for (unsigned I = 0; I < Indices.size(); ++I) {
BinaryBasicBlock *Succ = BB->Successors[Indices[I]];
const BinaryBasicBlock::BinaryBranchInfo &BI =
BB->BranchInfo[Indices[I]];
OS << LS << Succ->getName();
if (ExecutionCount != COUNT_NO_PROFILE &&
BI.MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) {
OS << " (mispreds: " << BI.MispredictedCount
<< ", count: " << BI.Count << ")";
} else if (ExecutionCount != COUNT_NO_PROFILE &&
BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE) {
OS << " (inferred count: " << BI.Count << ")";
}
}
OS << '\n';
}
if (!BB->lp_empty()) {
OS << " Landing Pads: ";
ListSeparator LS;
for (BinaryBasicBlock *LP : BB->landing_pads()) {
OS << LS << LP->getName();
if (ExecutionCount != COUNT_NO_PROFILE) {
OS << " (count: " << LP->getExecutionCount() << ")";
}
}
OS << '\n';
}
// In CFG_Finalized state we can miscalculate CFI state at exit.
if (CurrentState == State::CFG) {
const int32_t CFIStateAtExit = BB->getCFIStateAtExit();
if (CFIStateAtExit >= 0)
OS << " CFI State: " << CFIStateAtExit << '\n';
}
OS << '\n';
}
}
// Dump new exception ranges for the function.
if (!CallSites.empty()) {
OS << "EH table:\n";
for (const FunctionFragment &FF : getLayout().fragments()) {
for (const auto &FCSI : getCallSites(FF.getFragmentNum())) {
const CallSite &CSI = FCSI.second;
OS << " [" << *CSI.Start << ", " << *CSI.End << ") landing pad : ";
if (CSI.LP)
OS << *CSI.LP;
else
OS << "0";
OS << ", action : " << CSI.Action << '\n';
}
}
OS << '\n';
}
// Print all jump tables.
for (const std::pair<const uint64_t, JumpTable *> &JTI : JumpTables)
JTI.second->print(OS);
OS << "DWARF CFI Instructions:\n";
if (OffsetToCFI.size()) {
// Pre-buildCFG information
for (const std::pair<const uint32_t, uint32_t> &Elmt : OffsetToCFI) {
OS << format(" %08x:\t", Elmt.first);
assert(Elmt.second < FrameInstructions.size() && "Incorrect CFI offset");
BinaryContext::printCFI(OS, FrameInstructions[Elmt.second]);
OS << "\n";
}
} else {
// Post-buildCFG information
for (uint32_t I = 0, E = FrameInstructions.size(); I != E; ++I) {
const MCCFIInstruction &CFI = FrameInstructions[I];
OS << format(" %d:\t", I);
BinaryContext::printCFI(OS, CFI);
OS << "\n";
}
}
if (FrameInstructions.empty())
OS << " <empty>\n";
OS << "End of Function \"" << *this << "\"\n\n";
}
void BinaryFunction::printRelocations(raw_ostream &OS, uint64_t Offset,
uint64_t Size) const {
const char *Sep = " # Relocs: ";
auto RI = Relocations.lower_bound(Offset);
while (RI != Relocations.end() && RI->first < Offset + Size) {
OS << Sep << "(R: " << RI->second << ")";
Sep = ", ";
++RI;
}
}
static std::string mutateDWARFExpressionTargetReg(const MCCFIInstruction &Instr,
MCPhysReg NewReg) {
StringRef ExprBytes = Instr.getValues();
assert(ExprBytes.size() > 1 && "DWARF expression CFI is too short");
uint8_t Opcode = ExprBytes[0];
assert((Opcode == dwarf::DW_CFA_expression ||
Opcode == dwarf::DW_CFA_val_expression) &&
"invalid DWARF expression CFI");
(void)Opcode;
const uint8_t *const Start =
reinterpret_cast<const uint8_t *>(ExprBytes.drop_front(1).data());
const uint8_t *const End =
reinterpret_cast<const uint8_t *>(Start + ExprBytes.size() - 1);
unsigned Size = 0;
decodeULEB128(Start, &Size, End);
assert(Size > 0 && "Invalid reg encoding for DWARF expression CFI");
SmallString<8> Tmp;
raw_svector_ostream OSE(Tmp);
encodeULEB128(NewReg, OSE);
return Twine(ExprBytes.slice(0, 1))
.concat(OSE.str())
.concat(ExprBytes.drop_front(1 + Size))
.str();
}
void BinaryFunction::mutateCFIRegisterFor(const MCInst &Instr,
MCPhysReg NewReg) {
const MCCFIInstruction *OldCFI = getCFIFor(Instr);
assert(OldCFI && "invalid CFI instr");
switch (OldCFI->getOperation()) {
default:
llvm_unreachable("Unexpected instruction");
case MCCFIInstruction::OpDefCfa:
setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, NewReg,
OldCFI->getOffset()));
break;
case MCCFIInstruction::OpDefCfaRegister:
setCFIFor(Instr, MCCFIInstruction::createDefCfaRegister(nullptr, NewReg));
break;
case MCCFIInstruction::OpOffset:
setCFIFor(Instr, MCCFIInstruction::createOffset(nullptr, NewReg,
OldCFI->getOffset()));
break;
case MCCFIInstruction::OpRegister:
setCFIFor(Instr, MCCFIInstruction::createRegister(nullptr, NewReg,
OldCFI->getRegister2()));
break;
case MCCFIInstruction::OpSameValue:
setCFIFor(Instr, MCCFIInstruction::createSameValue(nullptr, NewReg));
break;
case MCCFIInstruction::OpEscape:
setCFIFor(Instr,
MCCFIInstruction::createEscape(
nullptr,
StringRef(mutateDWARFExpressionTargetReg(*OldCFI, NewReg))));
break;
case MCCFIInstruction::OpRestore:
setCFIFor(Instr, MCCFIInstruction::createRestore(nullptr, NewReg));
break;
case MCCFIInstruction::OpUndefined:
setCFIFor(Instr, MCCFIInstruction::createUndefined(nullptr, NewReg));
break;
}
}
const MCCFIInstruction *BinaryFunction::mutateCFIOffsetFor(const MCInst &Instr,
int64_t NewOffset) {
const MCCFIInstruction *OldCFI = getCFIFor(Instr);
assert(OldCFI && "invalid CFI instr");
switch (OldCFI->getOperation()) {
default:
llvm_unreachable("Unexpected instruction");
case MCCFIInstruction::OpDefCfaOffset:
setCFIFor(Instr, MCCFIInstruction::cfiDefCfaOffset(nullptr, NewOffset));
break;
case MCCFIInstruction::OpAdjustCfaOffset:
setCFIFor(Instr,
MCCFIInstruction::createAdjustCfaOffset(nullptr, NewOffset));
break;
case MCCFIInstruction::OpDefCfa:
setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, OldCFI->getRegister(),
NewOffset));
break;
case MCCFIInstruction::OpOffset:
setCFIFor(Instr, MCCFIInstruction::createOffset(
nullptr, OldCFI->getRegister(), NewOffset));
break;
}
return getCFIFor(Instr);
}
IndirectBranchType
BinaryFunction::processIndirectBranch(MCInst &Instruction, unsigned Size,
uint64_t Offset,
uint64_t &TargetAddress) {
const unsigned PtrSize = BC.AsmInfo->getCodePointerSize();
// The instruction referencing memory used by the branch instruction.
// It could be the branch instruction itself or one of the instructions
// setting the value of the register used by the branch.
MCInst *MemLocInstr;
// Address of the table referenced by MemLocInstr. Could be either an
// array of function pointers, or a jump table.
uint64_t ArrayStart = 0;
unsigned BaseRegNum, IndexRegNum;
int64_t DispValue;
const MCExpr *DispExpr;
// In AArch, identify the instruction adding the PC-relative offset to
// jump table entries to correctly decode it.
MCInst *PCRelBaseInstr;
uint64_t PCRelAddr = 0;
auto Begin = Instructions.begin();
if (BC.isAArch64()) {
PreserveNops = BC.HasRelocations;
// Start at the last label as an approximation of the current basic block.
// This is a heuristic, since the full set of labels have yet to be
// determined
for (const uint32_t Offset :
llvm::make_first_range(llvm::reverse(Labels))) {
auto II = Instructions.find(Offset);
if (II != Instructions.end()) {
Begin = II;
break;
}
}
}
IndirectBranchType BranchType = BC.MIB->analyzeIndirectBranch(
Instruction, Begin, Instructions.end(), PtrSize, MemLocInstr, BaseRegNum,
IndexRegNum, DispValue, DispExpr, PCRelBaseInstr);
if (BranchType == IndirectBranchType::UNKNOWN && !MemLocInstr)
return BranchType;
if (MemLocInstr != &Instruction)
IndexRegNum = BC.MIB->getNoRegister();
if (BC.isAArch64()) {
const MCSymbol *Sym = BC.MIB->getTargetSymbol(*PCRelBaseInstr, 1);
assert(Sym && "Symbol extraction failed");
ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*Sym);
if (SymValueOrError) {
PCRelAddr = *SymValueOrError;
} else {
for (std::pair<const uint32_t, MCSymbol *> &Elmt : Labels) {
if (Elmt.second == Sym) {
PCRelAddr = Elmt.first + getAddress();
break;
}
}
}
uint64_t InstrAddr = 0;
for (auto II = Instructions.rbegin(); II != Instructions.rend(); ++II) {
if (&II->second == PCRelBaseInstr) {
InstrAddr = II->first + getAddress();
break;
}
}
assert(InstrAddr != 0 && "instruction not found");
// We do this to avoid spurious references to code locations outside this
// function (for example, if the indirect jump lives in the last basic
// block of the function, it will create a reference to the next function).
// This replaces a symbol reference with an immediate.
BC.MIB->replaceMemOperandDisp(*PCRelBaseInstr,
MCOperand::createImm(PCRelAddr - InstrAddr));
// FIXME: Disable full jump table processing for AArch64 until we have a
// proper way of determining the jump table limits.
return IndirectBranchType::UNKNOWN;
}
// RIP-relative addressing should be converted to symbol form by now
// in processed instructions (but not in jump).
if (DispExpr) {
const MCSymbol *TargetSym;
uint64_t TargetOffset;
std::tie(TargetSym, TargetOffset) = BC.MIB->getTargetSymbolInfo(DispExpr);
ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*TargetSym);
assert(SymValueOrError && "global symbol needs a value");
ArrayStart = *SymValueOrError + TargetOffset;
BaseRegNum = BC.MIB->getNoRegister();
if (BC.isAArch64()) {
ArrayStart &= ~0xFFFULL;
ArrayStart += DispValue & 0xFFFULL;
}
} else {
ArrayStart = static_cast<uint64_t>(DispValue);
}
if (BaseRegNum == BC.MRI->getProgramCounter())
ArrayStart += getAddress() + Offset + Size;
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: addressed memory is 0x"
<< Twine::utohexstr(ArrayStart) << '\n');
ErrorOr<BinarySection &> Section = BC.getSectionForAddress(ArrayStart);
if (!Section) {
// No section - possibly an absolute address. Since we don't allow
// internal function addresses to escape the function scope - we
// consider it a tail call.
if (opts::Verbosity >= 1) {
BC.errs() << "BOLT-WARNING: no section for address 0x"
<< Twine::utohexstr(ArrayStart) << " referenced from function "
<< *this << '\n';
}
return IndirectBranchType::POSSIBLE_TAIL_CALL;
}
if (Section->isVirtual()) {
// The contents are filled at runtime.
return IndirectBranchType::POSSIBLE_TAIL_CALL;
}
if (BranchType == IndirectBranchType::POSSIBLE_FIXED_BRANCH) {
ErrorOr<uint64_t> Value = BC.getPointerAtAddress(ArrayStart);
if (!Value)
return IndirectBranchType::UNKNOWN;
if (BC.getSectionForAddress(ArrayStart)->isWritable())
return IndirectBranchType::UNKNOWN;
BC.outs() << "BOLT-INFO: fixed indirect branch detected in " << *this
<< " at 0x" << Twine::utohexstr(getAddress() + Offset)
<< " referencing data at 0x" << Twine::utohexstr(ArrayStart)
<< " the destination value is 0x" << Twine::utohexstr(*Value)
<< '\n';
TargetAddress = *Value;
return BranchType;
}
// Check if there's already a jump table registered at this address.
MemoryContentsType MemType;
if (JumpTable *JT = BC.getJumpTableContainingAddress(ArrayStart)) {
switch (JT->Type) {
case JumpTable::JTT_NORMAL:
MemType = MemoryContentsType::POSSIBLE_JUMP_TABLE;
break;
case JumpTable::JTT_PIC:
MemType = MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE;
break;
}
} else {
MemType = BC.analyzeMemoryAt(ArrayStart, *this);
}
// Check that jump table type in instruction pattern matches memory contents.
JumpTable::JumpTableType JTType;
if (BranchType == IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE) {
if (MemType != MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE)
return IndirectBranchType::UNKNOWN;
JTType = JumpTable::JTT_PIC;
} else {
if (MemType == MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE)
return IndirectBranchType::UNKNOWN;
if (MemType == MemoryContentsType::UNKNOWN)
return IndirectBranchType::POSSIBLE_TAIL_CALL;
BranchType = IndirectBranchType::POSSIBLE_JUMP_TABLE;
JTType = JumpTable::JTT_NORMAL;
}
// Convert the instruction into jump table branch.
const MCSymbol *JTLabel = BC.getOrCreateJumpTable(*this, ArrayStart, JTType);
BC.MIB->replaceMemOperandDisp(*MemLocInstr, JTLabel, BC.Ctx.get());
BC.MIB->setJumpTable(Instruction, ArrayStart, IndexRegNum);
JTSites.emplace_back(Offset, ArrayStart);
return BranchType;
}
MCSymbol *BinaryFunction::getOrCreateLocalLabel(uint64_t Address,
bool CreatePastEnd) {
const uint64_t Offset = Address - getAddress();
if ((Offset == getSize()) && CreatePastEnd)
return getFunctionEndLabel();
auto LI = Labels.find(Offset);
if (LI != Labels.end())
return LI->second;
// For AArch64, check if this address is part of a constant island.
if (BC.isAArch64()) {
if (MCSymbol *IslandSym = getOrCreateIslandAccess(Address))
return IslandSym;
}
MCSymbol *Label = BC.Ctx->createNamedTempSymbol();
Labels[Offset] = Label;
return Label;
}
ErrorOr<ArrayRef<uint8_t>> BinaryFunction::getData() const {
BinarySection &Section = *getOriginSection();
assert(Section.containsRange(getAddress(), getMaxSize()) &&
"wrong section for function");
if (!Section.isText() || Section.isVirtual() || !Section.getSize())
return std::make_error_code(std::errc::bad_address);
StringRef SectionContents = Section.getContents();
assert(SectionContents.size() == Section.getSize() &&
"section size mismatch");
// Function offset from the section start.
uint64_t Offset = getAddress() - Section.getAddress();
auto *Bytes = reinterpret_cast<const uint8_t *>(SectionContents.data());
return ArrayRef<uint8_t>(Bytes + Offset, getMaxSize());
}
size_t BinaryFunction::getSizeOfDataInCodeAt(uint64_t Offset) const {
if (!Islands)
return 0;
if (!llvm::is_contained(Islands->DataOffsets, Offset))
return 0;
auto Iter = Islands->CodeOffsets.upper_bound(Offset);
if (Iter != Islands->CodeOffsets.end())
return *Iter - Offset;
return getSize() - Offset;
}
bool BinaryFunction::isZeroPaddingAt(uint64_t Offset) const {
ArrayRef<uint8_t> FunctionData = *getData();
uint64_t EndOfCode = getSize();
if (Islands) {
auto Iter = Islands->DataOffsets.upper_bound(Offset);
if (Iter != Islands->DataOffsets.end())
EndOfCode = *Iter;
}
for (uint64_t I = Offset; I < EndOfCode; ++I)
if (FunctionData[I] != 0)
return false;
return true;
}
Error BinaryFunction::handlePCRelOperand(MCInst &Instruction, uint64_t Address,
uint64_t Size) {
auto &MIB = BC.MIB;
uint64_t TargetAddress = 0;
if (!MIB->evaluateMemOperandTarget(Instruction, TargetAddress, Address,
Size)) {
std::string Msg;
raw_string_ostream SS(Msg);
SS << "BOLT-ERROR: PC-relative operand can't be evaluated:\n";
BC.InstPrinter->printInst(&Instruction, 0, "", *BC.STI, SS);
SS << '\n';
Instruction.dump_pretty(SS, BC.InstPrinter.get());
SS << '\n';
SS << "BOLT-ERROR: cannot handle PC-relative operand at 0x"
<< Twine::utohexstr(Address) << ". Skipping function " << *this << ".\n";
if (BC.HasRelocations)
return createFatalBOLTError(Msg);
IsSimple = false;
return createNonFatalBOLTError(Msg);
}
if (TargetAddress == 0 && opts::Verbosity >= 1) {
BC.outs() << "BOLT-INFO: PC-relative operand is zero in function " << *this
<< '\n';
}
const MCSymbol *TargetSymbol;
uint64_t TargetOffset;
std::tie(TargetSymbol, TargetOffset) =
BC.handleAddressRef(TargetAddress, *this, /*IsPCRel*/ true);
bool ReplaceSuccess = MIB->replaceMemOperandDisp(
Instruction, TargetSymbol, static_cast<int64_t>(TargetOffset), &*BC.Ctx);
(void)ReplaceSuccess;
assert(ReplaceSuccess && "Failed to replace mem operand with symbol+off.");
return Error::success();
}
MCSymbol *BinaryFunction::handleExternalReference(MCInst &Instruction,
uint64_t Size,
uint64_t Offset,
uint64_t TargetAddress,
bool &IsCall) {
auto &MIB = BC.MIB;
const uint64_t AbsoluteInstrAddr = getAddress() + Offset;
BC.addInterproceduralReference(this, TargetAddress);
if (opts::Verbosity >= 2 && !IsCall && Size == 2 && !BC.HasRelocations) {
BC.errs() << "BOLT-WARNING: relaxed tail call detected at 0x"
<< Twine::utohexstr(AbsoluteInstrAddr) << " in function " << *this
<< ". Code size will be increased.\n";
}
assert(!MIB->isTailCall(Instruction) &&
"synthetic tail call instruction found");
// This is a call regardless of the opcode.
// Assign proper opcode for tail calls, so that they could be
// treated as calls.
if (!IsCall) {
if (!MIB->convertJmpToTailCall(Instruction)) {
assert(MIB->isConditionalBranch(Instruction) &&
"unknown tail call instruction");
if (opts::Verbosity >= 2) {
BC.errs() << "BOLT-WARNING: conditional tail call detected in "
<< "function " << *this << " at 0x"
<< Twine::utohexstr(AbsoluteInstrAddr) << ".\n";
}
}
IsCall = true;
}
if (opts::Verbosity >= 2 && TargetAddress == 0) {
// We actually see calls to address 0 in presence of weak
// symbols originating from libraries. This code is never meant
// to be executed.
BC.outs() << "BOLT-INFO: Function " << *this
<< " has a call to address zero.\n";
}
return BC.getOrCreateGlobalSymbol(TargetAddress, "FUNCat");
}
void BinaryFunction::handleIndirectBranch(MCInst &Instruction, uint64_t Size,
uint64_t Offset) {
auto &MIB = BC.MIB;
uint64_t IndirectTarget = 0;
IndirectBranchType Result =
processIndirectBranch(Instruction, Size, Offset, IndirectTarget);
switch (Result) {
default:
llvm_unreachable("unexpected result");
case IndirectBranchType::POSSIBLE_TAIL_CALL: {
bool Result = MIB->convertJmpToTailCall(Instruction);
(void)Result;
assert(Result);
break;
}
case IndirectBranchType::POSSIBLE_JUMP_TABLE:
case IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE:
if (opts::JumpTables == JTS_NONE)
IsSimple = false;
break;
case IndirectBranchType::POSSIBLE_FIXED_BRANCH: {
if (containsAddress(IndirectTarget)) {
const MCSymbol *TargetSymbol = getOrCreateLocalLabel(IndirectTarget);
Instruction.clear();
MIB->createUncondBranch(Instruction, TargetSymbol, BC.Ctx.get());
TakenBranches.emplace_back(Offset, IndirectTarget - getAddress());
addEntryPointAtOffset(IndirectTarget - getAddress());
} else {
MIB->convertJmpToTailCall(Instruction);
BC.addInterproceduralReference(this, IndirectTarget);
}
break;
}
case IndirectBranchType::UNKNOWN:
// Keep processing. We'll do more checks and fixes in
// postProcessIndirectBranches().
UnknownIndirectBranchOffsets.emplace(Offset);
break;
}
}
void BinaryFunction::handleAArch64IndirectCall(MCInst &Instruction,
const uint64_t Offset) {
auto &MIB = BC.MIB;
const uint64_t AbsoluteInstrAddr = getAddress() + Offset;
MCInst *TargetHiBits, *TargetLowBits;
uint64_t TargetAddress, Count;
Count = MIB->matchLinkerVeneer(Instructions.begin(), Instructions.end(),
AbsoluteInstrAddr, Instruction, TargetHiBits,
TargetLowBits, TargetAddress);
if (Count) {
MIB->addAnnotation(Instruction, "AArch64Veneer", true);
--Count;
for (auto It = std::prev(Instructions.end()); Count != 0;
It = std::prev(It), --Count) {
MIB->addAnnotation(It->second, "AArch64Veneer", true);
}
BC.addAdrpAddRelocAArch64(*this, *TargetLowBits, *TargetHiBits,
TargetAddress);
}
}
Error BinaryFunction::disassemble() {
NamedRegionTimer T("disassemble", "Disassemble function", "buildfuncs",
"Build Binary Functions", opts::TimeBuild);
ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData();
assert(ErrorOrFunctionData && "function data is not available");
ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData;
assert(FunctionData.size() == getMaxSize() &&
"function size does not match raw data size");
auto &Ctx = BC.Ctx;
auto &MIB = BC.MIB;
BC.SymbolicDisAsm->setSymbolizer(MIB->createTargetSymbolizer(*this));
// Insert a label at the beginning of the function. This will be our first
// basic block.
Labels[0] = Ctx->createNamedTempSymbol("BB0");
// Map offsets in the function to a label that should always point to the
// corresponding instruction. This is used for labels that shouldn't point to
// the start of a basic block but always to a specific instruction. This is
// used, for example, on RISC-V where %pcrel_lo relocations point to the
// corresponding %pcrel_hi.
LabelsMapType InstructionLabels;
uint64_t Size = 0; // instruction size
for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) {
MCInst Instruction;
const uint64_t AbsoluteInstrAddr = getAddress() + Offset;
// Check for data inside code and ignore it
if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) {
Size = DataInCodeSize;
continue;
}
if (!BC.SymbolicDisAsm->getInstruction(Instruction, Size,
FunctionData.slice(Offset),
AbsoluteInstrAddr, nulls())) {
// Functions with "soft" boundaries, e.g. coming from assembly source,
// can have 0-byte padding at the end.
if (isZeroPaddingAt(Offset))
break;
BC.errs()
<< "BOLT-WARNING: unable to disassemble instruction at offset 0x"
<< Twine::utohexstr(Offset) << " (address 0x"
<< Twine::utohexstr(AbsoluteInstrAddr) << ") in function " << *this
<< '\n';
// Some AVX-512 instructions could not be disassembled at all.
if (BC.HasRelocations && opts::TrapOnAVX512 && BC.isX86()) {
setTrapOnEntry();
BC.TrappedFunctions.push_back(this);
} else {
setIgnored();
}
break;
}
// Check integrity of LLVM assembler/disassembler.
if (opts::CheckEncoding && !BC.MIB->isBranch(Instruction) &&
!BC.MIB->isCall(Instruction) && !BC.MIB->isNoop(Instruction)) {
if (!BC.validateInstructionEncoding(FunctionData.slice(Offset, Size))) {
BC.errs() << "BOLT-WARNING: mismatching LLVM encoding detected in "
<< "function " << *this << " for instruction :\n";
BC.printInstruction(BC.errs(), Instruction, AbsoluteInstrAddr);
BC.errs() << '\n';
}
}
// Special handling for AVX-512 instructions.
if (MIB->hasEVEXEncoding(Instruction)) {
if (BC.HasRelocations && opts::TrapOnAVX512) {
setTrapOnEntry();
BC.TrappedFunctions.push_back(this);
break;
}
if (!BC.validateInstructionEncoding(FunctionData.slice(Offset, Size))) {
BC.errs() << "BOLT-WARNING: internal assembler/disassembler error "
"detected for AVX512 instruction:\n";
BC.printInstruction(BC.errs(), Instruction, AbsoluteInstrAddr);
BC.errs() << " in function " << *this << '\n';
setIgnored();
break;
}
}
if (MIB->isBranch(Instruction) || MIB->isCall(Instruction)) {
uint64_t TargetAddress = 0;
if (MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size,
TargetAddress)) {
// Check if the target is within the same function. Otherwise it's
// a call, possibly a tail call.
//
// If the target *is* the function address it could be either a branch
// or a recursive call.
bool IsCall = MIB->isCall(Instruction);
const bool IsCondBranch = MIB->isConditionalBranch(Instruction);
MCSymbol *TargetSymbol = nullptr;
if (BC.MIB->isUnsupportedBranch(Instruction)) {
setIgnored();
if (BinaryFunction *TargetFunc =
BC.getBinaryFunctionContainingAddress(TargetAddress))
TargetFunc->setIgnored();
}
if (IsCall && containsAddress(TargetAddress)) {
if (TargetAddress == getAddress()) {
// Recursive call.
TargetSymbol = getSymbol();
} else {
HasInternalCalls = true;
if (BC.isX86()) {
// Dangerous old-style x86 PIC code. We may need to freeze this
// function, so preserve the function as is for now.
PreserveNops = true;
} else {
BC.errs() << "BOLT-WARNING: internal call detected at 0x"
<< Twine::utohexstr(AbsoluteInstrAddr)
<< " in function " << *this << ". Skipping.\n";
IsSimple = false;
}
}
}
if (!TargetSymbol) {
// Create either local label or external symbol.
if (containsAddress(TargetAddress)) {
TargetSymbol = getOrCreateLocalLabel(TargetAddress);
} else {
if (TargetAddress == getAddress() + getSize() &&
TargetAddress < getAddress() + getMaxSize() &&
!(BC.isAArch64() &&
BC.handleAArch64Veneer(TargetAddress, /*MatchOnly*/ true))) {
// Result of __builtin_unreachable().
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump past end detected at 0x"
<< Twine::utohexstr(AbsoluteInstrAddr)
<< " in function " << *this
<< " : replacing with nop.\n");
BC.MIB->createNoop(Instruction);
if (IsCondBranch) {
// Register branch offset for profile validation.
IgnoredBranches.emplace_back(Offset, Offset + Size);
}
goto add_instruction;
}
// May update Instruction and IsCall
TargetSymbol = handleExternalReference(Instruction, Size, Offset,
TargetAddress, IsCall);
}
}
if (!IsCall) {
// Add taken branch info.
TakenBranches.emplace_back(Offset, TargetAddress - getAddress());
}
BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, &*Ctx);
// Mark CTC.
if (IsCondBranch && IsCall)
MIB->setConditionalTailCall(Instruction, TargetAddress);
} else {
// Could not evaluate branch. Should be an indirect call or an
// indirect branch. Bail out on the latter case.
if (MIB->isIndirectBranch(Instruction))
handleIndirectBranch(Instruction, Size, Offset);
// Indirect call. We only need to fix it if the operand is RIP-relative.
if (IsSimple && MIB->hasPCRelOperand(Instruction)) {
if (auto NewE = handleErrors(
handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size),
[&](const BOLTError &E) -> Error {
if (E.isFatal())
return Error(std::make_unique<BOLTError>(std::move(E)));
if (!E.getMessage().empty())
E.log(BC.errs());
return Error::success();
})) {
return Error(std::move(NewE));
}
}
if (BC.isAArch64())
handleAArch64IndirectCall(Instruction, Offset);
}
} else if (BC.isAArch64() || BC.isRISCV()) {
// Check if there's a relocation associated with this instruction.
bool UsedReloc = false;
for (auto Itr = Relocations.lower_bound(Offset),
ItrE = Relocations.lower_bound(Offset + Size);
Itr != ItrE; ++Itr) {
const Relocation &Relocation = Itr->second;
MCSymbol *Symbol = Relocation.Symbol;
if (Relocation::isInstructionReference(Relocation.Type)) {
uint64_t RefOffset = Relocation.Value - getAddress();
LabelsMapType::iterator LI = InstructionLabels.find(RefOffset);
if (LI == InstructionLabels.end()) {
Symbol = BC.Ctx->createNamedTempSymbol();
InstructionLabels.emplace(RefOffset, Symbol);
} else {
Symbol = LI->second;
}
}
int64_t Value = Relocation.Value;
const bool Result = BC.MIB->replaceImmWithSymbolRef(
Instruction, Symbol, Relocation.Addend, Ctx.get(), Value,
Relocation.Type);
(void)Result;
assert(Result && "cannot replace immediate with relocation");
// For aarch64, if we replaced an immediate with a symbol from a
// relocation, we mark it so we do not try to further process a
// pc-relative operand. All we need is the symbol.
UsedReloc = true;
}
if (!BC.isRISCV() && MIB->hasPCRelOperand(Instruction) && !UsedReloc) {
if (auto NewE = handleErrors(
handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size),
[&](const BOLTError &E) -> Error {
if (E.isFatal())
return Error(std::make_unique<BOLTError>(std::move(E)));
if (!E.getMessage().empty())
E.log(BC.errs());
return Error::success();
}))
return Error(std::move(NewE));
}
}
add_instruction:
if (getDWARFLineTable()) {
Instruction.setLoc(findDebugLineInformationForInstructionAt(
AbsoluteInstrAddr, getDWARFUnit(), getDWARFLineTable()));
}
// Record offset of the instruction for profile matching.
if (BC.keepOffsetForInstruction(Instruction))
MIB->setOffset(Instruction, static_cast<uint32_t>(Offset));
if (BC.isX86() && BC.MIB->isNoop(Instruction)) {
// NOTE: disassembly loses the correct size information for noops on x86.
// E.g. nopw 0x0(%rax,%rax,1) is 9 bytes, but re-encoded it's only
// 5 bytes. Preserve the size info using annotations.
MIB->setSize(Instruction, Size);
}
addInstruction(Offset, std::move(Instruction));
}
for (auto [Offset, Label] : InstructionLabels) {
InstrMapType::iterator II = Instructions.find(Offset);
assert(II != Instructions.end() && "reference to non-existing instruction");
BC.MIB->setInstLabel(II->second, Label);
}
// Reset symbolizer for the disassembler.
BC.SymbolicDisAsm->setSymbolizer(nullptr);
if (uint64_t Offset = getFirstInstructionOffset())
Labels[Offset] = BC.Ctx->createNamedTempSymbol();
clearList(Relocations);
if (!IsSimple) {
clearList(Instructions);
return createNonFatalBOLTError("");
}
updateState(State::Disassembled);
return Error::success();
}
MCSymbol *BinaryFunction::registerBranch(uint64_t Src, uint64_t Dst) {
assert(CurrentState == State::Disassembled &&
"Cannot register branch unless function is in disassembled state.");
assert(containsAddress(Src) && containsAddress(Dst) &&
"Cannot register external branch.");
MCSymbol *Target = getOrCreateLocalLabel(Dst);
TakenBranches.emplace_back(Src - getAddress(), Dst - getAddress());
return Target;
}
bool BinaryFunction::scanExternalRefs() {
bool Success = true;
bool DisassemblyFailed = false;
// Ignore pseudo functions.
if (isPseudo())
return Success;
if (opts::NoScan) {
clearList(Relocations);
clearList(ExternallyReferencedOffsets);
return false;
}
// List of external references for this function.
std::vector<Relocation> FunctionRelocations;
static BinaryContext::IndependentCodeEmitter Emitter =
BC.createIndependentMCCodeEmitter();
ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData();
assert(ErrorOrFunctionData && "function data is not available");
ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData;
assert(FunctionData.size() == getMaxSize() &&
"function size does not match raw data size");
BC.SymbolicDisAsm->setSymbolizer(
BC.MIB->createTargetSymbolizer(*this, /*CreateSymbols*/ false));
// Disassemble contents of the function. Detect code entry points and create
// relocations for references to code that will be moved.
uint64_t Size = 0; // instruction size
for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) {
// Check for data inside code and ignore it
if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) {
Size = DataInCodeSize;
continue;
}
const uint64_t AbsoluteInstrAddr = getAddress() + Offset;
MCInst Instruction;
if (!BC.SymbolicDisAsm->getInstruction(Instruction, Size,
FunctionData.slice(Offset),
AbsoluteInstrAddr, nulls())) {
if (opts::Verbosity >= 1 && !isZeroPaddingAt(Offset)) {
BC.errs()
<< "BOLT-WARNING: unable to disassemble instruction at offset 0x"
<< Twine::utohexstr(Offset) << " (address 0x"
<< Twine::utohexstr(AbsoluteInstrAddr) << ") in function " << *this
<< '\n';
}
Success = false;
DisassemblyFailed = true;
break;
}
// Return true if we can skip handling the Target function reference.
auto ignoreFunctionRef = [&](const BinaryFunction &Target) {
if (&Target == this)
return true;
// Note that later we may decide not to emit Target function. In that
// case, we conservatively create references that will be ignored or
// resolved to the same function.
if (!BC.shouldEmit(Target))
return true;
return false;
};
// Return true if we can ignore reference to the symbol.
auto ignoreReference = [&](const MCSymbol *TargetSymbol) {
if (!TargetSymbol)
return true;
if (BC.forceSymbolRelocations(TargetSymbol->getName()))
return false;
BinaryFunction *TargetFunction = BC.getFunctionForSymbol(TargetSymbol);
if (!TargetFunction)
return true;
return ignoreFunctionRef(*TargetFunction);
};
// Handle calls and branches separately as symbolization doesn't work for
// them yet.
MCSymbol *BranchTargetSymbol = nullptr;
if (BC.MIB->isCall(Instruction) || BC.MIB->isBranch(Instruction)) {
uint64_t TargetAddress = 0;
BC.MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size,
TargetAddress);
// Create an entry point at reference address if needed.
BinaryFunction *TargetFunction =
BC.getBinaryFunctionContainingAddress(TargetAddress);
if (!TargetFunction || ignoreFunctionRef(*TargetFunction))
continue;
const uint64_t FunctionOffset =
TargetAddress - TargetFunction->getAddress();
BranchTargetSymbol =
FunctionOffset ? TargetFunction->addEntryPointAtOffset(FunctionOffset)
: TargetFunction->getSymbol();
}
// Can't find more references. Not creating relocations since we are not
// moving code.
if (!BC.HasRelocations)
continue;
if (BranchTargetSymbol) {
BC.MIB->replaceBranchTarget(Instruction, BranchTargetSymbol,
Emitter.LocalCtx.get());
} else if (!llvm::any_of(Instruction,
[](const MCOperand &Op) { return Op.isExpr(); })) {
// Skip assembly if the instruction may not have any symbolic operands.
continue;
}
// Emit the instruction using temp emitter and generate relocations.
SmallString<256> Code;
SmallVector<MCFixup, 4> Fixups;
Emitter.MCE->encodeInstruction(Instruction, Code, Fixups, *BC.STI);
// Create relocation for every fixup.
for (const MCFixup &Fixup : Fixups) {
std::optional<Relocation> Rel = BC.MIB->createRelocation(Fixup, *BC.MAB);
if (!Rel) {
Success = false;
continue;
}
if (ignoreReference(Rel->Symbol))
continue;
if (Relocation::getSizeForType(Rel->Type) < 4) {
// If the instruction uses a short form, then we might not be able
// to handle the rewrite without relaxation, and hence cannot reliably
// create an external reference relocation.
Success = false;
continue;
}
Rel->Offset += getAddress() - getOriginSection()->getAddress() + Offset;
FunctionRelocations.push_back(*Rel);
}
if (!Success)
break;
}
// Reset symbolizer for the disassembler.
BC.SymbolicDisAsm->setSymbolizer(nullptr);
// Add relocations unless disassembly failed for this function.
if (!DisassemblyFailed)
for (Relocation &Rel : FunctionRelocations)
getOriginSection()->addPendingRelocation(Rel);
// Inform BinaryContext that this function symbols will not be defined and
// relocations should not be created against them.
if (BC.HasRelocations) {
for (std::pair<const uint32_t, MCSymbol *> &LI : Labels)
BC.UndefinedSymbols.insert(LI.second);
for (MCSymbol *const EndLabel : FunctionEndLabels)
if (EndLabel)
BC.UndefinedSymbols.insert(EndLabel);
}
clearList(Relocations);
clearList(ExternallyReferencedOffsets);
if (Success && BC.HasRelocations)
HasExternalRefRelocations = true;
if (opts::Verbosity >= 1 && !Success)
BC.outs() << "BOLT-INFO: failed to scan refs for " << *this << '\n';
return Success;
}
void BinaryFunction::postProcessEntryPoints() {
if (!isSimple())
return;
for (auto &KV : Labels) {
MCSymbol *Label = KV.second;
if (!getSecondaryEntryPointSymbol(Label))
continue;
// In non-relocation mode there's potentially an external undetectable
// reference to the entry point and hence we cannot move this entry
// point. Optimizing without moving could be difficult.
if (!BC.HasRelocations)
setSimple(false);
const uint32_t Offset = KV.first;
// If we are at Offset 0 and there is no instruction associated with it,
// this means this is an empty function. Just ignore. If we find an
// instruction at this offset, this entry point is valid.
if (!Offset || getInstructionAtOffset(Offset))
continue;
// On AArch64 there are legitimate reasons to have references past the
// end of the function, e.g. jump tables.
if (BC.isAArch64() && Offset == getSize())
continue;
BC.errs() << "BOLT-WARNING: reference in the middle of instruction "
"detected in function "
<< *this << " at offset 0x" << Twine::utohexstr(Offset) << '\n';
if (BC.HasRelocations)
setIgnored();
setSimple(false);
return;
}
}
void BinaryFunction::postProcessJumpTables() {
// Create labels for all entries.
for (auto &JTI : JumpTables) {
JumpTable &JT = *JTI.second;
if (JT.Type == JumpTable::JTT_PIC && opts::JumpTables == JTS_BASIC) {
opts::JumpTables = JTS_MOVE;
BC.outs() << "BOLT-INFO: forcing -jump-tables=move as PIC jump table was "
"detected in function "
<< *this << '\n';
}
const uint64_t BDSize =
BC.getBinaryDataAtAddress(JT.getAddress())->getSize();
if (!BDSize) {
BC.setBinaryDataSize(JT.getAddress(), JT.getSize());
} else {
assert(BDSize >= JT.getSize() &&
"jump table cannot be larger than the containing object");
}
if (!JT.Entries.empty())
continue;
bool HasOneParent = (JT.Parents.size() == 1);
for (uint64_t EntryAddress : JT.EntriesAsAddress) {
// builtin_unreachable does not belong to any function
// Need to handle separately
bool IsBuiltinUnreachable =
llvm::any_of(JT.Parents, [&](const BinaryFunction *Parent) {
return EntryAddress == Parent->getAddress() + Parent->getSize();
});
if (IsBuiltinUnreachable) {
MCSymbol *Label = getOrCreateLocalLabel(EntryAddress, true);
JT.Entries.push_back(Label);
continue;
}
// Create a local label for targets that cannot be reached by other
// fragments. Otherwise, create a secondary entry point in the target
// function.
BinaryFunction *TargetBF =
BC.getBinaryFunctionContainingAddress(EntryAddress);
MCSymbol *Label;
if (HasOneParent && TargetBF == this) {
Label = getOrCreateLocalLabel(EntryAddress, true);
} else {
const uint64_t Offset = EntryAddress - TargetBF->getAddress();
Label = Offset ? TargetBF->addEntryPointAtOffset(Offset)
: TargetBF->getSymbol();
}
JT.Entries.push_back(Label);
}
}
// Add TakenBranches from JumpTables.
//
// We want to do it after initial processing since we don't know jump tables'
// boundaries until we process them all.
for (auto &JTSite : JTSites) {
const uint64_t JTSiteOffset = JTSite.first;
const uint64_t JTAddress = JTSite.second;
const JumpTable *JT = getJumpTableContainingAddress(JTAddress);
assert(JT && "cannot find jump table for address");
uint64_t EntryOffset = JTAddress - JT->getAddress();
while (EntryOffset < JT->getSize()) {
uint64_t EntryAddress = JT->EntriesAsAddress[EntryOffset / JT->EntrySize];
uint64_t TargetOffset = EntryAddress - getAddress();
if (TargetOffset < getSize()) {
TakenBranches.emplace_back(JTSiteOffset, TargetOffset);
if (opts::StrictMode)
registerReferencedOffset(TargetOffset);
}
EntryOffset += JT->EntrySize;
// A label at the next entry means the end of this jump table.
if (JT->Labels.count(EntryOffset))
break;
}
}
clearList(JTSites);
// Conservatively populate all possible destinations for unknown indirect
// branches.
if (opts::StrictMode && hasInternalReference()) {
for (uint64_t Offset : UnknownIndirectBranchOffsets) {
for (uint64_t PossibleDestination : ExternallyReferencedOffsets) {
// Ignore __builtin_unreachable().
if (PossibleDestination == getSize())
continue;
TakenBranches.emplace_back(Offset, PossibleDestination);
}
}
}
}
bool BinaryFunction::validateExternallyReferencedOffsets() {
SmallPtrSet<MCSymbol *, 4> JTTargets;
for (const JumpTable *JT : llvm::make_second_range(JumpTables))
JTTargets.insert(JT->Entries.begin(), JT->Entries.end());
bool HasUnclaimedReference = false;
for (uint64_t Destination : ExternallyReferencedOffsets) {
// Ignore __builtin_unreachable().
if (Destination == getSize())
continue;
// Ignore constant islands
if (isInConstantIsland(Destination + getAddress()))
continue;
if (BinaryBasicBlock *BB = getBasicBlockAtOffset(Destination)) {
// Check if the externally referenced offset is a recognized jump table
// target.
if (JTTargets.contains(BB->getLabel()))
continue;
if (opts::Verbosity >= 1) {
BC.errs() << "BOLT-WARNING: unclaimed data to code reference (possibly "
<< "an unrecognized jump table entry) to " << BB->getName()
<< " in " << *this << "\n";
}
auto L = BC.scopeLock();
addEntryPoint(*BB);
} else {
BC.errs() << "BOLT-WARNING: unknown data to code reference to offset "
<< Twine::utohexstr(Destination) << " in " << *this << "\n";
setIgnored();
}
HasUnclaimedReference = true;
}
return !HasUnclaimedReference;
}
bool BinaryFunction::postProcessIndirectBranches(
MCPlusBuilder::AllocatorIdTy AllocId) {
auto addUnknownControlFlow = [&](BinaryBasicBlock &BB) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding unknown control flow in " << *this
<< " for " << BB.getName() << "\n");
HasUnknownControlFlow = true;
BB.removeAllSuccessors();
for (uint64_t PossibleDestination : ExternallyReferencedOffsets)
if (BinaryBasicBlock *SuccBB = getBasicBlockAtOffset(PossibleDestination))
BB.addSuccessor(SuccBB);
};
uint64_t NumIndirectJumps = 0;
MCInst *LastIndirectJump = nullptr;
BinaryBasicBlock *LastIndirectJumpBB = nullptr;
uint64_t LastJT = 0;
uint16_t LastJTIndexReg = BC.MIB->getNoRegister();
for (BinaryBasicBlock &BB : blocks()) {
for (BinaryBasicBlock::iterator II = BB.begin(); II != BB.end(); ++II) {
MCInst &Instr = *II;
if (!BC.MIB->isIndirectBranch(Instr))
continue;
// If there's an indirect branch in a single-block function -
// it must be a tail call.
if (BasicBlocks.size() == 1) {
BC.MIB->convertJmpToTailCall(Instr);
return true;
}
++NumIndirectJumps;
if (opts::StrictMode && !hasInternalReference()) {
BC.MIB->convertJmpToTailCall(Instr);
break;
}
// Validate the tail call or jump table assumptions now that we know
// basic block boundaries.
if (BC.MIB->isTailCall(Instr) || BC.MIB->getJumpTable(Instr)) {
const unsigned PtrSize = BC.AsmInfo->getCodePointerSize();
MCInst *MemLocInstr;
unsigned BaseRegNum, IndexRegNum;
int64_t DispValue;
const MCExpr *DispExpr;
MCInst *PCRelBaseInstr;
IndirectBranchType Type = BC.MIB->analyzeIndirectBranch(
Instr, BB.begin(), II, PtrSize, MemLocInstr, BaseRegNum,
IndexRegNum, DispValue, DispExpr, PCRelBaseInstr);
if (Type != IndirectBranchType::UNKNOWN || MemLocInstr != nullptr)
continue;
if (!opts::StrictMode)
return false;
if (BC.MIB->isTailCall(Instr)) {
BC.MIB->convertTailCallToJmp(Instr);
} else {
LastIndirectJump = &Instr;
LastIndirectJumpBB = &BB;
LastJT = BC.MIB->getJumpTable(Instr);
LastJTIndexReg = BC.MIB->getJumpTableIndexReg(Instr);
BC.MIB->unsetJumpTable(Instr);
JumpTable *JT = BC.getJumpTableContainingAddress(LastJT);
if (JT->Type == JumpTable::JTT_NORMAL) {
// Invalidating the jump table may also invalidate other jump table
// boundaries. Until we have/need a support for this, mark the
// function as non-simple.
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejected jump table reference"
<< JT->getName() << " in " << *this << '\n');
return false;
}
}
addUnknownControlFlow(BB);
continue;
}
// If this block contains an epilogue code and has an indirect branch,
// then most likely it's a tail call. Otherwise, we cannot tell for sure
// what it is and conservatively reject the function's CFG.
bool IsEpilogue = llvm::any_of(BB, [&](const MCInst &Instr) {
return BC.MIB->isLeave(Instr) || BC.MIB->isPop(Instr);
});
if (IsEpilogue) {
BC.MIB->convertJmpToTailCall(Instr);
BB.removeAllSuccessors();
continue;
}
if (opts::Verbosity >= 2) {
BC.outs() << "BOLT-INFO: rejected potential indirect tail call in "
<< "function " << *this << " in basic block " << BB.getName()
<< ".\n";
LLVM_DEBUG(BC.printInstructions(dbgs(), BB.begin(), BB.end(),
BB.getOffset(), this, true));
}
if (!opts::StrictMode)
return false;
addUnknownControlFlow(BB);
}
}
if (HasInternalLabelReference)
return false;
// If there's only one jump table, and one indirect jump, and no other
// references, then we should be able to derive the jump table even if we
// fail to match the pattern.
if (HasUnknownControlFlow && NumIndirectJumps == 1 &&
JumpTables.size() == 1 && LastIndirectJump &&
!BC.getJumpTableContainingAddress(LastJT)->IsSplit) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: unsetting unknown control flow in "
<< *this << '\n');
BC.MIB->setJumpTable(*LastIndirectJump, LastJT, LastJTIndexReg, AllocId);
HasUnknownControlFlow = false;
LastIndirectJumpBB->updateJumpTableSuccessors();
}
// Validate that all data references to function offsets are claimed by
// recognized jump tables. Register externally referenced blocks as entry
// points.
if (!opts::StrictMode && hasInternalReference()) {
if (!validateExternallyReferencedOffsets())
return false;
}
if (HasUnknownControlFlow && !BC.HasRelocations)
return false;
return true;
}
void BinaryFunction::recomputeLandingPads() {
updateBBIndices(0);
for (BinaryBasicBlock *BB : BasicBlocks) {
BB->LandingPads.clear();
BB->Throwers.clear();
}
for (BinaryBasicBlock *BB : BasicBlocks) {
std::unordered_set<const BinaryBasicBlock *> BBLandingPads;
for (MCInst &Instr : *BB) {
if (!BC.MIB->isInvoke(Instr))
continue;
const std::optional<MCPlus::MCLandingPad> EHInfo =
BC.MIB->getEHInfo(Instr);
if (!EHInfo || !EHInfo->first)
continue;
BinaryBasicBlock *LPBlock = getBasicBlockForLabel(EHInfo->first);
if (!BBLandingPads.count(LPBlock)) {
BBLandingPads.insert(LPBlock);
BB->LandingPads.emplace_back(LPBlock);
LPBlock->Throwers.emplace_back(BB);
}
}
}
}
Error BinaryFunction::buildCFG(MCPlusBuilder::AllocatorIdTy AllocatorId) {
auto &MIB = BC.MIB;
if (!isSimple()) {
assert(!BC.HasRelocations &&
"cannot process file with non-simple function in relocs mode");
return createNonFatalBOLTError("");
}
if (CurrentState != State::Disassembled)
return createNonFatalBOLTError("");
assert(BasicBlocks.empty() && "basic block list should be empty");
assert((Labels.find(getFirstInstructionOffset()) != Labels.end()) &&
"first instruction should always have a label");
// Create basic blocks in the original layout order:
//
// * Every instruction with associated label marks
// the beginning of a basic block.
// * Conditional instruction marks the end of a basic block,
// except when the following instruction is an
// unconditional branch, and the unconditional branch is not
// a destination of another branch. In the latter case, the
// basic block will consist of a single unconditional branch
// (missed "double-jump" optimization).
//
// Created basic blocks are sorted in layout order since they are
// created in the same order as instructions, and instructions are
// sorted by offsets.
BinaryBasicBlock *InsertBB = nullptr;
BinaryBasicBlock *PrevBB = nullptr;
bool IsLastInstrNop = false;
// Offset of the last non-nop instruction.
uint64_t LastInstrOffset = 0;
auto addCFIPlaceholders = [this](uint64_t CFIOffset,
BinaryBasicBlock *InsertBB) {
for (auto FI = OffsetToCFI.lower_bound(CFIOffset),
FE = OffsetToCFI.upper_bound(CFIOffset);
FI != FE; ++FI) {
addCFIPseudo(InsertBB, InsertBB->end(), FI->second);
}
};
// For profiling purposes we need to save the offset of the last instruction
// in the basic block.
// NOTE: nops always have an Offset annotation. Annotate the last non-nop as
// older profiles ignored nops.
auto updateOffset = [&](uint64_t Offset) {
assert(PrevBB && PrevBB != InsertBB && "invalid previous block");
MCInst *LastNonNop = nullptr;
for (BinaryBasicBlock::reverse_iterator RII = PrevBB->getLastNonPseudo(),
E = PrevBB->rend();
RII != E; ++RII) {
if (!BC.MIB->isPseudo(*RII) && !BC.MIB->isNoop(*RII)) {
LastNonNop = &*RII;
break;
}
}
if (LastNonNop && !MIB->getOffset(*LastNonNop))
MIB->setOffset(*LastNonNop, static_cast<uint32_t>(Offset));
};
for (auto I = Instructions.begin(), E = Instructions.end(); I != E; ++I) {
const uint32_t Offset = I->first;
MCInst &Instr = I->second;
auto LI = Labels.find(Offset);
if (LI != Labels.end()) {
// Always create new BB at branch destination.
PrevBB = InsertBB ? InsertBB : PrevBB;
InsertBB = addBasicBlockAt(LI->first, LI->second);
if (opts::PreserveBlocksAlignment && IsLastInstrNop)
InsertBB->setDerivedAlignment();
if (PrevBB)
updateOffset(LastInstrOffset);
}
// Mark all nops with Offset for profile tracking purposes.
if (MIB->isNoop(Instr) && !MIB->getOffset(Instr)) {
// If "Offset" annotation is not present, set it and mark the nop for
// deletion.
MIB->setOffset(Instr, static_cast<uint32_t>(Offset));
// Annotate ordinary nops, so we can safely delete them if required.
MIB->addAnnotation(Instr, "NOP", static_cast<uint32_t>(1), AllocatorId);
}
if (!InsertBB) {
// It must be a fallthrough or unreachable code. Create a new block unless
// we see an unconditional branch following a conditional one. The latter
// should not be a conditional tail call.
assert(PrevBB && "no previous basic block for a fall through");
MCInst *PrevInstr = PrevBB->getLastNonPseudoInstr();
assert(PrevInstr && "no previous instruction for a fall through");
if (MIB->isUnconditionalBranch(Instr) &&
!MIB->isIndirectBranch(*PrevInstr) &&
!MIB->isUnconditionalBranch(*PrevInstr) &&
!MIB->getConditionalTailCall(*PrevInstr) &&
!MIB->isReturn(*PrevInstr)) {
// Temporarily restore inserter basic block.
InsertBB = PrevBB;
} else {
MCSymbol *Label;
{
auto L = BC.scopeLock();
Label = BC.Ctx->createNamedTempSymbol("FT");
}
InsertBB = addBasicBlockAt(Offset, Label);
if (opts::PreserveBlocksAlignment && IsLastInstrNop)
InsertBB->setDerivedAlignment();
updateOffset(LastInstrOffset);
}
}
if (Offset == getFirstInstructionOffset()) {
// Add associated CFI pseudos in the first offset
addCFIPlaceholders(Offset, InsertBB);
}
const bool IsBlockEnd = MIB->isTerminator(Instr);
IsLastInstrNop = MIB->isNoop(Instr);
if (!IsLastInstrNop)
LastInstrOffset = Offset;
InsertBB->addInstruction(std::move(Instr));
// Add associated CFI instrs. We always add the CFI instruction that is
// located immediately after this instruction, since the next CFI
// instruction reflects the change in state caused by this instruction.
auto NextInstr = std::next(I);
uint64_t CFIOffset;
if (NextInstr != E)
CFIOffset = NextInstr->first;
else
CFIOffset = getSize();
// Note: this potentially invalidates instruction pointers/iterators.
addCFIPlaceholders(CFIOffset, InsertBB);
if (IsBlockEnd) {
PrevBB = InsertBB;
InsertBB = nullptr;
}
}
if (BasicBlocks.empty()) {
setSimple(false);
return createNonFatalBOLTError("");
}
// Intermediate dump.
LLVM_DEBUG(print(dbgs(), "after creating basic blocks"));
// TODO: handle properly calls to no-return functions,
// e.g. exit(3), etc. Otherwise we'll see a false fall-through
// blocks.
// Remove duplicates branches. We can get a bunch of them from jump tables.
// Without doing jump table value profiling we don't have a use for extra
// (duplicate) branches.
llvm::sort(TakenBranches);
auto NewEnd = std::unique(TakenBranches.begin(), TakenBranches.end());
TakenBranches.erase(NewEnd, TakenBranches.end());
for (std::pair<uint32_t, uint32_t> &Branch : TakenBranches) {
LLVM_DEBUG(dbgs() << "registering branch [0x"
<< Twine::utohexstr(Branch.first) << "] -> [0x"
<< Twine::utohexstr(Branch.second) << "]\n");
BinaryBasicBlock *FromBB = getBasicBlockContainingOffset(Branch.first);
BinaryBasicBlock *ToBB = getBasicBlockAtOffset(Branch.second);
if (!FromBB || !ToBB) {
if (!FromBB)
BC.errs() << "BOLT-ERROR: cannot find BB containing the branch.\n";
if (!ToBB)
BC.errs()
<< "BOLT-ERROR: cannot find BB containing branch destination.\n";
return createFatalBOLTError(BC.generateBugReportMessage(
"disassembly failed - inconsistent branch found.", *this));
}
FromBB->addSuccessor(ToBB);
}
// Add fall-through branches.
PrevBB = nullptr;
bool IsPrevFT = false; // Is previous block a fall-through.
for (BinaryBasicBlock *BB : BasicBlocks) {
if (IsPrevFT)
PrevBB->addSuccessor(BB);
if (BB->empty()) {
IsPrevFT = true;
PrevBB = BB;
continue;
}
MCInst *LastInstr = BB->getLastNonPseudoInstr();
assert(LastInstr &&
"should have non-pseudo instruction in non-empty block");
if (BB->succ_size() == 0) {
// Since there's no existing successors, we know the last instruction is
// not a conditional branch. Thus if it's a terminator, it shouldn't be a
// fall-through.
//
// Conditional tail call is a special case since we don't add a taken
// branch successor for it.
IsPrevFT = !MIB->isTerminator(*LastInstr) ||
MIB->getConditionalTailCall(*LastInstr);
} else if (BB->succ_size() == 1) {
IsPrevFT = MIB->isConditionalBranch(*LastInstr);
} else {
IsPrevFT = false;
}
PrevBB = BB;
}
// Assign landing pads and throwers info.
recomputeLandingPads();
// Assign CFI information to each BB entry.
annotateCFIState();
// Annotate invoke instructions with GNU_args_size data.
propagateGnuArgsSizeInfo(AllocatorId);
// Set the basic block layout to the original order and set end offsets.
PrevBB = nullptr;
for (BinaryBasicBlock *BB : BasicBlocks) {
Layout.addBasicBlock(BB);
if (PrevBB)
PrevBB->setEndOffset(BB->getOffset());
PrevBB = BB;
}
PrevBB->setEndOffset(getSize());
Layout.updateLayoutIndices();
normalizeCFIState();
// Clean-up memory taken by intermediate structures.
//
// NB: don't clear Labels list as we may need them if we mark the function
// as non-simple later in the process of discovering extra entry points.
clearList(Instructions);
clearList(OffsetToCFI);
clearList(TakenBranches);
// Update the state.
CurrentState = State::CFG;
// Make any necessary adjustments for indirect branches.
if (!postProcessIndirectBranches(AllocatorId)) {
if (opts::Verbosity) {
BC.errs() << "BOLT-WARNING: failed to post-process indirect branches for "
<< *this << '\n';
}
// In relocation mode we want to keep processing the function but avoid
// optimizing it.
setSimple(false);
}
clearList(ExternallyReferencedOffsets);
clearList(UnknownIndirectBranchOffsets);
return Error::success();
}
void BinaryFunction::postProcessCFG() {
if (isSimple() && !BasicBlocks.empty()) {
// Convert conditional tail call branches to conditional branches that jump
// to a tail call.
removeConditionalTailCalls();
postProcessProfile();
// Eliminate inconsistencies between branch instructions and CFG.
postProcessBranches();
}
calculateMacroOpFusionStats();
// The final cleanup of intermediate structures.
clearList(IgnoredBranches);
// Remove "Offset" annotations, unless we need an address-translation table
// later. This has no cost, since annotations are allocated by a bumpptr
// allocator and won't be released anyway until late in the pipeline.
if (!requiresAddressTranslation() && !opts::Instrument) {
for (BinaryBasicBlock &BB : blocks())
for (MCInst &Inst : BB)
BC.MIB->clearOffset(Inst);
}
assert((!isSimple() || validateCFG()) &&
"invalid CFG detected after post-processing");
}
void BinaryFunction::calculateMacroOpFusionStats() {
if (!getBinaryContext().isX86())
return;
for (const BinaryBasicBlock &BB : blocks()) {
auto II = BB.getMacroOpFusionPair();
if (II == BB.end())
continue;
// Check offset of the second instruction.
// FIXME: arch-specific.
const uint32_t Offset = BC.MIB->getOffsetWithDefault(*std::next(II), 0);
if (!Offset || (getAddress() + Offset) % 64)
continue;
LLVM_DEBUG(dbgs() << "\nmissed macro-op fusion at address 0x"
<< Twine::utohexstr(getAddress() + Offset)
<< " in function " << *this << "; executed "
<< BB.getKnownExecutionCount() << " times.\n");
++BC.Stats.MissedMacroFusionPairs;
BC.Stats.MissedMacroFusionExecCount += BB.getKnownExecutionCount();
}
}
void BinaryFunction::removeTagsFromProfile() {
for (BinaryBasicBlock *BB : BasicBlocks) {
if (BB->ExecutionCount == BinaryBasicBlock::COUNT_NO_PROFILE)
BB->ExecutionCount = 0;
for (BinaryBasicBlock::BinaryBranchInfo &BI : BB->branch_info()) {
if (BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
BI.MispredictedCount != BinaryBasicBlock::COUNT_NO_PROFILE)
continue;
BI.Count = 0;
BI.MispredictedCount = 0;
}
}
}
void BinaryFunction::removeConditionalTailCalls() {
// Blocks to be appended at the end.
std::vector<std::unique_ptr<BinaryBasicBlock>> NewBlocks;
for (auto BBI = begin(); BBI != end(); ++BBI) {
BinaryBasicBlock &BB = *BBI;
MCInst *CTCInstr = BB.getLastNonPseudoInstr();
if (!CTCInstr)
continue;
std::optional<uint64_t> TargetAddressOrNone =
BC.MIB->getConditionalTailCall(*CTCInstr);
if (!TargetAddressOrNone)
continue;
// Gather all necessary information about CTC instruction before
// annotations are destroyed.
const int32_t CFIStateBeforeCTC = BB.getCFIStateAtInstr(CTCInstr);
uint64_t CTCTakenCount = BinaryBasicBlock::COUNT_NO_PROFILE;
uint64_t CTCMispredCount = BinaryBasicBlock::COUNT_NO_PROFILE;
if (hasValidProfile()) {
CTCTakenCount = BC.MIB->getAnnotationWithDefault<uint64_t>(
*CTCInstr, "CTCTakenCount");
CTCMispredCount = BC.MIB->getAnnotationWithDefault<uint64_t>(
*CTCInstr, "CTCMispredCount");
}
// Assert that the tail call does not throw.
assert(!BC.MIB->getEHInfo(*CTCInstr) &&
"found tail call with associated landing pad");
// Create a basic block with an unconditional tail call instruction using
// the same destination.
const MCSymbol *CTCTargetLabel = BC.MIB->getTargetSymbol(*CTCInstr);
assert(CTCTargetLabel && "symbol expected for conditional tail call");
MCInst TailCallInstr;
BC.MIB->createTailCall(TailCallInstr, CTCTargetLabel, BC.Ctx.get());
// Move offset from CTCInstr to TailCallInstr.
if (const std::optional<uint32_t> Offset = BC.MIB->getOffset(*CTCInstr)) {
BC.MIB->setOffset(TailCallInstr, *Offset);
BC.MIB->clearOffset(*CTCInstr);
}
// Link new BBs to the original input offset of the BB where the CTC
// is, so we can map samples recorded in new BBs back to the original BB
// seem in the input binary (if using BAT)
std::unique_ptr<BinaryBasicBlock> TailCallBB =
createBasicBlock(BC.Ctx->createNamedTempSymbol("TC"));
TailCallBB->setOffset(BB.getInputOffset());
TailCallBB->addInstruction(TailCallInstr);
TailCallBB->setCFIState(CFIStateBeforeCTC);
// Add CFG edge with profile info from BB to TailCallBB.
BB.addSuccessor(TailCallBB.get(), CTCTakenCount, CTCMispredCount);
// Add execution count for the block.
TailCallBB->setExecutionCount(CTCTakenCount);
BC.MIB->convertTailCallToJmp(*CTCInstr);
BC.MIB->replaceBranchTarget(*CTCInstr, TailCallBB->getLabel(),
BC.Ctx.get());
// Add basic block to the list that will be added to the end.
NewBlocks.emplace_back(std::move(TailCallBB));
// Swap edges as the TailCallBB corresponds to the taken branch.
BB.swapConditionalSuccessors();
// This branch is no longer a conditional tail call.
BC.MIB->unsetConditionalTailCall(*CTCInstr);
}
insertBasicBlocks(std::prev(end()), std::move(NewBlocks),
/* UpdateLayout */ true,
/* UpdateCFIState */ false);
}
uint64_t BinaryFunction::getFunctionScore() const {
if (FunctionScore != -1)
return FunctionScore;
if (!isSimple() || !hasValidProfile()) {
FunctionScore = 0;
return FunctionScore;
}
uint64_t TotalScore = 0ULL;
for (const BinaryBasicBlock &BB : blocks()) {
uint64_t BBExecCount = BB.getExecutionCount();
if (BBExecCount == BinaryBasicBlock::COUNT_NO_PROFILE)
continue;
TotalScore += BBExecCount * BB.getNumNonPseudos();
}
FunctionScore = TotalScore;
return FunctionScore;
}
void BinaryFunction::annotateCFIState() {
assert(CurrentState == State::Disassembled && "unexpected function state");
assert(!BasicBlocks.empty() && "basic block list should not be empty");
// This is an index of the last processed CFI in FDE CFI program.
uint32_t State = 0;
// This is an index of RememberState CFI reflecting effective state right
// after execution of RestoreState CFI.
//
// It differs from State iff the CFI at (State-1)
// was RestoreState (modulo GNU_args_size CFIs, which are ignored).
//
// This allows us to generate shorter replay sequences when producing new
// CFI programs.
uint32_t EffectiveState = 0;
// For tracking RememberState/RestoreState sequences.
std::stack<uint32_t> StateStack;
for (BinaryBasicBlock *BB : BasicBlocks) {
BB->setCFIState(EffectiveState);
for (const MCInst &Instr : *BB) {
const MCCFIInstruction *CFI = getCFIFor(Instr);
if (!CFI)
continue;
++State;
switch (CFI->getOperation()) {
case MCCFIInstruction::OpRememberState:
StateStack.push(EffectiveState);
EffectiveState = State;
break;
case MCCFIInstruction::OpRestoreState:
assert(!StateStack.empty() && "corrupt CFI stack");
EffectiveState = StateStack.top();
StateStack.pop();
break;
case MCCFIInstruction::OpGnuArgsSize:
// OpGnuArgsSize CFIs do not affect the CFI state.
break;
default:
// Any other CFI updates the state.
EffectiveState = State;
break;
}
}
}
assert(StateStack.empty() && "corrupt CFI stack");
}
namespace {
/// Our full interpretation of a DWARF CFI machine state at a given point
struct CFISnapshot {
/// CFA register number and offset defining the canonical frame at this
/// point, or the number of a rule (CFI state) that computes it with a
/// DWARF expression. This number will be negative if it refers to a CFI
/// located in the CIE instead of the FDE.
uint32_t CFAReg;
int32_t CFAOffset;
int32_t CFARule;
/// Mapping of rules (CFI states) that define the location of each
/// register. If absent, no rule defining the location of such register
/// was ever read. This number will be negative if it refers to a CFI
/// located in the CIE instead of the FDE.
DenseMap<int32_t, int32_t> RegRule;
/// References to CIE, FDE and expanded instructions after a restore state
const BinaryFunction::CFIInstrMapType &CIE;
const BinaryFunction::CFIInstrMapType &FDE;
const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents;
/// Current FDE CFI number representing the state where the snapshot is at
int32_t CurState;
/// Used when we don't have information about which state/rule to apply
/// to recover the location of either the CFA or a specific register
constexpr static int32_t UNKNOWN = std::numeric_limits<int32_t>::min();
private:
/// Update our snapshot by executing a single CFI
void update(const MCCFIInstruction &Instr, int32_t RuleNumber) {
switch (Instr.getOperation()) {
case MCCFIInstruction::OpSameValue:
case MCCFIInstruction::OpRelOffset:
case MCCFIInstruction::OpOffset:
case MCCFIInstruction::OpRestore:
case MCCFIInstruction::OpUndefined:
case MCCFIInstruction::OpRegister:
RegRule[Instr.getRegister()] = RuleNumber;
break;
case MCCFIInstruction::OpDefCfaRegister:
CFAReg = Instr.getRegister();
CFARule = UNKNOWN;
// This shouldn't happen according to the spec but GNU binutils on RISC-V
// emits a DW_CFA_def_cfa_register in CIE's which leaves the offset
// unspecified. Both readelf and llvm-dwarfdump interpret the offset as 0
// in this case so let's do the same.
if (CFAOffset == UNKNOWN)
CFAOffset = 0;
break;
case MCCFIInstruction::OpDefCfaOffset:
CFAOffset = Instr.getOffset();
CFARule = UNKNOWN;
break;
case MCCFIInstruction::OpDefCfa:
CFAReg = Instr.getRegister();
CFAOffset = Instr.getOffset();
CFARule = UNKNOWN;
break;
case MCCFIInstruction::OpEscape: {
std::optional<uint8_t> Reg =
readDWARFExpressionTargetReg(Instr.getValues());
// Handle DW_CFA_def_cfa_expression
if (!Reg) {
CFARule = RuleNumber;
break;
}
RegRule[*Reg] = RuleNumber;
break;
}
case MCCFIInstruction::OpAdjustCfaOffset:
case MCCFIInstruction::OpWindowSave:
case MCCFIInstruction::OpNegateRAState:
case MCCFIInstruction::OpLLVMDefAspaceCfa:
llvm_unreachable("unsupported CFI opcode");
break;
case MCCFIInstruction::OpRememberState:
case MCCFIInstruction::OpRestoreState:
case MCCFIInstruction::OpGnuArgsSize:
// do not affect CFI state
break;
}
}
public:
/// Advance state reading FDE CFI instructions up to State number
void advanceTo(int32_t State) {
for (int32_t I = CurState, E = State; I != E; ++I) {
const MCCFIInstruction &Instr = FDE[I];
if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) {
update(Instr, I);
continue;
}
// If restore state instruction, fetch the equivalent CFIs that have
// the same effect of this restore. This is used to ensure remember-
// restore pairs are completely removed.
auto Iter = FrameRestoreEquivalents.find(I);
if (Iter == FrameRestoreEquivalents.end())
continue;
for (int32_t RuleNumber : Iter->second)
update(FDE[RuleNumber], RuleNumber);
}
assert(((CFAReg != (uint32_t)UNKNOWN && CFAOffset != UNKNOWN) ||
CFARule != UNKNOWN) &&
"CIE did not define default CFA?");
CurState = State;
}
/// Interpret all CIE and FDE instructions up until CFI State number and
/// populate this snapshot
CFISnapshot(
const BinaryFunction::CFIInstrMapType &CIE,
const BinaryFunction::CFIInstrMapType &FDE,
const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents,
int32_t State)
: CIE(CIE), FDE(FDE), FrameRestoreEquivalents(FrameRestoreEquivalents) {
CFAReg = UNKNOWN;
CFAOffset = UNKNOWN;
CFARule = UNKNOWN;
CurState = 0;
for (int32_t I = 0, E = CIE.size(); I != E; ++I) {
const MCCFIInstruction &Instr = CIE[I];
update(Instr, -I);
}
advanceTo(State);
}
};
/// A CFI snapshot with the capability of checking if incremental additions to
/// it are redundant. This is used to ensure we do not emit two CFI instructions
/// back-to-back that are doing the same state change, or to avoid emitting a
/// CFI at all when the state at that point would not be modified after that CFI
struct CFISnapshotDiff : public CFISnapshot {
bool RestoredCFAReg{false};
bool RestoredCFAOffset{false};
DenseMap<int32_t, bool> RestoredRegs;
CFISnapshotDiff(const CFISnapshot &S) : CFISnapshot(S) {}
CFISnapshotDiff(
const BinaryFunction::CFIInstrMapType &CIE,
const BinaryFunction::CFIInstrMapType &FDE,
const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents,
int32_t State)
: CFISnapshot(CIE, FDE, FrameRestoreEquivalents, State) {}
/// Return true if applying Instr to this state is redundant and can be
/// dismissed.
bool isRedundant(const MCCFIInstruction &Instr) {
switch (Instr.getOperation()) {
case MCCFIInstruction::OpSameValue:
case MCCFIInstruction::OpRelOffset:
case MCCFIInstruction::OpOffset:
case MCCFIInstruction::OpRestore:
case MCCFIInstruction::OpUndefined:
case MCCFIInstruction::OpRegister:
case MCCFIInstruction::OpEscape: {
uint32_t Reg;
if (Instr.getOperation() != MCCFIInstruction::OpEscape) {
Reg = Instr.getRegister();
} else {
std::optional<uint8_t> R =
readDWARFExpressionTargetReg(Instr.getValues());
// Handle DW_CFA_def_cfa_expression
if (!R) {
if (RestoredCFAReg && RestoredCFAOffset)
return true;
RestoredCFAReg = true;
RestoredCFAOffset = true;
return false;
}
Reg = *R;
}
if (RestoredRegs[Reg])
return true;
RestoredRegs[Reg] = true;
const int32_t CurRegRule = RegRule.contains(Reg) ? RegRule[Reg] : UNKNOWN;
if (CurRegRule == UNKNOWN) {
if (Instr.getOperation() == MCCFIInstruction::OpRestore ||
Instr.getOperation() == MCCFIInstruction::OpSameValue)
return true;
return false;
}
const MCCFIInstruction &LastDef =
CurRegRule < 0 ? CIE[-CurRegRule] : FDE[CurRegRule];
return LastDef == Instr;
}
case MCCFIInstruction::OpDefCfaRegister:
if (RestoredCFAReg)
return true;
RestoredCFAReg = true;
return CFAReg == Instr.getRegister();
case MCCFIInstruction::OpDefCfaOffset:
if (RestoredCFAOffset)
return true;
RestoredCFAOffset = true;
return CFAOffset == Instr.getOffset();
case MCCFIInstruction::OpDefCfa:
if (RestoredCFAReg && RestoredCFAOffset)
return true;
RestoredCFAReg = true;
RestoredCFAOffset = true;
return CFAReg == Instr.getRegister() && CFAOffset == Instr.getOffset();
case MCCFIInstruction::OpAdjustCfaOffset:
case MCCFIInstruction::OpWindowSave:
case MCCFIInstruction::OpNegateRAState:
case MCCFIInstruction::OpLLVMDefAspaceCfa:
llvm_unreachable("unsupported CFI opcode");
return false;
case MCCFIInstruction::OpRememberState:
case MCCFIInstruction::OpRestoreState:
case MCCFIInstruction::OpGnuArgsSize:
// do not affect CFI state
return true;
}
return false;
}
};
} // end anonymous namespace
bool BinaryFunction::replayCFIInstrs(int32_t FromState, int32_t ToState,
BinaryBasicBlock *InBB,
BinaryBasicBlock::iterator InsertIt) {
if (FromState == ToState)
return true;
assert(FromState < ToState && "can only replay CFIs forward");
CFISnapshotDiff CFIDiff(CIEFrameInstructions, FrameInstructions,
FrameRestoreEquivalents, FromState);
std::vector<uint32_t> NewCFIs;
for (int32_t CurState = FromState; CurState < ToState; ++CurState) {
MCCFIInstruction *Instr = &FrameInstructions[CurState];
if (Instr->getOperation() == MCCFIInstruction::OpRestoreState) {
auto Iter = FrameRestoreEquivalents.find(CurState);
assert(Iter != FrameRestoreEquivalents.end());
NewCFIs.insert(NewCFIs.end(), Iter->second.begin(), Iter->second.end());
// RestoreState / Remember will be filtered out later by CFISnapshotDiff,
// so we might as well fall-through here.
}
NewCFIs.push_back(CurState);
}
// Replay instructions while avoiding duplicates
for (int32_t State : llvm::reverse(NewCFIs)) {
if (CFIDiff.isRedundant(FrameInstructions[State]))
continue;
InsertIt = addCFIPseudo(InBB, InsertIt, State);
}
return true;
}
SmallVector<int32_t, 4>
BinaryFunction::unwindCFIState(int32_t FromState, int32_t ToState,
BinaryBasicBlock *InBB,
BinaryBasicBlock::iterator &InsertIt) {
SmallVector<int32_t, 4> NewStates;
CFISnapshot ToCFITable(CIEFrameInstructions, FrameInstructions,
FrameRestoreEquivalents, ToState);
CFISnapshotDiff FromCFITable(ToCFITable);
FromCFITable.advanceTo(FromState);
auto undoStateDefCfa = [&]() {
if (ToCFITable.CFARule == CFISnapshot::UNKNOWN) {
FrameInstructions.emplace_back(MCCFIInstruction::cfiDefCfa(
nullptr, ToCFITable.CFAReg, ToCFITable.CFAOffset));
if (FromCFITable.isRedundant(FrameInstructions.back())) {
FrameInstructions.pop_back();
return;
}
NewStates.push_back(FrameInstructions.size() - 1);
InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1);
++InsertIt;
} else if (ToCFITable.CFARule < 0) {
if (FromCFITable.isRedundant(CIEFrameInstructions[-ToCFITable.CFARule]))
return;
NewStates.push_back(FrameInstructions.size());
InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size());
++InsertIt;
FrameInstructions.emplace_back(CIEFrameInstructions[-ToCFITable.CFARule]);
} else if (!FromCFITable.isRedundant(
FrameInstructions[ToCFITable.CFARule])) {
NewStates.push_back(ToCFITable.CFARule);
InsertIt = addCFIPseudo(InBB, InsertIt, ToCFITable.CFARule);
++InsertIt;
}
};
auto undoState = [&](const MCCFIInstruction &Instr) {
switch (Instr.getOperation()) {
case MCCFIInstruction::OpRememberState:
case MCCFIInstruction::OpRestoreState:
break;
case MCCFIInstruction::OpSameValue:
case MCCFIInstruction::OpRelOffset:
case MCCFIInstruction::OpOffset:
case MCCFIInstruction::OpRestore:
case MCCFIInstruction::OpUndefined:
case MCCFIInstruction::OpEscape:
case MCCFIInstruction::OpRegister: {
uint32_t Reg;
if (Instr.getOperation() != MCCFIInstruction::OpEscape) {
Reg = Instr.getRegister();
} else {
std::optional<uint8_t> R =
readDWARFExpressionTargetReg(Instr.getValues());
// Handle DW_CFA_def_cfa_expression
if (!R) {
undoStateDefCfa();
return;
}
Reg = *R;
}
if (!ToCFITable.RegRule.contains(Reg)) {
FrameInstructions.emplace_back(
MCCFIInstruction::createRestore(nullptr, Reg));
if (FromCFITable.isRedundant(FrameInstructions.back())) {
FrameInstructions.pop_back();
break;
}
NewStates.push_back(FrameInstructions.size() - 1);
InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1);
++InsertIt;
break;
}
const int32_t Rule = ToCFITable.RegRule[Reg];
if (Rule < 0) {
if (FromCFITable.isRedundant(CIEFrameInstructions[-Rule]))
break;
NewStates.push_back(FrameInstructions.size());
InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size());
++InsertIt;
FrameInstructions.emplace_back(CIEFrameInstructions[-Rule]);
break;
}
if (FromCFITable.isRedundant(FrameInstructions[Rule]))
break;
NewStates.push_back(Rule);
InsertIt = addCFIPseudo(InBB, InsertIt, Rule);
++InsertIt;
break;
}
case MCCFIInstruction::OpDefCfaRegister:
case MCCFIInstruction::OpDefCfaOffset:
case MCCFIInstruction::OpDefCfa:
undoStateDefCfa();
break;
case MCCFIInstruction::OpAdjustCfaOffset:
case MCCFIInstruction::OpWindowSave:
case MCCFIInstruction::OpNegateRAState:
case MCCFIInstruction::OpLLVMDefAspaceCfa:
llvm_unreachable("unsupported CFI opcode");
break;
case MCCFIInstruction::OpGnuArgsSize:
// do not affect CFI state
break;
}
};
// Undo all modifications from ToState to FromState
for (int32_t I = ToState, E = FromState; I != E; ++I) {
const MCCFIInstruction &Instr = FrameInstructions[I];
if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) {
undoState(Instr);
continue;
}
auto Iter = FrameRestoreEquivalents.find(I);
if (Iter == FrameRestoreEquivalents.end())
continue;
for (int32_t State : Iter->second)
undoState(FrameInstructions[State]);
}
return NewStates;
}
void BinaryFunction::normalizeCFIState() {
// Reordering blocks with remember-restore state instructions can be specially
// tricky. When rewriting the CFI, we omit remember-restore state instructions
// entirely. For restore state, we build a map expanding each restore to the
// equivalent unwindCFIState sequence required at that point to achieve the
// same effect of the restore. All remember state are then just ignored.
std::stack<int32_t> Stack;
for (BinaryBasicBlock *CurBB : Layout.blocks()) {
for (auto II = CurBB->begin(); II != CurBB->end(); ++II) {
if (const MCCFIInstruction *CFI = getCFIFor(*II)) {
if (CFI->getOperation() == MCCFIInstruction::OpRememberState) {
Stack.push(II->getOperand(0).getImm());
continue;
}
if (CFI->getOperation() == MCCFIInstruction::OpRestoreState) {
const int32_t RememberState = Stack.top();
const int32_t CurState = II->getOperand(0).getImm();
FrameRestoreEquivalents[CurState] =
unwindCFIState(CurState, RememberState, CurBB, II);
Stack.pop();
}
}
}
}
}
bool BinaryFunction::finalizeCFIState() {
LLVM_DEBUG(
dbgs() << "Trying to fix CFI states for each BB after reordering.\n");
LLVM_DEBUG(dbgs() << "This is the list of CFI states for each BB of " << *this
<< ": ");
const char *Sep = "";
(void)Sep;
for (FunctionFragment &FF : Layout.fragments()) {
// Hot-cold border: at start of each region (with a different FDE) we need
// to reset the CFI state.
int32_t State = 0;
for (BinaryBasicBlock *BB : FF) {
const int32_t CFIStateAtExit = BB->getCFIStateAtExit();
// We need to recover the correct state if it doesn't match expected
// state at BB entry point.
if (BB->getCFIState() < State) {
// In this case, State is currently higher than what this BB expect it
// to be. To solve this, we need to insert CFI instructions to undo
// the effect of all CFI from BB's state to current State.
auto InsertIt = BB->begin();
unwindCFIState(State, BB->getCFIState(), BB, InsertIt);
} else if (BB->getCFIState() > State) {
// If BB's CFI state is greater than State, it means we are behind in
// the state. Just emit all instructions to reach this state at the
// beginning of this BB. If this sequence of instructions involve
// remember state or restore state, bail out.
if (!replayCFIInstrs(State, BB->getCFIState(), BB, BB->begin()))
return false;
}
State = CFIStateAtExit;
LLVM_DEBUG(dbgs() << Sep << State; Sep = ", ");
}
}
LLVM_DEBUG(dbgs() << "\n");
for (BinaryBasicBlock &BB : blocks()) {
for (auto II = BB.begin(); II != BB.end();) {
const MCCFIInstruction *CFI = getCFIFor(*II);
if (CFI && (CFI->getOperation() == MCCFIInstruction::OpRememberState ||
CFI->getOperation() == MCCFIInstruction::OpRestoreState)) {
II = BB.eraseInstruction(II);
} else {
++II;
}
}
}
return true;
}
bool BinaryFunction::requiresAddressTranslation() const {
return opts::EnableBAT || hasSDTMarker() || hasPseudoProbe();
}
bool BinaryFunction::requiresAddressMap() const {
if (isInjected())
return false;
return opts::UpdateDebugSections || isMultiEntry() ||
requiresAddressTranslation();
}
uint64_t BinaryFunction::getInstructionCount() const {
uint64_t Count = 0;
for (const BinaryBasicBlock &BB : blocks())
Count += BB.getNumNonPseudos();
return Count;
}
void BinaryFunction::clearDisasmState() {
clearList(Instructions);
clearList(IgnoredBranches);
clearList(TakenBranches);
if (BC.HasRelocations) {
for (std::pair<const uint32_t, MCSymbol *> &LI : Labels)
BC.UndefinedSymbols.insert(LI.second);
for (MCSymbol *const EndLabel : FunctionEndLabels)
if (EndLabel)
BC.UndefinedSymbols.insert(EndLabel);
}
}
void BinaryFunction::setTrapOnEntry() {
clearDisasmState();
forEachEntryPoint([&](uint64_t Offset, const MCSymbol *Label) -> bool {
MCInst TrapInstr;
BC.MIB->createTrap(TrapInstr);
addInstruction(Offset, std::move(TrapInstr));
return true;
});
TrapsOnEntry = true;
}
void BinaryFunction::setIgnored() {
if (opts::processAllFunctions()) {
// We can accept ignored functions before they've been disassembled.
// In that case, they would still get disassembled and emited, but not
// optimized.
assert(CurrentState == State::Empty &&
"cannot ignore non-empty functions in current mode");
IsIgnored = true;
return;
}
clearDisasmState();
// Clear CFG state too.
if (hasCFG()) {
releaseCFG();
for (BinaryBasicBlock *BB : BasicBlocks)
delete BB;
clearList(BasicBlocks);
for (BinaryBasicBlock *BB : DeletedBasicBlocks)
delete BB;
clearList(DeletedBasicBlocks);
Layout.clear();
}
CurrentState = State::Empty;
IsIgnored = true;
IsSimple = false;
LLVM_DEBUG(dbgs() << "Ignoring " << getPrintName() << '\n');
}
void BinaryFunction::duplicateConstantIslands() {
assert(Islands && "function expected to have constant islands");
for (BinaryBasicBlock *BB : getLayout().blocks()) {
if (!BB->isCold())
continue;
for (MCInst &Inst : *BB) {
int OpNum = 0;
for (MCOperand &Operand : Inst) {
if (!Operand.isExpr()) {
++OpNum;
continue;
}
const MCSymbol *Symbol = BC.MIB->getTargetSymbol(Inst, OpNum);
// Check if this is an island symbol
if (!Islands->Symbols.count(Symbol) &&
!Islands->ProxySymbols.count(Symbol))
continue;
// Create cold symbol, if missing
auto ISym = Islands->ColdSymbols.find(Symbol);
MCSymbol *ColdSymbol;
if (ISym != Islands->ColdSymbols.end()) {
ColdSymbol = ISym->second;
} else {
ColdSymbol = BC.Ctx->getOrCreateSymbol(Symbol->getName() + ".cold");
Islands->ColdSymbols[Symbol] = ColdSymbol;
// Check if this is a proxy island symbol and update owner proxy map
if (Islands->ProxySymbols.count(Symbol)) {
BinaryFunction *Owner = Islands->ProxySymbols[Symbol];
auto IProxiedSym = Owner->Islands->Proxies[this].find(Symbol);
Owner->Islands->ColdProxies[this][IProxiedSym->second] = ColdSymbol;
}
}
// Update instruction reference
Operand = MCOperand::createExpr(BC.MIB->getTargetExprFor(
Inst,
MCSymbolRefExpr::create(ColdSymbol, MCSymbolRefExpr::VK_None,
*BC.Ctx),
*BC.Ctx, 0));
++OpNum;
}
}
}
}
#ifndef MAX_PATH
#define MAX_PATH 255
#endif
static std::string constructFilename(std::string Filename,
std::string Annotation,
std::string Suffix) {
std::replace(Filename.begin(), Filename.end(), '/', '-');
if (!Annotation.empty())
Annotation.insert(0, "-");
if (Filename.size() + Annotation.size() + Suffix.size() > MAX_PATH) {
assert(Suffix.size() + Annotation.size() <= MAX_PATH);
Filename.resize(MAX_PATH - (Suffix.size() + Annotation.size()));
}
Filename += Annotation;
Filename += Suffix;
return Filename;
}
static std::string formatEscapes(const std::string &Str) {
std::string Result;
for (unsigned I = 0; I < Str.size(); ++I) {
char C = Str[I];
switch (C) {
case '\n':
Result += "&#13;";
break;
case '"':
break;
default:
Result += C;
break;
}
}
return Result;
}
void BinaryFunction::dumpGraph(raw_ostream &OS) const {
OS << "digraph \"" << getPrintName() << "\" {\n"
<< "node [fontname=courier, shape=box, style=filled, colorscheme=brbg9]\n";
uint64_t Offset = Address;
for (BinaryBasicBlock *BB : BasicBlocks) {
auto LayoutPos = find(Layout.blocks(), BB);
unsigned LayoutIndex = LayoutPos - Layout.block_begin();
const char *ColdStr = BB->isCold() ? " (cold)" : "";
std::vector<std::string> Attrs;
// Bold box for entry points
if (isEntryPoint(*BB))
Attrs.push_back("penwidth=2");
if (BLI && BLI->getLoopFor(BB)) {
// Distinguish innermost loops
const BinaryLoop *Loop = BLI->getLoopFor(BB);
if (Loop->isInnermost())
Attrs.push_back("fillcolor=6");
else // some outer loop
Attrs.push_back("fillcolor=4");
} else { // non-loopy code
Attrs.push_back("fillcolor=5");
}
ListSeparator LS;
OS << "\"" << BB->getName() << "\" [";
for (StringRef Attr : Attrs)
OS << LS << Attr;
OS << "]\n";
OS << format("\"%s\" [label=\"%s%s\\n(C:%lu,O:%lu,I:%u,L:%u,CFI:%u)\\n",
BB->getName().data(), BB->getName().data(), ColdStr,
BB->getKnownExecutionCount(), BB->getOffset(), getIndex(BB),
LayoutIndex, BB->getCFIState());
if (opts::DotToolTipCode) {
std::string Str;
raw_string_ostream CS(Str);
Offset = BC.printInstructions(CS, BB->begin(), BB->end(), Offset, this,
/* PrintMCInst = */ false,
/* PrintMemData = */ false,
/* PrintRelocations = */ false,
/* Endl = */ R"(\\l)");
OS << formatEscapes(CS.str()) << '\n';
}
OS << "\"]\n";
// analyzeBranch is just used to get the names of the branch
// opcodes.
const MCSymbol *TBB = nullptr;
const MCSymbol *FBB = nullptr;
MCInst *CondBranch = nullptr;
MCInst *UncondBranch = nullptr;
const bool Success = BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch);
const MCInst *LastInstr = BB->getLastNonPseudoInstr();
const bool IsJumpTable = LastInstr && BC.MIB->getJumpTable(*LastInstr);
auto BI = BB->branch_info_begin();
for (BinaryBasicBlock *Succ : BB->successors()) {
std::string Branch;
if (Success) {
if (Succ == BB->getConditionalSuccessor(true)) {
Branch = CondBranch ? std::string(BC.InstPrinter->getOpcodeName(
CondBranch->getOpcode()))
: "TB";
} else if (Succ == BB->getConditionalSuccessor(false)) {
Branch = UncondBranch ? std::string(BC.InstPrinter->getOpcodeName(
UncondBranch->getOpcode()))
: "FB";
} else {
Branch = "FT";
}
}
if (IsJumpTable)
Branch = "JT";
OS << format("\"%s\" -> \"%s\" [label=\"%s", BB->getName().data(),
Succ->getName().data(), Branch.c_str());
if (BB->getExecutionCount() != COUNT_NO_PROFILE &&
BI->MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) {
OS << "\\n(C:" << BI->Count << ",M:" << BI->MispredictedCount << ")";
} else if (ExecutionCount != COUNT_NO_PROFILE &&
BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE) {
OS << "\\n(IC:" << BI->Count << ")";
}
OS << "\"]\n";
++BI;
}
for (BinaryBasicBlock *LP : BB->landing_pads()) {
OS << format("\"%s\" -> \"%s\" [constraint=false style=dashed]\n",
BB->getName().data(), LP->getName().data());
}
}
OS << "}\n";
}
void BinaryFunction::viewGraph() const {
SmallString<MAX_PATH> Filename;
if (std::error_code EC =
sys::fs::createTemporaryFile("bolt-cfg", "dot", Filename)) {
BC.errs() << "BOLT-ERROR: " << EC.message() << ", unable to create "
<< " bolt-cfg-XXXXX.dot temporary file.\n";
return;
}
dumpGraphToFile(std::string(Filename));
if (DisplayGraph(Filename))
BC.errs() << "BOLT-ERROR: Can't display " << Filename
<< " with graphviz.\n";
if (std::error_code EC = sys::fs::remove(Filename)) {
BC.errs() << "BOLT-WARNING: " << EC.message() << ", failed to remove "
<< Filename << "\n";
}
}
void BinaryFunction::dumpGraphForPass(std::string Annotation) const {
if (!opts::shouldPrint(*this))
return;
std::string Filename = constructFilename(getPrintName(), Annotation, ".dot");
if (opts::Verbosity >= 1)
BC.outs() << "BOLT-INFO: dumping CFG to " << Filename << "\n";
dumpGraphToFile(Filename);
}
void BinaryFunction::dumpGraphToFile(std::string Filename) const {
std::error_code EC;
raw_fd_ostream of(Filename, EC, sys::fs::OF_None);
if (EC) {
if (opts::Verbosity >= 1) {
BC.errs() << "BOLT-WARNING: " << EC.message() << ", unable to open "
<< Filename << " for output.\n";
}
return;
}
dumpGraph(of);
}
bool BinaryFunction::validateCFG() const {
// Skip the validation of CFG after it is finalized
if (CurrentState == State::CFG_Finalized)
return true;
bool Valid = true;
for (BinaryBasicBlock *BB : BasicBlocks)
Valid &= BB->validateSuccessorInvariants();
if (!Valid)
return Valid;
// Make sure all blocks in CFG are valid.
auto validateBlock = [this](const BinaryBasicBlock *BB, StringRef Desc) {
if (!BB->isValid()) {
BC.errs() << "BOLT-ERROR: deleted " << Desc << " " << BB->getName()
<< " detected in:\n";
this->dump();
return false;
}
return true;
};
for (const BinaryBasicBlock *BB : BasicBlocks) {
if (!validateBlock(BB, "block"))
return false;
for (const BinaryBasicBlock *PredBB : BB->predecessors())
if (!validateBlock(PredBB, "predecessor"))
return false;
for (const BinaryBasicBlock *SuccBB : BB->successors())
if (!validateBlock(SuccBB, "successor"))
return false;
for (const BinaryBasicBlock *LP : BB->landing_pads())
if (!validateBlock(LP, "landing pad"))
return false;
for (const BinaryBasicBlock *Thrower : BB->throwers())
if (!validateBlock(Thrower, "thrower"))
return false;
}
for (const BinaryBasicBlock *BB : BasicBlocks) {
std::unordered_set<const BinaryBasicBlock *> BBLandingPads;
for (const BinaryBasicBlock *LP : BB->landing_pads()) {
if (BBLandingPads.count(LP)) {
BC.errs() << "BOLT-ERROR: duplicate landing pad detected in"
<< BB->getName() << " in function " << *this << '\n';
return false;
}
BBLandingPads.insert(LP);
}
std::unordered_set<const BinaryBasicBlock *> BBThrowers;
for (const BinaryBasicBlock *Thrower : BB->throwers()) {
if (BBThrowers.count(Thrower)) {
BC.errs() << "BOLT-ERROR: duplicate thrower detected in"
<< BB->getName() << " in function " << *this << '\n';
return false;
}
BBThrowers.insert(Thrower);
}
for (const BinaryBasicBlock *LPBlock : BB->landing_pads()) {
if (!llvm::is_contained(LPBlock->throwers(), BB)) {
BC.errs() << "BOLT-ERROR: inconsistent landing pad detected in "
<< *this << ": " << BB->getName()
<< " is in LandingPads but not in " << LPBlock->getName()
<< " Throwers\n";
return false;
}
}
for (const BinaryBasicBlock *Thrower : BB->throwers()) {
if (!llvm::is_contained(Thrower->landing_pads(), BB)) {
BC.errs() << "BOLT-ERROR: inconsistent thrower detected in " << *this
<< ": " << BB->getName() << " is in Throwers list but not in "
<< Thrower->getName() << " LandingPads\n";
return false;
}
}
}
return Valid;
}
void BinaryFunction::fixBranches() {
auto &MIB = BC.MIB;
MCContext *Ctx = BC.Ctx.get();
for (BinaryBasicBlock *BB : BasicBlocks) {
const MCSymbol *TBB = nullptr;
const MCSymbol *FBB = nullptr;
MCInst *CondBranch = nullptr;
MCInst *UncondBranch = nullptr;
if (!BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch))
continue;
// We will create unconditional branch with correct destination if needed.
if (UncondBranch)
BB->eraseInstruction(BB->findInstruction(UncondBranch));
// Basic block that follows the current one in the final layout.
const BinaryBasicBlock *const NextBB =
Layout.getBasicBlockAfter(BB, /*IgnoreSplits=*/false);
if (BB->succ_size() == 1) {
// __builtin_unreachable() could create a conditional branch that
// falls-through into the next function - hence the block will have only
// one valid successor. Since behaviour is undefined - we replace
// the conditional branch with an unconditional if required.
if (CondBranch)
BB->eraseInstruction(BB->findInstruction(CondBranch));
if (BB->getSuccessor() == NextBB)
continue;
BB->addBranchInstruction(BB->getSuccessor());
} else if (BB->succ_size() == 2) {
assert(CondBranch && "conditional branch expected");
const BinaryBasicBlock *TSuccessor = BB->getConditionalSuccessor(true);
const BinaryBasicBlock *FSuccessor = BB->getConditionalSuccessor(false);
// Eliminate unnecessary conditional branch.
if (TSuccessor == FSuccessor) {
// FIXME: at the moment, we cannot safely remove static key branches.
if (MIB->isDynamicBranch(*CondBranch)) {
if (opts::Verbosity) {
BC.outs()
<< "BOLT-INFO: unable to remove redundant dynamic branch in "
<< *this << '\n';
}
continue;
}
BB->removeDuplicateConditionalSuccessor(CondBranch);
if (TSuccessor != NextBB)
BB->addBranchInstruction(TSuccessor);
continue;
}
// Reverse branch condition and swap successors.
auto swapSuccessors = [&]() {
if (MIB->isUnsupportedBranch(*CondBranch)) {
if (opts::Verbosity) {
BC.outs() << "BOLT-INFO: unable to swap successors in " << *this
<< '\n';
}
return false;
}
std::swap(TSuccessor, FSuccessor);
BB->swapConditionalSuccessors();
auto L = BC.scopeLock();
MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), Ctx);
return true;
};
// Check whether the next block is a "taken" target and try to swap it
// with a "fall-through" target.
if (TSuccessor == NextBB && swapSuccessors())
continue;
// Update conditional branch destination if needed.
if (MIB->getTargetSymbol(*CondBranch) != TSuccessor->getLabel()) {
auto L = BC.scopeLock();
MIB->replaceBranchTarget(*CondBranch, TSuccessor->getLabel(), Ctx);
}
// No need for the unconditional branch.
if (FSuccessor == NextBB)
continue;
if (BC.isX86()) {
// We are going to generate two branches. Check if their targets are in
// the same fragment as this block. If only one target is in the same
// fragment, make it the destination of the conditional branch. There
// is a chance it will be a short branch which takes 4 bytes fewer than
// a long conditional branch. For unconditional branch, the difference
// is 3 bytes.
if (BB->getFragmentNum() != TSuccessor->getFragmentNum() &&
BB->getFragmentNum() == FSuccessor->getFragmentNum())
swapSuccessors();
}
BB->addBranchInstruction(FSuccessor);
}
// Cases where the number of successors is 0 (block ends with a
// terminator) or more than 2 (switch table) don't require branch
// instruction adjustments.
}
assert((!isSimple() || validateCFG()) &&
"Invalid CFG detected after fixing branches");
}
void BinaryFunction::propagateGnuArgsSizeInfo(
MCPlusBuilder::AllocatorIdTy AllocId) {
assert(CurrentState == State::Disassembled && "unexpected function state");
if (!hasEHRanges() || !usesGnuArgsSize())
return;
// The current value of DW_CFA_GNU_args_size affects all following
// invoke instructions until the next CFI overrides it.
// It is important to iterate basic blocks in the original order when
// assigning the value.
uint64_t CurrentGnuArgsSize = 0;
for (BinaryBasicBlock *BB : BasicBlocks) {
for (auto II = BB->begin(); II != BB->end();) {
MCInst &Instr = *II;
if (BC.MIB->isCFI(Instr)) {
const MCCFIInstruction *CFI = getCFIFor(Instr);
if (CFI->getOperation() == MCCFIInstruction::OpGnuArgsSize) {
CurrentGnuArgsSize = CFI->getOffset();
// Delete DW_CFA_GNU_args_size instructions and only regenerate
// during the final code emission. The information is embedded
// inside call instructions.
II = BB->erasePseudoInstruction(II);
continue;
}
} else if (BC.MIB->isInvoke(Instr)) {
// Add the value of GNU_args_size as an extra operand to invokes.
BC.MIB->addGnuArgsSize(Instr, CurrentGnuArgsSize);
}
++II;
}
}
}
void BinaryFunction::postProcessBranches() {
if (!isSimple())
return;
for (BinaryBasicBlock &BB : blocks()) {
auto LastInstrRI = BB.getLastNonPseudo();
if (BB.succ_size() == 1) {
if (LastInstrRI != BB.rend() &&
BC.MIB->isConditionalBranch(*LastInstrRI)) {
// __builtin_unreachable() could create a conditional branch that
// falls-through into the next function - hence the block will have only
// one valid successor. Such behaviour is undefined and thus we remove
// the conditional branch while leaving a valid successor.
BB.eraseInstruction(std::prev(LastInstrRI.base()));
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: erasing conditional branch in "
<< BB.getName() << " in function " << *this << '\n');
}
} else if (BB.succ_size() == 0) {
// Ignore unreachable basic blocks.
if (BB.pred_size() == 0 || BB.isLandingPad())
continue;
// If it's the basic block that does not end up with a terminator - we
// insert a return instruction unless it's a call instruction.
if (LastInstrRI == BB.rend()) {
LLVM_DEBUG(
dbgs() << "BOLT-DEBUG: at least one instruction expected in BB "
<< BB.getName() << " in function " << *this << '\n');
continue;
}
if (!BC.MIB->isTerminator(*LastInstrRI) &&
!BC.MIB->isCall(*LastInstrRI)) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding return to basic block "
<< BB.getName() << " in function " << *this << '\n');
MCInst ReturnInstr;
BC.MIB->createReturn(ReturnInstr);
BB.addInstruction(ReturnInstr);
}
}
}
assert(validateCFG() && "invalid CFG");
}
MCSymbol *BinaryFunction::addEntryPointAtOffset(uint64_t Offset) {
assert(Offset && "cannot add primary entry point");
assert(CurrentState == State::Empty || CurrentState == State::Disassembled);
const uint64_t EntryPointAddress = getAddress() + Offset;
MCSymbol *LocalSymbol = getOrCreateLocalLabel(EntryPointAddress);
MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(LocalSymbol);
if (EntrySymbol)
return EntrySymbol;
if (BinaryData *EntryBD = BC.getBinaryDataAtAddress(EntryPointAddress)) {
EntrySymbol = EntryBD->getSymbol();
} else {
EntrySymbol = BC.getOrCreateGlobalSymbol(
EntryPointAddress, Twine("__ENTRY_") + getOneName() + "@");
}
SecondaryEntryPoints[LocalSymbol] = EntrySymbol;
BC.setSymbolToFunctionMap(EntrySymbol, this);
return EntrySymbol;
}
MCSymbol *BinaryFunction::addEntryPoint(const BinaryBasicBlock &BB) {
assert(CurrentState == State::CFG &&
"basic block can be added as an entry only in a function with CFG");
if (&BB == BasicBlocks.front())
return getSymbol();
MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(BB);
if (EntrySymbol)
return EntrySymbol;
EntrySymbol =
BC.Ctx->getOrCreateSymbol("__ENTRY_" + BB.getLabel()->getName());
SecondaryEntryPoints[BB.getLabel()] = EntrySymbol;
BC.setSymbolToFunctionMap(EntrySymbol, this);
return EntrySymbol;
}
MCSymbol *BinaryFunction::getSymbolForEntryID(uint64_t EntryID) {
if (EntryID == 0)
return getSymbol();
if (!isMultiEntry())
return nullptr;
uint64_t NumEntries = 1;
if (hasCFG()) {
for (BinaryBasicBlock *BB : BasicBlocks) {
MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB);
if (!EntrySymbol)
continue;
if (NumEntries == EntryID)
return EntrySymbol;
++NumEntries;
}
} else {
for (std::pair<const uint32_t, MCSymbol *> &KV : Labels) {
MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second);
if (!EntrySymbol)
continue;
if (NumEntries == EntryID)
return EntrySymbol;
++NumEntries;
}
}
return nullptr;
}
uint64_t BinaryFunction::getEntryIDForSymbol(const MCSymbol *Symbol) const {
if (!isMultiEntry())
return 0;
for (const MCSymbol *FunctionSymbol : getSymbols())
if (FunctionSymbol == Symbol)
return 0;
// Check all secondary entries available as either basic blocks or lables.
uint64_t NumEntries = 1;
for (const BinaryBasicBlock *BB : BasicBlocks) {
MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB);
if (!EntrySymbol)
continue;
if (EntrySymbol == Symbol)
return NumEntries;
++NumEntries;
}
NumEntries = 1;
for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) {
MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second);
if (!EntrySymbol)
continue;
if (EntrySymbol == Symbol)
return NumEntries;
++NumEntries;
}
llvm_unreachable("symbol not found");
}
bool BinaryFunction::forEachEntryPoint(EntryPointCallbackTy Callback) const {
bool Status = Callback(0, getSymbol());
if (!isMultiEntry())
return Status;
for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) {
if (!Status)
break;
MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second);
if (!EntrySymbol)
continue;
Status = Callback(KV.first, EntrySymbol);
}
return Status;
}
BinaryFunction::BasicBlockListType BinaryFunction::dfs() const {
BasicBlockListType DFS;
unsigned Index = 0;
std::stack<BinaryBasicBlock *> Stack;
// Push entry points to the stack in reverse order.
//
// NB: we rely on the original order of entries to match.
SmallVector<BinaryBasicBlock *> EntryPoints;
llvm::copy_if(BasicBlocks, std::back_inserter(EntryPoints),
[&](const BinaryBasicBlock *const BB) { return isEntryPoint(*BB); });
// Sort entry points by their offset to make sure we got them in the right
// order.
llvm::stable_sort(EntryPoints, [](const BinaryBasicBlock *const A,
const BinaryBasicBlock *const B) {
return A->getOffset() < B->getOffset();
});
for (BinaryBasicBlock *const BB : reverse(EntryPoints))
Stack.push(BB);
for (BinaryBasicBlock &BB : blocks())
BB.setLayoutIndex(BinaryBasicBlock::InvalidIndex);
while (!Stack.empty()) {
BinaryBasicBlock *BB = Stack.top();
Stack.pop();
if (BB->getLayoutIndex() != BinaryBasicBlock::InvalidIndex)
continue;
BB->setLayoutIndex(Index++);
DFS.push_back(BB);
for (BinaryBasicBlock *SuccBB : BB->landing_pads()) {
Stack.push(SuccBB);
}
const MCSymbol *TBB = nullptr;
const MCSymbol *FBB = nullptr;
MCInst *CondBranch = nullptr;
MCInst *UncondBranch = nullptr;
if (BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch) && CondBranch &&
BB->succ_size() == 2) {
if (BC.MIB->getCanonicalBranchCondCode(BC.MIB->getCondCode(
*CondBranch)) == BC.MIB->getCondCode(*CondBranch)) {
Stack.push(BB->getConditionalSuccessor(true));
Stack.push(BB->getConditionalSuccessor(false));
} else {
Stack.push(BB->getConditionalSuccessor(false));
Stack.push(BB->getConditionalSuccessor(true));
}
} else {
for (BinaryBasicBlock *SuccBB : BB->successors()) {
Stack.push(SuccBB);
}
}
}
return DFS;
}
size_t BinaryFunction::computeHash(bool UseDFS, HashFunction HashFunction,
OperandHashFuncTy OperandHashFunc) const {
if (size() == 0)
return 0;
assert(hasCFG() && "function is expected to have CFG");
SmallVector<const BinaryBasicBlock *, 0> Order;
if (UseDFS)
llvm::copy(dfs(), std::back_inserter(Order));
else
llvm::copy(Layout.blocks(), std::back_inserter(Order));
// The hash is computed by creating a string of all instruction opcodes and
// possibly their operands and then hashing that string with std::hash.
std::string HashString;
for (const BinaryBasicBlock *BB : Order)
HashString.append(hashBlock(BC, *BB, OperandHashFunc));
switch (HashFunction) {
case HashFunction::StdHash:
return Hash = std::hash<std::string>{}(HashString);
case HashFunction::XXH3:
return Hash = llvm::xxh3_64bits(HashString);
}
llvm_unreachable("Unhandled HashFunction");
}
void BinaryFunction::insertBasicBlocks(
BinaryBasicBlock *Start,
std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs,
const bool UpdateLayout, const bool UpdateCFIState,
const bool RecomputeLandingPads) {
const int64_t StartIndex = Start ? getIndex(Start) : -1LL;
const size_t NumNewBlocks = NewBBs.size();
BasicBlocks.insert(BasicBlocks.begin() + (StartIndex + 1), NumNewBlocks,
nullptr);
int64_t I = StartIndex + 1;
for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) {
assert(!BasicBlocks[I]);
BasicBlocks[I++] = BB.release();
}
if (RecomputeLandingPads)
recomputeLandingPads();
else
updateBBIndices(0);
if (UpdateLayout)
updateLayout(Start, NumNewBlocks);
if (UpdateCFIState)
updateCFIState(Start, NumNewBlocks);
}
BinaryFunction::iterator BinaryFunction::insertBasicBlocks(
BinaryFunction::iterator StartBB,
std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs,
const bool UpdateLayout, const bool UpdateCFIState,
const bool RecomputeLandingPads) {
const unsigned StartIndex = getIndex(&*StartBB);
const size_t NumNewBlocks = NewBBs.size();
BasicBlocks.insert(BasicBlocks.begin() + StartIndex + 1, NumNewBlocks,
nullptr);
auto RetIter = BasicBlocks.begin() + StartIndex + 1;
unsigned I = StartIndex + 1;
for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) {
assert(!BasicBlocks[I]);
BasicBlocks[I++] = BB.release();
}
if (RecomputeLandingPads)
recomputeLandingPads();
else
updateBBIndices(0);
if (UpdateLayout)
updateLayout(*std::prev(RetIter), NumNewBlocks);
if (UpdateCFIState)
updateCFIState(*std::prev(RetIter), NumNewBlocks);
return RetIter;
}
void BinaryFunction::updateBBIndices(const unsigned StartIndex) {
for (unsigned I = StartIndex; I < BasicBlocks.size(); ++I)
BasicBlocks[I]->Index = I;
}
void BinaryFunction::updateCFIState(BinaryBasicBlock *Start,
const unsigned NumNewBlocks) {
const int32_t CFIState = Start->getCFIStateAtExit();
const unsigned StartIndex = getIndex(Start) + 1;
for (unsigned I = 0; I < NumNewBlocks; ++I)
BasicBlocks[StartIndex + I]->setCFIState(CFIState);
}
void BinaryFunction::updateLayout(BinaryBasicBlock *Start,
const unsigned NumNewBlocks) {
BasicBlockListType::iterator Begin;
BasicBlockListType::iterator End;
// If start not provided copy new blocks from the beginning of BasicBlocks
if (!Start) {
Begin = BasicBlocks.begin();
End = BasicBlocks.begin() + NumNewBlocks;
} else {
unsigned StartIndex = getIndex(Start);
Begin = std::next(BasicBlocks.begin(), StartIndex + 1);
End = std::next(BasicBlocks.begin(), StartIndex + NumNewBlocks + 1);
}
// Insert new blocks in the layout immediately after Start.
Layout.insertBasicBlocks(Start, {Begin, End});
Layout.updateLayoutIndices();
}
bool BinaryFunction::checkForAmbiguousJumpTables() {
SmallSet<uint64_t, 4> JumpTables;
for (BinaryBasicBlock *&BB : BasicBlocks) {
for (MCInst &Inst : *BB) {
if (!BC.MIB->isIndirectBranch(Inst))
continue;
uint64_t JTAddress = BC.MIB->getJumpTable(Inst);
if (!JTAddress)
continue;
// This address can be inside another jump table, but we only consider
// it ambiguous when the same start address is used, not the same JT
// object.
if (!JumpTables.count(JTAddress)) {
JumpTables.insert(JTAddress);
continue;
}
return true;
}
}
return false;
}
void BinaryFunction::disambiguateJumpTables(
MCPlusBuilder::AllocatorIdTy AllocId) {
assert((opts::JumpTables != JTS_BASIC && isSimple()) || !BC.HasRelocations);
SmallPtrSet<JumpTable *, 4> JumpTables;
for (BinaryBasicBlock *&BB : BasicBlocks) {
for (MCInst &Inst : *BB) {
if (!BC.MIB->isIndirectBranch(Inst))
continue;
JumpTable *JT = getJumpTable(Inst);
if (!JT)
continue;
auto Iter = JumpTables.find(JT);
if (Iter == JumpTables.end()) {
JumpTables.insert(JT);
continue;
}
// This instruction is an indirect jump using a jump table, but it is
// using the same jump table of another jump. Try all our tricks to
// extract the jump table symbol and make it point to a new, duplicated JT
MCPhysReg BaseReg1;
uint64_t Scale;
const MCSymbol *Target;
// In case we match if our first matcher, first instruction is the one to
// patch
MCInst *JTLoadInst = &Inst;
// Try a standard indirect jump matcher, scale 8
std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher =
BC.MIB->matchIndJmp(BC.MIB->matchReg(BaseReg1),
BC.MIB->matchImm(Scale), BC.MIB->matchReg(),
/*Offset=*/BC.MIB->matchSymbol(Target));
if (!IndJmpMatcher->match(
*BC.MRI, *BC.MIB,
MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) ||
BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) {
MCPhysReg BaseReg2;
uint64_t Offset;
// Standard JT matching failed. Trying now:
// movq "jt.2397/1"(,%rax,8), %rax
// jmpq *%rax
std::unique_ptr<MCPlusBuilder::MCInstMatcher> LoadMatcherOwner =
BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg1),
BC.MIB->matchImm(Scale), BC.MIB->matchReg(),
/*Offset=*/BC.MIB->matchSymbol(Target));
MCPlusBuilder::MCInstMatcher *LoadMatcher = LoadMatcherOwner.get();
std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher2 =
BC.MIB->matchIndJmp(std::move(LoadMatcherOwner));
if (!IndJmpMatcher2->match(
*BC.MRI, *BC.MIB,
MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) ||
BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) {
// JT matching failed. Trying now:
// PIC-style matcher, scale 4
// addq %rdx, %rsi
// addq %rdx, %rdi
// leaq DATAat0x402450(%rip), %r11
// movslq (%r11,%rdx,4), %rcx
// addq %r11, %rcx
// jmpq *%rcx # JUMPTABLE @0x402450
std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICIndJmpMatcher =
BC.MIB->matchIndJmp(BC.MIB->matchAdd(
BC.MIB->matchReg(BaseReg1),
BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg2),
BC.MIB->matchImm(Scale), BC.MIB->matchReg(),
BC.MIB->matchImm(Offset))));
std::unique_ptr<MCPlusBuilder::MCInstMatcher> LEAMatcherOwner =
BC.MIB->matchLoadAddr(BC.MIB->matchSymbol(Target));
MCPlusBuilder::MCInstMatcher *LEAMatcher = LEAMatcherOwner.get();
std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICBaseAddrMatcher =
BC.MIB->matchIndJmp(BC.MIB->matchAdd(std::move(LEAMatcherOwner),
BC.MIB->matchAnyOperand()));
if (!PICIndJmpMatcher->match(
*BC.MRI, *BC.MIB,
MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) ||
Scale != 4 || BaseReg1 != BaseReg2 || Offset != 0 ||
!PICBaseAddrMatcher->match(
*BC.MRI, *BC.MIB,
MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1)) {
llvm_unreachable("Failed to extract jump table base");
continue;
}
// Matched PIC, identify the instruction with the reference to the JT
JTLoadInst = LEAMatcher->CurInst;
} else {
// Matched non-PIC
JTLoadInst = LoadMatcher->CurInst;
}
}
uint64_t NewJumpTableID = 0;
const MCSymbol *NewJTLabel;
std::tie(NewJumpTableID, NewJTLabel) =
BC.duplicateJumpTable(*this, JT, Target);
{
auto L = BC.scopeLock();
BC.MIB->replaceMemOperandDisp(*JTLoadInst, NewJTLabel, BC.Ctx.get());
}
// We use a unique ID with the high bit set as address for this "injected"
// jump table (not originally in the input binary).
BC.MIB->setJumpTable(Inst, NewJumpTableID, 0, AllocId);
}
}
}
bool BinaryFunction::replaceJumpTableEntryIn(BinaryBasicBlock *BB,
BinaryBasicBlock *OldDest,
BinaryBasicBlock *NewDest) {
MCInst *Instr = BB->getLastNonPseudoInstr();
if (!Instr || !BC.MIB->isIndirectBranch(*Instr))
return false;
uint64_t JTAddress = BC.MIB->getJumpTable(*Instr);
assert(JTAddress && "Invalid jump table address");
JumpTable *JT = getJumpTableContainingAddress(JTAddress);
assert(JT && "No jump table structure for this indirect branch");
bool Patched = JT->replaceDestination(JTAddress, OldDest->getLabel(),
NewDest->getLabel());
(void)Patched;
assert(Patched && "Invalid entry to be replaced in jump table");
return true;
}
BinaryBasicBlock *BinaryFunction::splitEdge(BinaryBasicBlock *From,
BinaryBasicBlock *To) {
// Create intermediate BB
MCSymbol *Tmp;
{
auto L = BC.scopeLock();
Tmp = BC.Ctx->createNamedTempSymbol("SplitEdge");
}
// Link new BBs to the original input offset of the From BB, so we can map
// samples recorded in new BBs back to the original BB seem in the input
// binary (if using BAT)
std::unique_ptr<BinaryBasicBlock> NewBB = createBasicBlock(Tmp);
NewBB->setOffset(From->getInputOffset());
BinaryBasicBlock *NewBBPtr = NewBB.get();
// Update "From" BB
auto I = From->succ_begin();
auto BI = From->branch_info_begin();
for (; I != From->succ_end(); ++I) {
if (*I == To)
break;
++BI;
}
assert(I != From->succ_end() && "Invalid CFG edge in splitEdge!");
uint64_t OrigCount = BI->Count;
uint64_t OrigMispreds = BI->MispredictedCount;
replaceJumpTableEntryIn(From, To, NewBBPtr);
From->replaceSuccessor(To, NewBBPtr, OrigCount, OrigMispreds);
NewBB->addSuccessor(To, OrigCount, OrigMispreds);
NewBB->setExecutionCount(OrigCount);
NewBB->setIsCold(From->isCold());
// Update CFI and BB layout with new intermediate BB
std::vector<std::unique_ptr<BinaryBasicBlock>> NewBBs;
NewBBs.emplace_back(std::move(NewBB));
insertBasicBlocks(From, std::move(NewBBs), true, true,
/*RecomputeLandingPads=*/false);
return NewBBPtr;
}
void BinaryFunction::deleteConservativeEdges() {
// Our goal is to aggressively remove edges from the CFG that we believe are
// wrong. This is used for instrumentation, where it is safe to remove
// fallthrough edges because we won't reorder blocks.
for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) {
BinaryBasicBlock *BB = *I;
if (BB->succ_size() != 1 || BB->size() == 0)
continue;
auto NextBB = std::next(I);
MCInst *Last = BB->getLastNonPseudoInstr();
// Fallthrough is a landing pad? Delete this edge (as long as we don't
// have a direct jump to it)
if ((*BB->succ_begin())->isLandingPad() && NextBB != E &&
*BB->succ_begin() == *NextBB && Last && !BC.MIB->isBranch(*Last)) {
BB->removeAllSuccessors();
continue;
}
// Look for suspicious calls at the end of BB where gcc may optimize it and
// remove the jump to the epilogue when it knows the call won't return.
if (!Last || !BC.MIB->isCall(*Last))
continue;
const MCSymbol *CalleeSymbol = BC.MIB->getTargetSymbol(*Last);
if (!CalleeSymbol)
continue;
StringRef CalleeName = CalleeSymbol->getName();
if (CalleeName != "__cxa_throw@PLT" && CalleeName != "_Unwind_Resume@PLT" &&
CalleeName != "__cxa_rethrow@PLT" && CalleeName != "exit@PLT" &&
CalleeName != "abort@PLT")
continue;
BB->removeAllSuccessors();
}
}
bool BinaryFunction::isSymbolValidInScope(const SymbolRef &Symbol,
uint64_t SymbolSize) const {
// If this symbol is in a different section from the one where the
// function symbol is, don't consider it as valid.
if (!getOriginSection()->containsAddress(
cantFail(Symbol.getAddress(), "cannot get symbol address")))
return false;
// Some symbols are tolerated inside function bodies, others are not.
// The real function boundaries may not be known at this point.
if (BC.isMarker(Symbol))
return true;
// It's okay to have a zero-sized symbol in the middle of non-zero-sized
// function.
if (SymbolSize == 0 && containsAddress(cantFail(Symbol.getAddress())))
return true;
if (cantFail(Symbol.getType()) != SymbolRef::ST_Unknown)
return false;
if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global)
return false;
return true;
}
void BinaryFunction::adjustExecutionCount(uint64_t Count) {
if (getKnownExecutionCount() == 0 || Count == 0)
return;
if (ExecutionCount < Count)
Count = ExecutionCount;
double AdjustmentRatio = ((double)ExecutionCount - Count) / ExecutionCount;
if (AdjustmentRatio < 0.0)
AdjustmentRatio = 0.0;
for (BinaryBasicBlock &BB : blocks())
BB.adjustExecutionCount(AdjustmentRatio);
ExecutionCount -= Count;
}
BinaryFunction::~BinaryFunction() {
for (BinaryBasicBlock *BB : BasicBlocks)
delete BB;
for (BinaryBasicBlock *BB : DeletedBasicBlocks)
delete BB;
}
void BinaryFunction::constructDomTree() {
BDT.reset(new BinaryDominatorTree);
BDT->recalculate(*this);
}
void BinaryFunction::calculateLoopInfo() {
if (!hasDomTree())
constructDomTree();
// Discover loops.
BLI.reset(new BinaryLoopInfo());
BLI->analyze(getDomTree());
// Traverse discovered loops and add depth and profile information.
std::stack<BinaryLoop *> St;
for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I) {
St.push(*I);
++BLI->OuterLoops;
}
while (!St.empty()) {
BinaryLoop *L = St.top();
St.pop();
++BLI->TotalLoops;
BLI->MaximumDepth = std::max(L->getLoopDepth(), BLI->MaximumDepth);
// Add nested loops in the stack.
for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
St.push(*I);
// Skip if no valid profile is found.
if (!hasValidProfile()) {
L->EntryCount = COUNT_NO_PROFILE;
L->ExitCount = COUNT_NO_PROFILE;
L->TotalBackEdgeCount = COUNT_NO_PROFILE;
continue;
}
// Compute back edge count.
SmallVector<BinaryBasicBlock *, 1> Latches;
L->getLoopLatches(Latches);
for (BinaryBasicBlock *Latch : Latches) {
auto BI = Latch->branch_info_begin();
for (BinaryBasicBlock *Succ : Latch->successors()) {
if (Succ == L->getHeader()) {
assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
"profile data not found");
L->TotalBackEdgeCount += BI->Count;
}
++BI;
}
}
// Compute entry count.
L->EntryCount = L->getHeader()->getExecutionCount() - L->TotalBackEdgeCount;
// Compute exit count.
SmallVector<BinaryLoop::Edge, 1> ExitEdges;
L->getExitEdges(ExitEdges);
for (BinaryLoop::Edge &Exit : ExitEdges) {
const BinaryBasicBlock *Exiting = Exit.first;
const BinaryBasicBlock *ExitTarget = Exit.second;
auto BI = Exiting->branch_info_begin();
for (BinaryBasicBlock *Succ : Exiting->successors()) {
if (Succ == ExitTarget) {
assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
"profile data not found");
L->ExitCount += BI->Count;
}
++BI;
}
}
}
}
void BinaryFunction::updateOutputValues(const BOLTLinker &Linker) {
if (!isEmitted()) {
assert(!isInjected() && "injected function should be emitted");
setOutputAddress(getAddress());
setOutputSize(getSize());
return;
}
const auto SymbolInfo = Linker.lookupSymbolInfo(getSymbol()->getName());
assert(SymbolInfo && "Cannot find function entry symbol");
setOutputAddress(SymbolInfo->Address);
setOutputSize(SymbolInfo->Size);
if (BC.HasRelocations || isInjected()) {
if (hasConstantIsland()) {
const auto DataAddress =
Linker.lookupSymbol(getFunctionConstantIslandLabel()->getName());
assert(DataAddress && "Cannot find function CI symbol");
setOutputDataAddress(*DataAddress);
for (auto It : Islands->Offsets) {
const uint64_t OldOffset = It.first;
BinaryData *BD = BC.getBinaryDataAtAddress(getAddress() + OldOffset);
if (!BD)
continue;
MCSymbol *Symbol = It.second;
const auto NewAddress = Linker.lookupSymbol(Symbol->getName());
assert(NewAddress && "Cannot find CI symbol");
auto &Section = *getCodeSection();
const auto NewOffset = *NewAddress - Section.getOutputAddress();
BD->setOutputLocation(Section, NewOffset);
}
}
if (isSplit()) {
for (FunctionFragment &FF : getLayout().getSplitFragments()) {
ErrorOr<BinarySection &> ColdSection =
getCodeSection(FF.getFragmentNum());
// If fragment is empty, cold section might not exist
if (FF.empty() && ColdSection.getError())
continue;
const MCSymbol *ColdStartSymbol = getSymbol(FF.getFragmentNum());
// If fragment is empty, symbol might have not been emitted
if (FF.empty() && (!ColdStartSymbol || !ColdStartSymbol->isDefined()) &&
!hasConstantIsland())
continue;
assert(ColdStartSymbol && ColdStartSymbol->isDefined() &&
"split function should have defined cold symbol");
const auto ColdStartSymbolInfo =
Linker.lookupSymbolInfo(ColdStartSymbol->getName());
assert(ColdStartSymbolInfo && "Cannot find cold start symbol");
FF.setAddress(ColdStartSymbolInfo->Address);
FF.setImageSize(ColdStartSymbolInfo->Size);
if (hasConstantIsland()) {
const auto DataAddress = Linker.lookupSymbol(
getFunctionColdConstantIslandLabel()->getName());
assert(DataAddress && "Cannot find cold CI symbol");
setOutputColdDataAddress(*DataAddress);
}
}
}
}
// Update basic block output ranges for the debug info, if we have
// secondary entry points in the symbol table to update or if writing BAT.
if (!requiresAddressMap())
return;
// AArch64 may have functions that only contains a constant island (no code).
if (getLayout().block_empty())
return;
for (FunctionFragment &FF : getLayout().fragments()) {
if (FF.empty())
continue;
const uint64_t FragmentBaseAddress =
getCodeSection(isSimple() ? FF.getFragmentNum() : FragmentNum::main())
->getOutputAddress();
BinaryBasicBlock *PrevBB = nullptr;
for (BinaryBasicBlock *const BB : FF) {
assert(BB->getLabel()->isDefined() && "symbol should be defined");
if (!BC.HasRelocations) {
if (BB->isSplit())
assert(FragmentBaseAddress == FF.getAddress());
else
assert(FragmentBaseAddress == getOutputAddress());
(void)FragmentBaseAddress;
}
// Injected functions likely will fail lookup, as they have no
// input range. Just assign the BB the output address of the
// function.
auto MaybeBBAddress = BC.getIOAddressMap().lookup(BB->getLabel());
const uint64_t BBAddress = MaybeBBAddress ? *MaybeBBAddress
: BB->isSplit() ? FF.getAddress()
: getOutputAddress();
BB->setOutputStartAddress(BBAddress);
if (PrevBB) {
assert(PrevBB->getOutputAddressRange().first <= BBAddress &&
"Bad output address for basic block.");
assert((PrevBB->getOutputAddressRange().first != BBAddress ||
!hasInstructions() || !PrevBB->getNumNonPseudos()) &&
"Bad output address for basic block.");
PrevBB->setOutputEndAddress(BBAddress);
}
PrevBB = BB;
}
PrevBB->setOutputEndAddress(PrevBB->isSplit()
? FF.getAddress() + FF.getImageSize()
: getOutputAddress() + getOutputSize());
}
// Reset output addresses for deleted blocks.
for (BinaryBasicBlock *BB : DeletedBasicBlocks) {
BB->setOutputStartAddress(0);
BB->setOutputEndAddress(0);
}
}
DebugAddressRangesVector BinaryFunction::getOutputAddressRanges() const {
DebugAddressRangesVector OutputRanges;
if (isFolded())
return OutputRanges;
if (IsFragment)
return OutputRanges;
OutputRanges.emplace_back(getOutputAddress(),
getOutputAddress() + getOutputSize());
if (isSplit()) {
assert(isEmitted() && "split function should be emitted");
for (const FunctionFragment &FF : getLayout().getSplitFragments())
OutputRanges.emplace_back(FF.getAddress(),
FF.getAddress() + FF.getImageSize());
}
if (isSimple())
return OutputRanges;
for (BinaryFunction *Frag : Fragments) {
assert(!Frag->isSimple() &&
"fragment of non-simple function should also be non-simple");
OutputRanges.emplace_back(Frag->getOutputAddress(),
Frag->getOutputAddress() + Frag->getOutputSize());
}
return OutputRanges;
}
uint64_t BinaryFunction::translateInputToOutputAddress(uint64_t Address) const {
if (isFolded())
return 0;
// If the function hasn't changed return the same address.
if (!isEmitted())
return Address;
if (Address < getAddress())
return 0;
// Check if the address is associated with an instruction that is tracked
// by address translation.
if (auto OutputAddress = BC.getIOAddressMap().lookup(Address))
return *OutputAddress;
// FIXME: #18950828 - we rely on relative offsets inside basic blocks to stay
// intact. Instead we can use pseudo instructions and/or annotations.
const uint64_t Offset = Address - getAddress();
const BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset);
if (!BB) {
// Special case for address immediately past the end of the function.
if (Offset == getSize())
return getOutputAddress() + getOutputSize();
return 0;
}
return std::min(BB->getOutputAddressRange().first + Offset - BB->getOffset(),
BB->getOutputAddressRange().second);
}
DebugAddressRangesVector
BinaryFunction::translateInputToOutputRange(DebugAddressRange InRange) const {
DebugAddressRangesVector OutRanges;
// The function was removed from the output. Return an empty range.
if (isFolded())
return OutRanges;
// If the function hasn't changed return the same range.
if (!isEmitted()) {
OutRanges.emplace_back(InRange);
return OutRanges;
}
if (!containsAddress(InRange.LowPC))
return OutRanges;
// Special case of an empty range [X, X). Some tools expect X to be updated.
if (InRange.LowPC == InRange.HighPC) {
if (uint64_t NewPC = translateInputToOutputAddress(InRange.LowPC))
OutRanges.push_back(DebugAddressRange{NewPC, NewPC});
return OutRanges;
}
uint64_t InputOffset = InRange.LowPC - getAddress();
const uint64_t InputEndOffset =
std::min(InRange.HighPC - getAddress(), getSize());
auto BBI = llvm::upper_bound(BasicBlockOffsets,
BasicBlockOffset(InputOffset, nullptr),
CompareBasicBlockOffsets());
assert(BBI != BasicBlockOffsets.begin());
// Iterate over blocks in the input order using BasicBlockOffsets.
for (--BBI; InputOffset < InputEndOffset && BBI != BasicBlockOffsets.end();
InputOffset = BBI->second->getEndOffset(), ++BBI) {
const BinaryBasicBlock &BB = *BBI->second;
if (InputOffset < BB.getOffset() || InputOffset >= BB.getEndOffset()) {
LLVM_DEBUG(
dbgs() << "BOLT-DEBUG: invalid debug address range detected for "
<< *this << " : [0x" << Twine::utohexstr(InRange.LowPC)
<< ", 0x" << Twine::utohexstr(InRange.HighPC) << "]\n");
break;
}
// Skip the block if it wasn't emitted.
if (!BB.getOutputAddressRange().first)
continue;
// Find output address for an instruction with an offset greater or equal
// to /p Offset. The output address should fall within the same basic
// block boundaries.
auto translateBlockOffset = [&](const uint64_t Offset) {
const uint64_t OutAddress = BB.getOutputAddressRange().first + Offset;
return std::min(OutAddress, BB.getOutputAddressRange().second);
};
uint64_t OutLowPC = BB.getOutputAddressRange().first;
if (InputOffset > BB.getOffset())
OutLowPC = translateBlockOffset(InputOffset - BB.getOffset());
uint64_t OutHighPC = BB.getOutputAddressRange().second;
if (InputEndOffset < BB.getEndOffset()) {
assert(InputEndOffset >= BB.getOffset());
OutHighPC = translateBlockOffset(InputEndOffset - BB.getOffset());
}
// Check if we can expand the last translated range.
if (!OutRanges.empty() && OutRanges.back().HighPC == OutLowPC)
OutRanges.back().HighPC = std::max(OutRanges.back().HighPC, OutHighPC);
else
OutRanges.emplace_back(OutLowPC, std::max(OutLowPC, OutHighPC));
}
LLVM_DEBUG({
dbgs() << "BOLT-DEBUG: translated address range " << InRange << " -> ";
for (const DebugAddressRange &R : OutRanges)
dbgs() << R << ' ';
dbgs() << '\n';
});
return OutRanges;
}
MCInst *BinaryFunction::getInstructionAtOffset(uint64_t Offset) {
if (CurrentState == State::Disassembled) {
auto II = Instructions.find(Offset);
return (II == Instructions.end()) ? nullptr : &II->second;
} else if (CurrentState == State::CFG) {
BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset);
if (!BB)
return nullptr;
for (MCInst &Inst : *BB) {
constexpr uint32_t InvalidOffset = std::numeric_limits<uint32_t>::max();
if (Offset == BC.MIB->getOffsetWithDefault(Inst, InvalidOffset))
return &Inst;
}
if (MCInst *LastInstr = BB->getLastNonPseudoInstr()) {
if (std::optional<uint32_t> Size = BC.MIB->getSize(*LastInstr)) {
if (BB->getEndOffset() - Offset == Size) {
return LastInstr;
}
}
}
return nullptr;
} else {
llvm_unreachable("invalid CFG state to use getInstructionAtOffset()");
}
}
void BinaryFunction::printLoopInfo(raw_ostream &OS) const {
if (!opts::shouldPrint(*this))
return;
OS << "Loop Info for Function \"" << *this << "\"";
if (hasValidProfile())
OS << " (count: " << getExecutionCount() << ")";
OS << "\n";
std::stack<BinaryLoop *> St;
for (BinaryLoop *L : *BLI)
St.push(L);
while (!St.empty()) {
BinaryLoop *L = St.top();
St.pop();
for (BinaryLoop *Inner : *L)
St.push(Inner);
if (!hasValidProfile())
continue;
OS << (L->getLoopDepth() > 1 ? "Nested" : "Outer")
<< " loop header: " << L->getHeader()->getName();
OS << "\n";
OS << "Loop basic blocks: ";
ListSeparator LS;
for (BinaryBasicBlock *BB : L->blocks())
OS << LS << BB->getName();
OS << "\n";
if (hasValidProfile()) {
OS << "Total back edge count: " << L->TotalBackEdgeCount << "\n";
OS << "Loop entry count: " << L->EntryCount << "\n";
OS << "Loop exit count: " << L->ExitCount << "\n";
if (L->EntryCount > 0) {
OS << "Average iters per entry: "
<< format("%.4lf", (double)L->TotalBackEdgeCount / L->EntryCount)
<< "\n";
}
}
OS << "----\n";
}
OS << "Total number of loops: " << BLI->TotalLoops << "\n";
OS << "Number of outer loops: " << BLI->OuterLoops << "\n";
OS << "Maximum nested loop depth: " << BLI->MaximumDepth << "\n\n";
}
bool BinaryFunction::isAArch64Veneer() const {
if (empty() || hasIslandsInfo())
return false;
BinaryBasicBlock &BB = **BasicBlocks.begin();
for (MCInst &Inst : BB)
if (!BC.MIB->hasAnnotation(Inst, "AArch64Veneer"))
return false;
for (auto I = BasicBlocks.begin() + 1, E = BasicBlocks.end(); I != E; ++I) {
for (MCInst &Inst : **I)
if (!BC.MIB->isNoop(Inst))
return false;
}
return true;
}
void BinaryFunction::addRelocation(uint64_t Address, MCSymbol *Symbol,
uint64_t RelType, uint64_t Addend,
uint64_t Value) {
assert(Address >= getAddress() && Address < getAddress() + getMaxSize() &&
"address is outside of the function");
uint64_t Offset = Address - getAddress();
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: addRelocation in "
<< formatv("{0}@{1:x} against {2}\n", *this, Offset,
(Symbol ? Symbol->getName() : "<undef>")));
bool IsCI = BC.isAArch64() && isInConstantIsland(Address);
std::map<uint64_t, Relocation> &Rels =
IsCI ? Islands->Relocations : Relocations;
if (BC.MIB->shouldRecordCodeRelocation(RelType))
Rels[Offset] = Relocation{Offset, Symbol, RelType, Addend, Value};
}
} // namespace bolt
} // namespace llvm