blob: 13347c8cf7b658e6bbca156c1158432e12e347d6 [file] [log] [blame]
//===-- ClauseProcessor.cpp -------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "ClauseProcessor.h"
#include "Clauses.h"
#include "flang/Lower/PFTBuilder.h"
#include "flang/Parser/tools.h"
#include "flang/Semantics/tools.h"
namespace Fortran {
namespace lower {
namespace omp {
/// Check for unsupported map operand types.
static void checkMapType(mlir::Location location, mlir::Type type) {
if (auto refType = type.dyn_cast<fir::ReferenceType>())
type = refType.getElementType();
if (auto boxType = type.dyn_cast_or_null<fir::BoxType>())
if (!boxType.getElementType().isa<fir::PointerType>())
TODO(location, "OMPD_target_data MapOperand BoxType");
}
static mlir::omp::ScheduleModifier
translateScheduleModifier(const omp::clause::Schedule::ModType &m) {
switch (m) {
case omp::clause::Schedule::ModType::Monotonic:
return mlir::omp::ScheduleModifier::monotonic;
case omp::clause::Schedule::ModType::Nonmonotonic:
return mlir::omp::ScheduleModifier::nonmonotonic;
case omp::clause::Schedule::ModType::Simd:
return mlir::omp::ScheduleModifier::simd;
}
return mlir::omp::ScheduleModifier::none;
}
static mlir::omp::ScheduleModifier
getScheduleModifier(const omp::clause::Schedule &clause) {
using ScheduleModifier = omp::clause::Schedule::ScheduleModifier;
const auto &modifier = std::get<std::optional<ScheduleModifier>>(clause.t);
// The input may have the modifier any order, so we look for one that isn't
// SIMD. If modifier is not set at all, fall down to the bottom and return
// "none".
if (modifier) {
using ModType = omp::clause::Schedule::ModType;
const auto &modType1 = std::get<ModType>(modifier->t);
if (modType1 == ModType::Simd) {
const auto &modType2 = std::get<std::optional<ModType>>(modifier->t);
if (modType2 && *modType2 != ModType::Simd)
return translateScheduleModifier(*modType2);
return mlir::omp::ScheduleModifier::none;
}
return translateScheduleModifier(modType1);
}
return mlir::omp::ScheduleModifier::none;
}
static mlir::omp::ScheduleModifier
getSimdModifier(const omp::clause::Schedule &clause) {
using ScheduleModifier = omp::clause::Schedule::ScheduleModifier;
const auto &modifier = std::get<std::optional<ScheduleModifier>>(clause.t);
// Either of the two possible modifiers in the input can be the SIMD modifier,
// so look in either one, and return simd if we find one. Not found = return
// "none".
if (modifier) {
using ModType = omp::clause::Schedule::ModType;
const auto &modType1 = std::get<ModType>(modifier->t);
if (modType1 == ModType::Simd)
return mlir::omp::ScheduleModifier::simd;
const auto &modType2 = std::get<std::optional<ModType>>(modifier->t);
if (modType2 && *modType2 == ModType::Simd)
return mlir::omp::ScheduleModifier::simd;
}
return mlir::omp::ScheduleModifier::none;
}
static void
genAllocateClause(Fortran::lower::AbstractConverter &converter,
const omp::clause::Allocate &clause,
llvm::SmallVectorImpl<mlir::Value> &allocatorOperands,
llvm::SmallVectorImpl<mlir::Value> &allocateOperands) {
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
mlir::Location currentLocation = converter.getCurrentLocation();
Fortran::lower::StatementContext stmtCtx;
const omp::ObjectList &objectList = std::get<omp::ObjectList>(clause.t);
const auto &modifier =
std::get<std::optional<omp::clause::Allocate::Modifier>>(clause.t);
// If the allocate modifier is present, check if we only use the allocator
// submodifier. ALIGN in this context is unimplemented
const bool onlyAllocator =
modifier &&
std::holds_alternative<omp::clause::Allocate::Modifier::Allocator>(
modifier->u);
if (modifier && !onlyAllocator) {
TODO(currentLocation, "OmpAllocateClause ALIGN modifier");
}
// Check if allocate clause has allocator specified. If so, add it
// to list of allocators, otherwise, add default allocator to
// list of allocators.
if (onlyAllocator) {
const auto &value =
std::get<omp::clause::Allocate::Modifier::Allocator>(modifier->u);
mlir::Value operand =
fir::getBase(converter.genExprValue(value.v, stmtCtx));
allocatorOperands.append(objectList.size(), operand);
} else {
mlir::Value operand = firOpBuilder.createIntegerConstant(
currentLocation, firOpBuilder.getI32Type(), 1);
allocatorOperands.append(objectList.size(), operand);
}
genObjectList(objectList, converter, allocateOperands);
}
static mlir::omp::ClauseProcBindKindAttr
genProcBindKindAttr(fir::FirOpBuilder &firOpBuilder,
const omp::clause::ProcBind &clause) {
mlir::omp::ClauseProcBindKind procBindKind;
switch (clause.v) {
case omp::clause::ProcBind::Type::Master:
procBindKind = mlir::omp::ClauseProcBindKind::Master;
break;
case omp::clause::ProcBind::Type::Close:
procBindKind = mlir::omp::ClauseProcBindKind::Close;
break;
case omp::clause::ProcBind::Type::Spread:
procBindKind = mlir::omp::ClauseProcBindKind::Spread;
break;
case omp::clause::ProcBind::Type::Primary:
procBindKind = mlir::omp::ClauseProcBindKind::Primary;
break;
}
return mlir::omp::ClauseProcBindKindAttr::get(firOpBuilder.getContext(),
procBindKind);
}
static mlir::omp::ClauseTaskDependAttr
genDependKindAttr(fir::FirOpBuilder &firOpBuilder,
const omp::clause::Depend &clause) {
mlir::omp::ClauseTaskDepend pbKind;
const auto &inOut = std::get<omp::clause::Depend::InOut>(clause.u);
switch (std::get<omp::clause::Depend::Type>(inOut.t)) {
case omp::clause::Depend::Type::In:
pbKind = mlir::omp::ClauseTaskDepend::taskdependin;
break;
case omp::clause::Depend::Type::Out:
pbKind = mlir::omp::ClauseTaskDepend::taskdependout;
break;
case omp::clause::Depend::Type::Inout:
pbKind = mlir::omp::ClauseTaskDepend::taskdependinout;
break;
default:
llvm_unreachable("unknown parser task dependence type");
break;
}
return mlir::omp::ClauseTaskDependAttr::get(firOpBuilder.getContext(),
pbKind);
}
static mlir::Value
getIfClauseOperand(Fortran::lower::AbstractConverter &converter,
const omp::clause::If &clause,
omp::clause::If::DirectiveNameModifier directiveName,
mlir::Location clauseLocation) {
// Only consider the clause if it's intended for the given directive.
auto &directive =
std::get<std::optional<omp::clause::If::DirectiveNameModifier>>(clause.t);
if (directive && directive.value() != directiveName)
return nullptr;
Fortran::lower::StatementContext stmtCtx;
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
mlir::Value ifVal = fir::getBase(
converter.genExprValue(std::get<omp::SomeExpr>(clause.t), stmtCtx));
return firOpBuilder.createConvert(clauseLocation, firOpBuilder.getI1Type(),
ifVal);
}
static void
addUseDeviceClause(Fortran::lower::AbstractConverter &converter,
const omp::ObjectList &objects,
llvm::SmallVectorImpl<mlir::Value> &operands,
llvm::SmallVectorImpl<mlir::Type> &useDeviceTypes,
llvm::SmallVectorImpl<mlir::Location> &useDeviceLocs,
llvm::SmallVectorImpl<const Fortran::semantics::Symbol *>
&useDeviceSymbols) {
genObjectList(objects, converter, operands);
for (mlir::Value &operand : operands) {
checkMapType(operand.getLoc(), operand.getType());
useDeviceTypes.push_back(operand.getType());
useDeviceLocs.push_back(operand.getLoc());
}
for (const omp::Object &object : objects)
useDeviceSymbols.push_back(object.id());
}
//===----------------------------------------------------------------------===//
// ClauseProcessor unique clauses
//===----------------------------------------------------------------------===//
bool ClauseProcessor::processCollapse(
mlir::Location currentLocation, Fortran::lower::pft::Evaluation &eval,
llvm::SmallVectorImpl<mlir::Value> &lowerBound,
llvm::SmallVectorImpl<mlir::Value> &upperBound,
llvm::SmallVectorImpl<mlir::Value> &step,
llvm::SmallVectorImpl<const Fortran::semantics::Symbol *> &iv,
std::size_t &loopVarTypeSize) const {
bool found = false;
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
// Collect the loops to collapse.
Fortran::lower::pft::Evaluation *doConstructEval =
&eval.getFirstNestedEvaluation();
if (doConstructEval->getIf<Fortran::parser::DoConstruct>()
->IsDoConcurrent()) {
TODO(currentLocation, "Do Concurrent in Worksharing loop construct");
}
std::int64_t collapseValue = 1l;
if (auto *clause = findUniqueClause<omp::clause::Collapse>()) {
collapseValue = Fortran::evaluate::ToInt64(clause->v).value();
found = true;
}
loopVarTypeSize = 0;
do {
Fortran::lower::pft::Evaluation *doLoop =
&doConstructEval->getFirstNestedEvaluation();
auto *doStmt = doLoop->getIf<Fortran::parser::NonLabelDoStmt>();
assert(doStmt && "Expected do loop to be in the nested evaluation");
const auto &loopControl =
std::get<std::optional<Fortran::parser::LoopControl>>(doStmt->t);
const Fortran::parser::LoopControl::Bounds *bounds =
std::get_if<Fortran::parser::LoopControl::Bounds>(&loopControl->u);
assert(bounds && "Expected bounds for worksharing do loop");
Fortran::lower::StatementContext stmtCtx;
lowerBound.push_back(fir::getBase(converter.genExprValue(
*Fortran::semantics::GetExpr(bounds->lower), stmtCtx)));
upperBound.push_back(fir::getBase(converter.genExprValue(
*Fortran::semantics::GetExpr(bounds->upper), stmtCtx)));
if (bounds->step) {
step.push_back(fir::getBase(converter.genExprValue(
*Fortran::semantics::GetExpr(bounds->step), stmtCtx)));
} else { // If `step` is not present, assume it as `1`.
step.push_back(firOpBuilder.createIntegerConstant(
currentLocation, firOpBuilder.getIntegerType(32), 1));
}
iv.push_back(bounds->name.thing.symbol);
loopVarTypeSize = std::max(loopVarTypeSize,
bounds->name.thing.symbol->GetUltimate().size());
collapseValue--;
doConstructEval =
&*std::next(doConstructEval->getNestedEvaluations().begin());
} while (collapseValue > 0);
return found;
}
bool ClauseProcessor::processDefault() const {
if (auto *clause = findUniqueClause<omp::clause::Default>()) {
// Private, Firstprivate, Shared, None
switch (clause->v) {
case omp::clause::Default::Type::Shared:
case omp::clause::Default::Type::None:
// Default clause with shared or none do not require any handling since
// Shared is the default behavior in the IR and None is only required
// for semantic checks.
break;
case omp::clause::Default::Type::Private:
// TODO Support default(private)
break;
case omp::clause::Default::Type::Firstprivate:
// TODO Support default(firstprivate)
break;
}
return true;
}
return false;
}
bool ClauseProcessor::processDevice(Fortran::lower::StatementContext &stmtCtx,
mlir::Value &result) const {
const Fortran::parser::CharBlock *source = nullptr;
if (auto *clause = findUniqueClause<omp::clause::Device>(&source)) {
mlir::Location clauseLocation = converter.genLocation(*source);
if (auto deviceModifier =
std::get<std::optional<omp::clause::Device::DeviceModifier>>(
clause->t)) {
if (deviceModifier == omp::clause::Device::DeviceModifier::Ancestor) {
TODO(clauseLocation, "OMPD_target Device Modifier Ancestor");
}
}
const auto &deviceExpr = std::get<omp::SomeExpr>(clause->t);
result = fir::getBase(converter.genExprValue(deviceExpr, stmtCtx));
return true;
}
return false;
}
bool ClauseProcessor::processDeviceType(
mlir::omp::DeclareTargetDeviceType &result) const {
if (auto *clause = findUniqueClause<omp::clause::DeviceType>()) {
// Case: declare target ... device_type(any | host | nohost)
switch (clause->v) {
case omp::clause::DeviceType::Type::Nohost:
result = mlir::omp::DeclareTargetDeviceType::nohost;
break;
case omp::clause::DeviceType::Type::Host:
result = mlir::omp::DeclareTargetDeviceType::host;
break;
case omp::clause::DeviceType::Type::Any:
result = mlir::omp::DeclareTargetDeviceType::any;
break;
}
return true;
}
return false;
}
bool ClauseProcessor::processFinal(Fortran::lower::StatementContext &stmtCtx,
mlir::Value &result) const {
const Fortran::parser::CharBlock *source = nullptr;
if (auto *clause = findUniqueClause<omp::clause::Final>(&source)) {
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
mlir::Location clauseLocation = converter.genLocation(*source);
mlir::Value finalVal =
fir::getBase(converter.genExprValue(clause->v, stmtCtx));
result = firOpBuilder.createConvert(clauseLocation,
firOpBuilder.getI1Type(), finalVal);
return true;
}
return false;
}
bool ClauseProcessor::processHint(mlir::IntegerAttr &result) const {
if (auto *clause = findUniqueClause<omp::clause::Hint>()) {
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
int64_t hintValue = *Fortran::evaluate::ToInt64(clause->v);
result = firOpBuilder.getI64IntegerAttr(hintValue);
return true;
}
return false;
}
bool ClauseProcessor::processMergeable(mlir::UnitAttr &result) const {
return markClauseOccurrence<omp::clause::Mergeable>(result);
}
bool ClauseProcessor::processNowait(mlir::UnitAttr &result) const {
return markClauseOccurrence<omp::clause::Nowait>(result);
}
bool ClauseProcessor::processNumTeams(Fortran::lower::StatementContext &stmtCtx,
mlir::Value &result) const {
// TODO Get lower and upper bounds for num_teams when parser is updated to
// accept both.
if (auto *clause = findUniqueClause<omp::clause::NumTeams>()) {
result = fir::getBase(converter.genExprValue(clause->v, stmtCtx));
return true;
}
return false;
}
bool ClauseProcessor::processNumThreads(
Fortran::lower::StatementContext &stmtCtx, mlir::Value &result) const {
if (auto *clause = findUniqueClause<omp::clause::NumThreads>()) {
// OMPIRBuilder expects `NUM_THREADS` clause as a `Value`.
result = fir::getBase(converter.genExprValue(clause->v, stmtCtx));
return true;
}
return false;
}
bool ClauseProcessor::processOrdered(mlir::IntegerAttr &result) const {
if (auto *clause = findUniqueClause<omp::clause::Ordered>()) {
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
int64_t orderedClauseValue = 0l;
if (clause->v.has_value())
orderedClauseValue = *Fortran::evaluate::ToInt64(*clause->v);
result = firOpBuilder.getI64IntegerAttr(orderedClauseValue);
return true;
}
return false;
}
bool ClauseProcessor::processPriority(Fortran::lower::StatementContext &stmtCtx,
mlir::Value &result) const {
if (auto *clause = findUniqueClause<omp::clause::Priority>()) {
result = fir::getBase(converter.genExprValue(clause->v, stmtCtx));
return true;
}
return false;
}
bool ClauseProcessor::processProcBind(
mlir::omp::ClauseProcBindKindAttr &result) const {
if (auto *clause = findUniqueClause<omp::clause::ProcBind>()) {
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
result = genProcBindKindAttr(firOpBuilder, *clause);
return true;
}
return false;
}
bool ClauseProcessor::processSafelen(mlir::IntegerAttr &result) const {
if (auto *clause = findUniqueClause<omp::clause::Safelen>()) {
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
const std::optional<std::int64_t> safelenVal =
Fortran::evaluate::ToInt64(clause->v);
result = firOpBuilder.getI64IntegerAttr(*safelenVal);
return true;
}
return false;
}
bool ClauseProcessor::processSchedule(
mlir::omp::ClauseScheduleKindAttr &valAttr,
mlir::omp::ScheduleModifierAttr &modifierAttr,
mlir::UnitAttr &simdModifierAttr) const {
if (auto *clause = findUniqueClause<omp::clause::Schedule>()) {
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
mlir::MLIRContext *context = firOpBuilder.getContext();
const auto &scheduleType =
std::get<omp::clause::Schedule::ScheduleType>(clause->t);
mlir::omp::ClauseScheduleKind scheduleKind;
switch (scheduleType) {
case omp::clause::Schedule::ScheduleType::Static:
scheduleKind = mlir::omp::ClauseScheduleKind::Static;
break;
case omp::clause::Schedule::ScheduleType::Dynamic:
scheduleKind = mlir::omp::ClauseScheduleKind::Dynamic;
break;
case omp::clause::Schedule::ScheduleType::Guided:
scheduleKind = mlir::omp::ClauseScheduleKind::Guided;
break;
case omp::clause::Schedule::ScheduleType::Auto:
scheduleKind = mlir::omp::ClauseScheduleKind::Auto;
break;
case omp::clause::Schedule::ScheduleType::Runtime:
scheduleKind = mlir::omp::ClauseScheduleKind::Runtime;
break;
}
mlir::omp::ScheduleModifier scheduleModifier = getScheduleModifier(*clause);
if (scheduleModifier != mlir::omp::ScheduleModifier::none)
modifierAttr =
mlir::omp::ScheduleModifierAttr::get(context, scheduleModifier);
if (getSimdModifier(*clause) != mlir::omp::ScheduleModifier::none)
simdModifierAttr = firOpBuilder.getUnitAttr();
valAttr = mlir::omp::ClauseScheduleKindAttr::get(context, scheduleKind);
return true;
}
return false;
}
bool ClauseProcessor::processScheduleChunk(
Fortran::lower::StatementContext &stmtCtx, mlir::Value &result) const {
if (auto *clause = findUniqueClause<omp::clause::Schedule>()) {
if (const auto &chunkExpr = std::get<omp::MaybeExpr>(clause->t))
result = fir::getBase(converter.genExprValue(*chunkExpr, stmtCtx));
return true;
}
return false;
}
bool ClauseProcessor::processSimdlen(mlir::IntegerAttr &result) const {
if (auto *clause = findUniqueClause<omp::clause::Simdlen>()) {
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
const std::optional<std::int64_t> simdlenVal =
Fortran::evaluate::ToInt64(clause->v);
result = firOpBuilder.getI64IntegerAttr(*simdlenVal);
return true;
}
return false;
}
bool ClauseProcessor::processThreadLimit(
Fortran::lower::StatementContext &stmtCtx, mlir::Value &result) const {
if (auto *clause = findUniqueClause<omp::clause::ThreadLimit>()) {
result = fir::getBase(converter.genExprValue(clause->v, stmtCtx));
return true;
}
return false;
}
bool ClauseProcessor::processUntied(mlir::UnitAttr &result) const {
return markClauseOccurrence<omp::clause::Untied>(result);
}
//===----------------------------------------------------------------------===//
// ClauseProcessor repeatable clauses
//===----------------------------------------------------------------------===//
bool ClauseProcessor::processAllocate(
llvm::SmallVectorImpl<mlir::Value> &allocatorOperands,
llvm::SmallVectorImpl<mlir::Value> &allocateOperands) const {
return findRepeatableClause<omp::clause::Allocate>(
[&](const omp::clause::Allocate &clause,
const Fortran::parser::CharBlock &) {
genAllocateClause(converter, clause, allocatorOperands,
allocateOperands);
});
}
bool ClauseProcessor::processCopyin() const {
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
mlir::OpBuilder::InsertPoint insPt = firOpBuilder.saveInsertionPoint();
firOpBuilder.setInsertionPointToStart(firOpBuilder.getAllocaBlock());
auto checkAndCopyHostAssociateVar =
[&](Fortran::semantics::Symbol *sym,
mlir::OpBuilder::InsertPoint *copyAssignIP = nullptr) {
assert(sym->has<Fortran::semantics::HostAssocDetails>() &&
"No host-association found");
if (converter.isPresentShallowLookup(*sym))
converter.copyHostAssociateVar(*sym, copyAssignIP);
};
bool hasCopyin = findRepeatableClause<omp::clause::Copyin>(
[&](const omp::clause::Copyin &clause,
const Fortran::parser::CharBlock &) {
for (const omp::Object &object : clause.v) {
Fortran::semantics::Symbol *sym = object.id();
assert(sym && "Expecting symbol");
if (const auto *commonDetails =
sym->detailsIf<Fortran::semantics::CommonBlockDetails>()) {
for (const auto &mem : commonDetails->objects())
checkAndCopyHostAssociateVar(&*mem, &insPt);
break;
}
if (Fortran::semantics::IsAllocatableOrObjectPointer(
&sym->GetUltimate()))
TODO(converter.getCurrentLocation(),
"pointer or allocatable variables in Copyin clause");
assert(sym->has<Fortran::semantics::HostAssocDetails>() &&
"No host-association found");
checkAndCopyHostAssociateVar(sym);
}
});
// [OMP 5.0, 2.19.6.1] The copy is done after the team is formed and prior to
// the execution of the associated structured block. Emit implicit barrier to
// synchronize threads and avoid data races on propagation master's thread
// values of threadprivate variables to local instances of that variables of
// all other implicit threads.
if (hasCopyin)
firOpBuilder.create<mlir::omp::BarrierOp>(converter.getCurrentLocation());
firOpBuilder.restoreInsertionPoint(insPt);
return hasCopyin;
}
/// Class that extracts information from the specified type.
class TypeInfo {
public:
TypeInfo(mlir::Type ty) { typeScan(ty); }
// Returns the length of character types.
std::optional<fir::CharacterType::LenType> getCharLength() const {
return charLen;
}
// Returns the shape of array types.
llvm::ArrayRef<int64_t> getShape() const { return shape; }
// Is the type inside a box?
bool isBox() const { return inBox; }
private:
void typeScan(mlir::Type type);
std::optional<fir::CharacterType::LenType> charLen;
llvm::SmallVector<int64_t> shape;
bool inBox = false;
};
void TypeInfo::typeScan(mlir::Type ty) {
if (auto sty = mlir::dyn_cast<fir::SequenceType>(ty)) {
assert(shape.empty() && !sty.getShape().empty());
shape = llvm::SmallVector<int64_t>(sty.getShape());
typeScan(sty.getEleTy());
} else if (auto bty = mlir::dyn_cast<fir::BoxType>(ty)) {
inBox = true;
typeScan(bty.getEleTy());
} else if (auto cty = mlir::dyn_cast<fir::CharacterType>(ty)) {
charLen = cty.getLen();
} else if (auto hty = mlir::dyn_cast<fir::HeapType>(ty)) {
typeScan(hty.getEleTy());
} else if (auto pty = mlir::dyn_cast<fir::PointerType>(ty)) {
typeScan(pty.getEleTy());
} else {
// The scan ends when reaching any built-in or record type.
assert(ty.isIntOrIndexOrFloat() || mlir::isa<fir::ComplexType>(ty) ||
mlir::isa<fir::LogicalType>(ty) || mlir::isa<fir::RecordType>(ty));
}
}
// Create a function that performs a copy between two variables, compatible
// with their types and attributes.
static mlir::func::FuncOp
createCopyFunc(mlir::Location loc, Fortran::lower::AbstractConverter &converter,
mlir::Type varType, fir::FortranVariableFlagsEnum varAttrs) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::ModuleOp module = builder.getModule();
mlir::Type eleTy = mlir::cast<fir::ReferenceType>(varType).getEleTy();
TypeInfo typeInfo(eleTy);
std::string copyFuncName =
fir::getTypeAsString(eleTy, builder.getKindMap(), "_copy");
if (auto decl = module.lookupSymbol<mlir::func::FuncOp>(copyFuncName))
return decl;
// create function
mlir::OpBuilder::InsertionGuard guard(builder);
mlir::OpBuilder modBuilder(module.getBodyRegion());
llvm::SmallVector<mlir::Type> argsTy = {varType, varType};
auto funcType = mlir::FunctionType::get(builder.getContext(), argsTy, {});
mlir::func::FuncOp funcOp =
modBuilder.create<mlir::func::FuncOp>(loc, copyFuncName, funcType);
funcOp.setVisibility(mlir::SymbolTable::Visibility::Private);
builder.createBlock(&funcOp.getRegion(), funcOp.getRegion().end(), argsTy,
{loc, loc});
builder.setInsertionPointToStart(&funcOp.getRegion().back());
// generate body
fir::FortranVariableFlagsAttr attrs;
if (varAttrs != fir::FortranVariableFlagsEnum::None)
attrs = fir::FortranVariableFlagsAttr::get(builder.getContext(), varAttrs);
llvm::SmallVector<mlir::Value> typeparams;
if (typeInfo.getCharLength().has_value()) {
mlir::Value charLen = builder.createIntegerConstant(
loc, builder.getCharacterLengthType(), *typeInfo.getCharLength());
typeparams.push_back(charLen);
}
mlir::Value shape;
if (!typeInfo.isBox() && !typeInfo.getShape().empty()) {
llvm::SmallVector<mlir::Value> extents;
for (auto extent : typeInfo.getShape())
extents.push_back(
builder.createIntegerConstant(loc, builder.getIndexType(), extent));
shape = builder.create<fir::ShapeOp>(loc, extents);
}
auto declDst = builder.create<hlfir::DeclareOp>(loc, funcOp.getArgument(0),
copyFuncName + "_dst", shape,
typeparams, attrs);
auto declSrc = builder.create<hlfir::DeclareOp>(loc, funcOp.getArgument(1),
copyFuncName + "_src", shape,
typeparams, attrs);
converter.copyVar(loc, declDst.getBase(), declSrc.getBase());
builder.create<mlir::func::ReturnOp>(loc);
return funcOp;
}
bool ClauseProcessor::processCopyPrivate(
mlir::Location currentLocation,
llvm::SmallVectorImpl<mlir::Value> &copyPrivateVars,
llvm::SmallVectorImpl<mlir::Attribute> &copyPrivateFuncs) const {
auto addCopyPrivateVar = [&](Fortran::semantics::Symbol *sym) {
mlir::Value symVal = converter.getSymbolAddress(*sym);
auto declOp = symVal.getDefiningOp<hlfir::DeclareOp>();
if (!declOp)
fir::emitFatalError(currentLocation,
"COPYPRIVATE is supported only in HLFIR mode");
symVal = declOp.getBase();
mlir::Type symType = symVal.getType();
fir::FortranVariableFlagsEnum attrs =
declOp.getFortranAttrs().has_value()
? *declOp.getFortranAttrs()
: fir::FortranVariableFlagsEnum::None;
mlir::Value cpVar = symVal;
// CopyPrivate variables must be passed by reference. However, in the case
// of assumed shapes/vla the type is not a !fir.ref, but a !fir.box.
// In these cases to retrieve the appropriate !fir.ref<!fir.box<...>> to
// access the data we need we must perform an alloca and then store to it
// and retrieve the data from the new alloca.
if (mlir::isa<fir::BaseBoxType>(symType)) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
auto alloca = builder.create<fir::AllocaOp>(currentLocation, symType);
builder.create<fir::StoreOp>(currentLocation, symVal, alloca);
cpVar = alloca;
}
copyPrivateVars.push_back(cpVar);
mlir::func::FuncOp funcOp =
createCopyFunc(currentLocation, converter, cpVar.getType(), attrs);
copyPrivateFuncs.push_back(mlir::SymbolRefAttr::get(funcOp));
};
bool hasCopyPrivate = findRepeatableClause<clause::Copyprivate>(
[&](const clause::Copyprivate &clause,
const Fortran::parser::CharBlock &) {
for (const Object &object : clause.v) {
Fortran::semantics::Symbol *sym = object.id();
if (const auto *commonDetails =
sym->detailsIf<Fortran::semantics::CommonBlockDetails>()) {
for (const auto &mem : commonDetails->objects())
addCopyPrivateVar(&*mem);
break;
}
addCopyPrivateVar(sym);
}
});
return hasCopyPrivate;
}
bool ClauseProcessor::processDepend(
llvm::SmallVectorImpl<mlir::Attribute> &dependTypeOperands,
llvm::SmallVectorImpl<mlir::Value> &dependOperands) const {
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
return findRepeatableClause<omp::clause::Depend>(
[&](const omp::clause::Depend &clause,
const Fortran::parser::CharBlock &) {
assert(std::holds_alternative<omp::clause::Depend::InOut>(clause.u) &&
"Only InOut is handled at the moment");
const auto &inOut = std::get<omp::clause::Depend::InOut>(clause.u);
const auto &objects = std::get<omp::ObjectList>(inOut.t);
mlir::omp::ClauseTaskDependAttr dependTypeOperand =
genDependKindAttr(firOpBuilder, clause);
dependTypeOperands.append(objects.size(), dependTypeOperand);
for (const omp::Object &object : objects) {
assert(object.ref() && "Expecting designator");
if (Fortran::evaluate::ExtractSubstring(*object.ref())) {
TODO(converter.getCurrentLocation(),
"substring not supported for task depend");
} else if (Fortran::evaluate::IsArrayElement(*object.ref())) {
TODO(converter.getCurrentLocation(),
"array sections not supported for task depend");
}
Fortran::semantics::Symbol *sym = object.id();
const mlir::Value variable = converter.getSymbolAddress(*sym);
dependOperands.push_back(variable);
}
});
}
bool ClauseProcessor::processIf(
omp::clause::If::DirectiveNameModifier directiveName,
mlir::Value &result) const {
bool found = false;
findRepeatableClause<omp::clause::If>(
[&](const omp::clause::If &clause,
const Fortran::parser::CharBlock &source) {
mlir::Location clauseLocation = converter.genLocation(source);
mlir::Value operand = getIfClauseOperand(converter, clause,
directiveName, clauseLocation);
// Assume that, at most, a single 'if' clause will be applicable to the
// given directive.
if (operand) {
result = operand;
found = true;
}
});
return found;
}
bool ClauseProcessor::processLink(
llvm::SmallVectorImpl<DeclareTargetCapturePair> &result) const {
return findRepeatableClause<omp::clause::Link>(
[&](const omp::clause::Link &clause, const Fortran::parser::CharBlock &) {
// Case: declare target link(var1, var2)...
gatherFuncAndVarSyms(
clause.v, mlir::omp::DeclareTargetCaptureClause::link, result);
});
}
mlir::omp::MapInfoOp
createMapInfoOp(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value baseAddr, mlir::Value varPtrPtr, std::string name,
llvm::ArrayRef<mlir::Value> bounds,
llvm::ArrayRef<mlir::Value> members, uint64_t mapType,
mlir::omp::VariableCaptureKind mapCaptureType, mlir::Type retTy,
bool isVal) {
if (auto boxTy = baseAddr.getType().dyn_cast<fir::BaseBoxType>()) {
baseAddr = builder.create<fir::BoxAddrOp>(loc, baseAddr);
retTy = baseAddr.getType();
}
mlir::TypeAttr varType = mlir::TypeAttr::get(
llvm::cast<mlir::omp::PointerLikeType>(retTy).getElementType());
mlir::omp::MapInfoOp op = builder.create<mlir::omp::MapInfoOp>(
loc, retTy, baseAddr, varType, varPtrPtr, members, bounds,
builder.getIntegerAttr(builder.getIntegerType(64, false), mapType),
builder.getAttr<mlir::omp::VariableCaptureKindAttr>(mapCaptureType),
builder.getStringAttr(name));
return op;
}
bool ClauseProcessor::processMap(
mlir::Location currentLocation, const llvm::omp::Directive &directive,
Fortran::lower::StatementContext &stmtCtx,
llvm::SmallVectorImpl<mlir::Value> &mapOperands,
llvm::SmallVectorImpl<mlir::Type> *mapSymTypes,
llvm::SmallVectorImpl<mlir::Location> *mapSymLocs,
llvm::SmallVectorImpl<const Fortran::semantics::Symbol *> *mapSymbols)
const {
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
return findRepeatableClause2<ClauseTy::Map>(
[&](const ClauseTy::Map *mapClause,
const Fortran::parser::CharBlock &source) {
mlir::Location clauseLocation = converter.genLocation(source);
const auto &oMapType =
std::get<std::optional<Fortran::parser::OmpMapType>>(
mapClause->v.t);
llvm::omp::OpenMPOffloadMappingFlags mapTypeBits =
llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_NONE;
// If the map type is specified, then process it else Tofrom is the
// default.
if (oMapType) {
const Fortran::parser::OmpMapType::Type &mapType =
std::get<Fortran::parser::OmpMapType::Type>(oMapType->t);
switch (mapType) {
case Fortran::parser::OmpMapType::Type::To:
mapTypeBits |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_TO;
break;
case Fortran::parser::OmpMapType::Type::From:
mapTypeBits |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_FROM;
break;
case Fortran::parser::OmpMapType::Type::Tofrom:
mapTypeBits |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_TO |
llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_FROM;
break;
case Fortran::parser::OmpMapType::Type::Alloc:
case Fortran::parser::OmpMapType::Type::Release:
// alloc and release is the default map_type for the Target Data
// Ops, i.e. if no bits for map_type is supplied then alloc/release
// is implicitly assumed based on the target directive. Default
// value for Target Data and Enter Data is alloc and for Exit Data
// it is release.
break;
case Fortran::parser::OmpMapType::Type::Delete:
mapTypeBits |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_DELETE;
}
if (std::get<std::optional<Fortran::parser::OmpMapType::Always>>(
oMapType->t))
mapTypeBits |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_ALWAYS;
} else {
mapTypeBits |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_TO |
llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_FROM;
}
for (const Fortran::parser::OmpObject &ompObject :
std::get<Fortran::parser::OmpObjectList>(mapClause->v.t).v) {
llvm::SmallVector<mlir::Value> bounds;
std::stringstream asFortran;
Fortran::lower::AddrAndBoundsInfo info =
Fortran::lower::gatherDataOperandAddrAndBounds<
Fortran::parser::OmpObject, mlir::omp::DataBoundsOp,
mlir::omp::DataBoundsType>(
converter, firOpBuilder, semaCtx, stmtCtx, ompObject,
clauseLocation, asFortran, bounds, treatIndexAsSection);
auto origSymbol =
converter.getSymbolAddress(*getOmpObjectSymbol(ompObject));
mlir::Value symAddr = info.addr;
if (origSymbol && fir::isTypeWithDescriptor(origSymbol.getType()))
symAddr = origSymbol;
// Explicit map captures are captured ByRef by default,
// optimisation passes may alter this to ByCopy or other capture
// types to optimise
mlir::Value mapOp = createMapInfoOp(
firOpBuilder, clauseLocation, symAddr, mlir::Value{},
asFortran.str(), bounds, {},
static_cast<
std::underlying_type_t<llvm::omp::OpenMPOffloadMappingFlags>>(
mapTypeBits),
mlir::omp::VariableCaptureKind::ByRef, symAddr.getType());
mapOperands.push_back(mapOp);
if (mapSymTypes)
mapSymTypes->push_back(symAddr.getType());
if (mapSymLocs)
mapSymLocs->push_back(symAddr.getLoc());
if (mapSymbols)
mapSymbols->push_back(getOmpObjectSymbol(ompObject));
}
});
}
bool ClauseProcessor::processReduction(
mlir::Location currentLocation,
llvm::SmallVectorImpl<mlir::Value> &reductionVars,
llvm::SmallVectorImpl<mlir::Attribute> &reductionDeclSymbols,
llvm::SmallVectorImpl<const Fortran::semantics::Symbol *> *reductionSymbols)
const {
return findRepeatableClause<omp::clause::Reduction>(
[&](const omp::clause::Reduction &clause,
const Fortran::parser::CharBlock &) {
ReductionProcessor rp;
rp.addReductionDecl(currentLocation, converter, clause, reductionVars,
reductionDeclSymbols, reductionSymbols);
});
}
bool ClauseProcessor::processSectionsReduction(
mlir::Location currentLocation) const {
return findRepeatableClause<omp::clause::Reduction>(
[&](const omp::clause::Reduction &, const Fortran::parser::CharBlock &) {
TODO(currentLocation, "OMPC_Reduction");
});
}
bool ClauseProcessor::processTo(
llvm::SmallVectorImpl<DeclareTargetCapturePair> &result) const {
return findRepeatableClause<omp::clause::To>(
[&](const omp::clause::To &clause, const Fortran::parser::CharBlock &) {
// Case: declare target to(func, var1, var2)...
gatherFuncAndVarSyms(clause.v,
mlir::omp::DeclareTargetCaptureClause::to, result);
});
}
bool ClauseProcessor::processEnter(
llvm::SmallVectorImpl<DeclareTargetCapturePair> &result) const {
return findRepeatableClause<omp::clause::Enter>(
[&](const omp::clause::Enter &clause,
const Fortran::parser::CharBlock &) {
// Case: declare target enter(func, var1, var2)...
gatherFuncAndVarSyms(
clause.v, mlir::omp::DeclareTargetCaptureClause::enter, result);
});
}
bool ClauseProcessor::processUseDeviceAddr(
llvm::SmallVectorImpl<mlir::Value> &operands,
llvm::SmallVectorImpl<mlir::Type> &useDeviceTypes,
llvm::SmallVectorImpl<mlir::Location> &useDeviceLocs,
llvm::SmallVectorImpl<const Fortran::semantics::Symbol *> &useDeviceSymbols)
const {
return findRepeatableClause<omp::clause::UseDeviceAddr>(
[&](const omp::clause::UseDeviceAddr &clause,
const Fortran::parser::CharBlock &) {
addUseDeviceClause(converter, clause.v, operands, useDeviceTypes,
useDeviceLocs, useDeviceSymbols);
});
}
bool ClauseProcessor::processUseDevicePtr(
llvm::SmallVectorImpl<mlir::Value> &operands,
llvm::SmallVectorImpl<mlir::Type> &useDeviceTypes,
llvm::SmallVectorImpl<mlir::Location> &useDeviceLocs,
llvm::SmallVectorImpl<const Fortran::semantics::Symbol *> &useDeviceSymbols)
const {
return findRepeatableClause<omp::clause::UseDevicePtr>(
[&](const omp::clause::UseDevicePtr &clause,
const Fortran::parser::CharBlock &) {
addUseDeviceClause(converter, clause.v, operands, useDeviceTypes,
useDeviceLocs, useDeviceSymbols);
});
}
} // namespace omp
} // namespace lower
} // namespace Fortran