blob: 4588c80aa1b1041ff6528fc8dae4d2098d492ef9 [file] [log] [blame]
#include "PdbAstBuilder.h"
#include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
#include "llvm/DebugInfo/CodeView/LazyRandomTypeCollection.h"
#include "llvm/DebugInfo/CodeView/RecordName.h"
#include "llvm/DebugInfo/CodeView/SymbolDeserializer.h"
#include "llvm/DebugInfo/CodeView/SymbolRecord.h"
#include "llvm/DebugInfo/CodeView/SymbolRecordHelpers.h"
#include "llvm/DebugInfo/CodeView/TypeDeserializer.h"
#include "llvm/DebugInfo/CodeView/TypeVisitorCallbacks.h"
#include "llvm/DebugInfo/PDB/Native/DbiStream.h"
#include "llvm/DebugInfo/PDB/Native/PublicsStream.h"
#include "llvm/DebugInfo/PDB/Native/SymbolStream.h"
#include "llvm/DebugInfo/PDB/Native/TpiStream.h"
#include "llvm/Demangle/MicrosoftDemangle.h"
#include "Plugins/Language/CPlusPlus/MSVCUndecoratedNameParser.h"
#include "lldb/Core/Module.h"
#include "lldb/Symbol/ClangASTContext.h"
#include "lldb/Symbol/ClangASTMetadata.h"
#include "lldb/Symbol/ClangUtil.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Utility/LLDBAssert.h"
#include "PdbUtil.h"
#include "UdtRecordCompleter.h"
using namespace lldb_private;
using namespace lldb_private::npdb;
using namespace llvm::codeview;
using namespace llvm::pdb;
static llvm::Optional<PdbCompilandSymId> FindSymbolScope(PdbIndex &index,
PdbCompilandSymId id) {
CVSymbol sym = index.ReadSymbolRecord(id);
if (symbolOpensScope(sym.kind())) {
// If this exact symbol opens a scope, we can just directly access its
// parent.
id.offset = getScopeParentOffset(sym);
// Global symbols have parent offset of 0. Return llvm::None to indicate
// this.
if (id.offset == 0)
return llvm::None;
return id;
}
// Otherwise we need to start at the beginning and iterate forward until we
// reach (or pass) this particular symbol
CompilandIndexItem &cii = index.compilands().GetOrCreateCompiland(id.modi);
const CVSymbolArray &syms = cii.m_debug_stream.getSymbolArray();
auto begin = syms.begin();
auto end = syms.at(id.offset);
std::vector<PdbCompilandSymId> scope_stack;
while (begin != end) {
if (id.offset == begin.offset()) {
// We have a match! Return the top of the stack
if (scope_stack.empty())
return llvm::None;
return scope_stack.back();
}
if (begin.offset() > id.offset) {
// We passed it. We couldn't even find this symbol record.
lldbassert(false && "Invalid compiland symbol id!");
return llvm::None;
}
// We haven't found the symbol yet. Check if we need to open or close the
// scope stack.
if (symbolOpensScope(begin->kind())) {
// We can use the end offset of the scope to determine whether or not
// we can just outright skip this entire scope.
uint32_t scope_end = getScopeEndOffset(*begin);
if (scope_end < id.modi) {
begin = syms.at(scope_end);
} else {
// The symbol we're looking for is somewhere in this scope.
scope_stack.emplace_back(id.modi, begin.offset());
}
} else if (symbolEndsScope(begin->kind())) {
scope_stack.pop_back();
}
++begin;
}
return llvm::None;
}
static clang::TagTypeKind TranslateUdtKind(const TagRecord &cr) {
switch (cr.Kind) {
case TypeRecordKind::Class:
return clang::TTK_Class;
case TypeRecordKind::Struct:
return clang::TTK_Struct;
case TypeRecordKind::Union:
return clang::TTK_Union;
case TypeRecordKind::Interface:
return clang::TTK_Interface;
case TypeRecordKind::Enum:
return clang::TTK_Enum;
default:
lldbassert(false && "Invalid tag record kind!");
return clang::TTK_Struct;
}
}
static bool IsCVarArgsFunction(llvm::ArrayRef<TypeIndex> args) {
if (args.empty())
return false;
return args.back() == TypeIndex::None();
}
static bool
AnyScopesHaveTemplateParams(llvm::ArrayRef<llvm::ms_demangle::Node *> scopes) {
for (llvm::ms_demangle::Node *n : scopes) {
auto *idn = static_cast<llvm::ms_demangle::IdentifierNode *>(n);
if (idn->TemplateParams)
return true;
}
return false;
}
static llvm::Optional<clang::CallingConv>
TranslateCallingConvention(llvm::codeview::CallingConvention conv) {
using CC = llvm::codeview::CallingConvention;
switch (conv) {
case CC::NearC:
case CC::FarC:
return clang::CallingConv::CC_C;
case CC::NearPascal:
case CC::FarPascal:
return clang::CallingConv::CC_X86Pascal;
case CC::NearFast:
case CC::FarFast:
return clang::CallingConv::CC_X86FastCall;
case CC::NearStdCall:
case CC::FarStdCall:
return clang::CallingConv::CC_X86StdCall;
case CC::ThisCall:
return clang::CallingConv::CC_X86ThisCall;
case CC::NearVector:
return clang::CallingConv::CC_X86VectorCall;
default:
return llvm::None;
}
}
static llvm::Optional<CVTagRecord>
GetNestedTagDefinition(const NestedTypeRecord &Record,
const CVTagRecord &parent, TpiStream &tpi) {
// An LF_NESTTYPE is essentially a nested typedef / using declaration, but it
// is also used to indicate the primary definition of a nested class. That is
// to say, if you have:
// struct A {
// struct B {};
// using C = B;
// };
// Then in the debug info, this will appear as:
// LF_STRUCTURE `A::B` [type index = N]
// LF_STRUCTURE `A`
// LF_NESTTYPE [name = `B`, index = N]
// LF_NESTTYPE [name = `C`, index = N]
// In order to accurately reconstruct the decl context hierarchy, we need to
// know which ones are actual definitions and which ones are just aliases.
// If it's a simple type, then this is something like `using foo = int`.
if (Record.Type.isSimple())
return llvm::None;
CVType cvt = tpi.getType(Record.Type);
if (!IsTagRecord(cvt))
return llvm::None;
// If it's an inner definition, then treat whatever name we have here as a
// single component of a mangled name. So we can inject it into the parent's
// mangled name to see if it matches.
CVTagRecord child = CVTagRecord::create(cvt);
std::string qname = parent.asTag().getUniqueName();
if (qname.size() < 4 || child.asTag().getUniqueName().size() < 4)
return llvm::None;
// qname[3] is the tag type identifier (struct, class, union, etc). Since the
// inner tag type is not necessarily the same as the outer tag type, re-write
// it to match the inner tag type.
qname[3] = child.asTag().getUniqueName()[3];
std::string piece;
if (qname[3] == 'W')
piece = "4";
piece += Record.Name;
piece.push_back('@');
qname.insert(4, std::move(piece));
if (qname != child.asTag().UniqueName)
return llvm::None;
return std::move(child);
}
static bool IsAnonymousNamespaceName(llvm::StringRef name) {
return name == "`anonymous namespace'" || name == "`anonymous-namespace'";
}
PdbAstBuilder::PdbAstBuilder(ObjectFile &obj, PdbIndex &index, ClangASTContext &clang)
: m_index(index), m_clang(clang) {
BuildParentMap();
}
lldb_private::CompilerDeclContext PdbAstBuilder::GetTranslationUnitDecl() {
return ToCompilerDeclContext(*m_clang.GetTranslationUnitDecl());
}
std::pair<clang::DeclContext *, std::string>
PdbAstBuilder::CreateDeclInfoForType(const TagRecord &record, TypeIndex ti) {
// FIXME: Move this to GetDeclContextContainingUID.
if (!record.hasUniqueName())
return CreateDeclInfoForUndecoratedName(record.Name);
llvm::ms_demangle::Demangler demangler;
StringView sv(record.UniqueName.begin(), record.UniqueName.size());
llvm::ms_demangle::TagTypeNode *ttn = demangler.parseTagUniqueName(sv);
if (demangler.Error)
return {m_clang.GetTranslationUnitDecl(), record.UniqueName};
llvm::ms_demangle::IdentifierNode *idn =
ttn->QualifiedName->getUnqualifiedIdentifier();
std::string uname = idn->toString(llvm::ms_demangle::OF_NoTagSpecifier);
llvm::ms_demangle::NodeArrayNode *name_components =
ttn->QualifiedName->Components;
llvm::ArrayRef<llvm::ms_demangle::Node *> scopes(name_components->Nodes,
name_components->Count - 1);
clang::DeclContext *context = m_clang.GetTranslationUnitDecl();
// If this type doesn't have a parent type in the debug info, then the best we
// can do is to say that it's either a series of namespaces (if the scope is
// non-empty), or the translation unit (if the scope is empty).
auto parent_iter = m_parent_types.find(ti);
if (parent_iter == m_parent_types.end()) {
if (scopes.empty())
return {context, uname};
// If there is no parent in the debug info, but some of the scopes have
// template params, then this is a case of bad debug info. See, for
// example, llvm.org/pr39607. We don't want to create an ambiguity between
// a NamespaceDecl and a CXXRecordDecl, so instead we create a class at
// global scope with the fully qualified name.
if (AnyScopesHaveTemplateParams(scopes))
return {context, record.Name};
for (llvm::ms_demangle::Node *scope : scopes) {
auto *nii = static_cast<llvm::ms_demangle::NamedIdentifierNode *>(scope);
std::string str = nii->toString();
context = GetOrCreateNamespaceDecl(str.c_str(), *context);
}
return {context, uname};
}
// Otherwise, all we need to do is get the parent type of this type and
// recurse into our lazy type creation / AST reconstruction logic to get an
// LLDB TypeSP for the parent. This will cause the AST to automatically get
// the right DeclContext created for any parent.
clang::QualType parent_qt = GetOrCreateType(parent_iter->second);
context = clang::TagDecl::castToDeclContext(parent_qt->getAsTagDecl());
return {context, uname};
}
void PdbAstBuilder::BuildParentMap() {
LazyRandomTypeCollection &types = m_index.tpi().typeCollection();
llvm::DenseMap<TypeIndex, TypeIndex> forward_to_full;
llvm::DenseMap<TypeIndex, TypeIndex> full_to_forward;
struct RecordIndices {
TypeIndex forward;
TypeIndex full;
};
llvm::StringMap<RecordIndices> record_indices;
for (auto ti = types.getFirst(); ti; ti = types.getNext(*ti)) {
CVType type = types.getType(*ti);
if (!IsTagRecord(type))
continue;
CVTagRecord tag = CVTagRecord::create(type);
RecordIndices &indices = record_indices[tag.asTag().getUniqueName()];
if (tag.asTag().isForwardRef())
indices.forward = *ti;
else
indices.full = *ti;
if (indices.full != TypeIndex::None() &&
indices.forward != TypeIndex::None()) {
forward_to_full[indices.forward] = indices.full;
full_to_forward[indices.full] = indices.forward;
}
// We're looking for LF_NESTTYPE records in the field list, so ignore
// forward references (no field list), and anything without a nested class
// (since there won't be any LF_NESTTYPE records).
if (tag.asTag().isForwardRef() || !tag.asTag().containsNestedClass())
continue;
struct ProcessTpiStream : public TypeVisitorCallbacks {
ProcessTpiStream(PdbIndex &index, TypeIndex parent,
const CVTagRecord &parent_cvt,
llvm::DenseMap<TypeIndex, TypeIndex> &parents)
: index(index), parents(parents), parent(parent),
parent_cvt(parent_cvt) {}
PdbIndex &index;
llvm::DenseMap<TypeIndex, TypeIndex> &parents;
unsigned unnamed_type_index = 1;
TypeIndex parent;
const CVTagRecord &parent_cvt;
llvm::Error visitKnownMember(CVMemberRecord &CVR,
NestedTypeRecord &Record) override {
std::string unnamed_type_name;
if (Record.Name.empty()) {
unnamed_type_name =
llvm::formatv("<unnamed-type-$S{0}>", unnamed_type_index).str();
Record.Name = unnamed_type_name;
++unnamed_type_index;
}
llvm::Optional<CVTagRecord> tag =
GetNestedTagDefinition(Record, parent_cvt, index.tpi());
if (!tag)
return llvm::ErrorSuccess();
parents[Record.Type] = parent;
return llvm::ErrorSuccess();
}
};
CVType field_list = m_index.tpi().getType(tag.asTag().FieldList);
ProcessTpiStream process(m_index, *ti, tag, m_parent_types);
llvm::Error error = visitMemberRecordStream(field_list.data(), process);
if (error)
llvm::consumeError(std::move(error));
}
// Now that we know the forward -> full mapping of all type indices, we can
// re-write all the indices. At the end of this process, we want a mapping
// consisting of fwd -> full and full -> full for all child -> parent indices.
// We can re-write the values in place, but for the keys, we must save them
// off so that we don't modify the map in place while also iterating it.
std::vector<TypeIndex> full_keys;
std::vector<TypeIndex> fwd_keys;
for (auto &entry : m_parent_types) {
TypeIndex key = entry.first;
TypeIndex value = entry.second;
auto iter = forward_to_full.find(value);
if (iter != forward_to_full.end())
entry.second = iter->second;
iter = forward_to_full.find(key);
if (iter != forward_to_full.end())
fwd_keys.push_back(key);
else
full_keys.push_back(key);
}
for (TypeIndex fwd : fwd_keys) {
TypeIndex full = forward_to_full[fwd];
m_parent_types[full] = m_parent_types[fwd];
}
for (TypeIndex full : full_keys) {
TypeIndex fwd = full_to_forward[full];
m_parent_types[fwd] = m_parent_types[full];
}
// Now that
}
static bool isLocalVariableType(SymbolKind K) {
switch (K) {
case S_REGISTER:
case S_REGREL32:
case S_LOCAL:
return true;
default:
break;
}
return false;
}
static std::string
RenderScopeList(llvm::ArrayRef<llvm::ms_demangle::Node *> nodes) {
lldbassert(!nodes.empty());
std::string result = nodes.front()->toString();
nodes = nodes.drop_front();
while (!nodes.empty()) {
result += "::";
result += nodes.front()->toString(llvm::ms_demangle::OF_NoTagSpecifier);
nodes = nodes.drop_front();
}
return result;
}
static llvm::Optional<PublicSym32> FindPublicSym(const SegmentOffset &addr,
SymbolStream &syms,
PublicsStream &publics) {
llvm::FixedStreamArray<ulittle32_t> addr_map = publics.getAddressMap();
auto iter = std::lower_bound(
addr_map.begin(), addr_map.end(), addr,
[&](const ulittle32_t &x, const SegmentOffset &y) {
CVSymbol s1 = syms.readRecord(x);
lldbassert(s1.kind() == S_PUB32);
PublicSym32 p1;
llvm::cantFail(SymbolDeserializer::deserializeAs<PublicSym32>(s1, p1));
if (p1.Segment < y.segment)
return true;
return p1.Offset < y.offset;
});
if (iter == addr_map.end())
return llvm::None;
CVSymbol sym = syms.readRecord(*iter);
lldbassert(sym.kind() == S_PUB32);
PublicSym32 p;
llvm::cantFail(SymbolDeserializer::deserializeAs<PublicSym32>(sym, p));
if (p.Segment == addr.segment && p.Offset == addr.offset)
return p;
return llvm::None;
}
clang::Decl *PdbAstBuilder::GetOrCreateSymbolForId(PdbCompilandSymId id) {
CVSymbol cvs = m_index.ReadSymbolRecord(id);
if (isLocalVariableType(cvs.kind())) {
clang::DeclContext *scope = GetParentDeclContext(id);
clang::Decl *scope_decl = clang::Decl::castFromDeclContext(scope);
PdbCompilandSymId scope_id(id.modi, m_decl_to_status[scope_decl].uid);
return GetOrCreateVariableDecl(scope_id, id);
}
switch (cvs.kind()) {
case S_GPROC32:
case S_LPROC32:
return GetOrCreateFunctionDecl(id);
case S_GDATA32:
case S_LDATA32:
case S_GTHREAD32:
case S_CONSTANT:
// global variable
return nullptr;
case S_BLOCK32:
return GetOrCreateBlockDecl(id);
default:
return nullptr;
}
}
llvm::Optional<CompilerDecl> PdbAstBuilder::GetOrCreateDeclForUid(PdbSymUid uid) {
if (clang::Decl *result = TryGetDecl(uid))
return ToCompilerDecl(*result);
clang::Decl *result = nullptr;
switch (uid.kind()) {
case PdbSymUidKind::CompilandSym:
result = GetOrCreateSymbolForId(uid.asCompilandSym());
break;
case PdbSymUidKind::Type: {
clang::QualType qt = GetOrCreateType(uid.asTypeSym());
if (auto *tag = qt->getAsTagDecl()) {
result = tag;
break;
}
return llvm::None;
}
default:
return llvm::None;
}
m_uid_to_decl[toOpaqueUid(uid)] = result;
return ToCompilerDecl(*result);
}
clang::DeclContext *PdbAstBuilder::GetOrCreateDeclContextForUid(PdbSymUid uid) {
if (uid.kind() == PdbSymUidKind::CompilandSym) {
if (uid.asCompilandSym().offset == 0)
return FromCompilerDeclContext(GetTranslationUnitDecl());
}
auto option = GetOrCreateDeclForUid(uid);
if (!option)
return nullptr;
clang::Decl *decl = FromCompilerDecl(option.getValue());
if (!decl)
return nullptr;
return clang::Decl::castToDeclContext(decl);
}
std::pair<clang::DeclContext *, std::string>
PdbAstBuilder::CreateDeclInfoForUndecoratedName(llvm::StringRef name) {
MSVCUndecoratedNameParser parser(name);
llvm::ArrayRef<MSVCUndecoratedNameSpecifier> specs = parser.GetSpecifiers();
auto context = FromCompilerDeclContext(GetTranslationUnitDecl());
llvm::StringRef uname = specs.back().GetBaseName();
specs = specs.drop_back();
if (specs.empty())
return {context, name};
llvm::StringRef scope_name = specs.back().GetFullName();
// It might be a class name, try that first.
std::vector<TypeIndex> types = m_index.tpi().findRecordsByName(scope_name);
while (!types.empty()) {
clang::QualType qt = GetOrCreateType(types.back());
clang::TagDecl *tag = qt->getAsTagDecl();
if (tag)
return {clang::TagDecl::castToDeclContext(tag), uname};
types.pop_back();
}
// If that fails, treat it as a series of namespaces.
for (const MSVCUndecoratedNameSpecifier &spec : specs) {
std::string ns_name = spec.GetBaseName().str();
context = GetOrCreateNamespaceDecl(ns_name.c_str(), *context);
}
return {context, uname};
}
clang::DeclContext *
PdbAstBuilder::GetParentDeclContextForSymbol(const CVSymbol &sym) {
if (!SymbolHasAddress(sym))
return CreateDeclInfoForUndecoratedName(getSymbolName(sym)).first;
SegmentOffset addr = GetSegmentAndOffset(sym);
llvm::Optional<PublicSym32> pub =
FindPublicSym(addr, m_index.symrecords(), m_index.publics());
if (!pub)
return CreateDeclInfoForUndecoratedName(getSymbolName(sym)).first;
llvm::ms_demangle::Demangler demangler;
StringView name{pub->Name.begin(), pub->Name.size()};
llvm::ms_demangle::SymbolNode *node = demangler.parse(name);
if (!node)
return FromCompilerDeclContext(GetTranslationUnitDecl());
llvm::ArrayRef<llvm::ms_demangle::Node *> name_components{
node->Name->Components->Nodes, node->Name->Components->Count - 1};
if (!name_components.empty()) {
// Render the current list of scope nodes as a fully qualified name, and
// look it up in the debug info as a type name. If we find something,
// this is a type (which may itself be prefixed by a namespace). If we
// don't, this is a list of namespaces.
std::string qname = RenderScopeList(name_components);
std::vector<TypeIndex> matches = m_index.tpi().findRecordsByName(qname);
while (!matches.empty()) {
clang::QualType qt = GetOrCreateType(matches.back());
clang::TagDecl *tag = qt->getAsTagDecl();
if (tag)
return clang::TagDecl::castToDeclContext(tag);
matches.pop_back();
}
}
// It's not a type. It must be a series of namespaces.
auto context = FromCompilerDeclContext(GetTranslationUnitDecl());
while (!name_components.empty()) {
std::string ns = name_components.front()->toString();
context = GetOrCreateNamespaceDecl(ns.c_str(), *context);
name_components = name_components.drop_front();
}
return context;
}
clang::DeclContext *PdbAstBuilder::GetParentDeclContext(PdbSymUid uid) {
// We must do this *without* calling GetOrCreate on the current uid, as
// that would be an infinite recursion.
switch (uid.kind()) {
case PdbSymUidKind::CompilandSym: {
llvm::Optional<PdbCompilandSymId> scope =
FindSymbolScope(m_index, uid.asCompilandSym());
if (scope)
return GetOrCreateDeclContextForUid(*scope);
CVSymbol sym = m_index.ReadSymbolRecord(uid.asCompilandSym());
return GetParentDeclContextForSymbol(sym);
}
case PdbSymUidKind::Type: {
// It could be a namespace, class, or global. We don't support nested
// functions yet. Anyway, we just need to consult the parent type map.
PdbTypeSymId type_id = uid.asTypeSym();
auto iter = m_parent_types.find(type_id.index);
if (iter == m_parent_types.end())
return FromCompilerDeclContext(GetTranslationUnitDecl());
return GetOrCreateDeclContextForUid(PdbTypeSymId(iter->second));
}
case PdbSymUidKind::FieldListMember:
// In this case the parent DeclContext is the one for the class that this
// member is inside of.
break;
case PdbSymUidKind::GlobalSym: {
// If this refers to a compiland symbol, just recurse in with that symbol.
// The only other possibilities are S_CONSTANT and S_UDT, in which case we
// need to parse the undecorated name to figure out the scope, then look
// that up in the TPI stream. If it's found, it's a type, othewrise it's
// a series of namespaces.
// FIXME: do this.
CVSymbol global = m_index.ReadSymbolRecord(uid.asGlobalSym());
switch (global.kind()) {
case SymbolKind::S_GDATA32:
case SymbolKind::S_LDATA32:
return GetParentDeclContextForSymbol(global);
case SymbolKind::S_PROCREF:
case SymbolKind::S_LPROCREF: {
ProcRefSym ref{global.kind()};
llvm::cantFail(
SymbolDeserializer::deserializeAs<ProcRefSym>(global, ref));
PdbCompilandSymId cu_sym_id{ref.modi(), ref.SymOffset};
return GetParentDeclContext(cu_sym_id);
}
case SymbolKind::S_CONSTANT:
case SymbolKind::S_UDT:
return CreateDeclInfoForUndecoratedName(getSymbolName(global)).first;
default:
break;
}
break;
}
default:
break;
}
return FromCompilerDeclContext(GetTranslationUnitDecl());
}
bool PdbAstBuilder::CompleteType(clang::QualType qt) {
clang::TagDecl *tag = qt->getAsTagDecl();
if (!tag)
return false;
return CompleteTagDecl(*tag);
}
bool PdbAstBuilder::CompleteTagDecl(clang::TagDecl &tag) {
// If this is not in our map, it's an error.
auto status_iter = m_decl_to_status.find(&tag);
lldbassert(status_iter != m_decl_to_status.end());
// If it's already complete, just return.
DeclStatus &status = status_iter->second;
if (status.resolved)
return true;
PdbTypeSymId type_id = PdbSymUid(status.uid).asTypeSym();
lldbassert(IsTagRecord(type_id, m_index.tpi()));
clang::QualType tag_qt = m_clang.getASTContext().getTypeDeclType(&tag);
ClangASTContext::SetHasExternalStorage(tag_qt.getAsOpaquePtr(), false);
TypeIndex tag_ti = type_id.index;
CVType cvt = m_index.tpi().getType(tag_ti);
if (cvt.kind() == LF_MODIFIER)
tag_ti = LookThroughModifierRecord(cvt);
PdbTypeSymId best_ti = GetBestPossibleDecl(tag_ti, m_index.tpi());
cvt = m_index.tpi().getType(best_ti.index);
lldbassert(IsTagRecord(cvt));
if (IsForwardRefUdt(cvt)) {
// If we can't find a full decl for this forward ref anywhere in the debug
// info, then we have no way to complete it.
return false;
}
TypeIndex field_list_ti = GetFieldListIndex(cvt);
CVType field_list_cvt = m_index.tpi().getType(field_list_ti);
if (field_list_cvt.kind() != LF_FIELDLIST)
return false;
// Visit all members of this class, then perform any finalization necessary
// to complete the class.
CompilerType ct = ToCompilerType(tag_qt);
UdtRecordCompleter completer(best_ti, ct, tag, *this, m_index.tpi());
auto error =
llvm::codeview::visitMemberRecordStream(field_list_cvt.data(), completer);
completer.complete();
status.resolved = true;
if (!error)
return true;
llvm::consumeError(std::move(error));
return false;
}
clang::QualType PdbAstBuilder::CreateSimpleType(TypeIndex ti) {
if (ti == TypeIndex::NullptrT())
return GetBasicType(lldb::eBasicTypeNullPtr);
if (ti.getSimpleMode() != SimpleTypeMode::Direct) {
clang::QualType direct_type = GetOrCreateType(ti.makeDirect());
return m_clang.getASTContext().getPointerType(direct_type);
}
if (ti.getSimpleKind() == SimpleTypeKind::NotTranslated)
return {};
lldb::BasicType bt = GetCompilerTypeForSimpleKind(ti.getSimpleKind());
if (bt == lldb::eBasicTypeInvalid)
return {};
return GetBasicType(bt);
}
clang::QualType PdbAstBuilder::CreatePointerType(const PointerRecord &pointer) {
clang::QualType pointee_type = GetOrCreateType(pointer.ReferentType);
// This can happen for pointers to LF_VTSHAPE records, which we shouldn't
// create in the AST.
if (pointee_type.isNull())
return {};
if (pointer.isPointerToMember()) {
MemberPointerInfo mpi = pointer.getMemberInfo();
clang::QualType class_type = GetOrCreateType(mpi.ContainingType);
return m_clang.getASTContext().getMemberPointerType(
pointee_type, class_type.getTypePtr());
}
clang::QualType pointer_type;
if (pointer.getMode() == PointerMode::LValueReference)
pointer_type = m_clang.getASTContext().getLValueReferenceType(pointee_type);
else if (pointer.getMode() == PointerMode::RValueReference)
pointer_type = m_clang.getASTContext().getRValueReferenceType(pointee_type);
else
pointer_type = m_clang.getASTContext().getPointerType(pointee_type);
if ((pointer.getOptions() & PointerOptions::Const) != PointerOptions::None)
pointer_type.addConst();
if ((pointer.getOptions() & PointerOptions::Volatile) != PointerOptions::None)
pointer_type.addVolatile();
if ((pointer.getOptions() & PointerOptions::Restrict) != PointerOptions::None)
pointer_type.addRestrict();
return pointer_type;
}
clang::QualType
PdbAstBuilder::CreateModifierType(const ModifierRecord &modifier) {
clang::QualType unmodified_type = GetOrCreateType(modifier.ModifiedType);
if (unmodified_type.isNull())
return {};
if ((modifier.Modifiers & ModifierOptions::Const) != ModifierOptions::None)
unmodified_type.addConst();
if ((modifier.Modifiers & ModifierOptions::Volatile) != ModifierOptions::None)
unmodified_type.addVolatile();
return unmodified_type;
}
clang::QualType PdbAstBuilder::CreateRecordType(PdbTypeSymId id,
const TagRecord &record) {
clang::DeclContext *context = nullptr;
std::string uname;
std::tie(context, uname) = CreateDeclInfoForType(record, id.index);
clang::TagTypeKind ttk = TranslateUdtKind(record);
lldb::AccessType access =
(ttk == clang::TTK_Class) ? lldb::eAccessPrivate : lldb::eAccessPublic;
ClangASTMetadata metadata;
metadata.SetUserID(toOpaqueUid(id));
metadata.SetIsDynamicCXXType(false);
CompilerType ct = m_clang.CreateRecordType(
context, access, uname, ttk, lldb::eLanguageTypeC_plus_plus, &metadata);
lldbassert(ct.IsValid());
ClangASTContext::StartTagDeclarationDefinition(ct);
// Even if it's possible, don't complete it at this point. Just mark it
// forward resolved, and if/when LLDB needs the full definition, it can
// ask us.
clang::QualType result =
clang::QualType::getFromOpaquePtr(ct.GetOpaqueQualType());
ClangASTContext::SetHasExternalStorage(result.getAsOpaquePtr(), true);
return result;
}
clang::Decl *PdbAstBuilder::TryGetDecl(PdbSymUid uid) const {
auto iter = m_uid_to_decl.find(toOpaqueUid(uid));
if (iter != m_uid_to_decl.end())
return iter->second;
return nullptr;
}
clang::NamespaceDecl *
PdbAstBuilder::GetOrCreateNamespaceDecl(const char *name,
clang::DeclContext &context) {
return m_clang.GetUniqueNamespaceDeclaration(
IsAnonymousNamespaceName(name) ? nullptr : name, &context);
}
clang::BlockDecl *
PdbAstBuilder::GetOrCreateBlockDecl(PdbCompilandSymId block_id) {
if (clang::Decl *decl = TryGetDecl(block_id))
return llvm::dyn_cast<clang::BlockDecl>(decl);
clang::DeclContext *scope = GetParentDeclContext(block_id);
clang::BlockDecl *block_decl = m_clang.CreateBlockDeclaration(scope);
m_uid_to_decl.insert({toOpaqueUid(block_id), block_decl});
DeclStatus status;
status.resolved = true;
status.uid = toOpaqueUid(block_id);
m_decl_to_status.insert({block_decl, status});
return block_decl;
}
clang::VarDecl *PdbAstBuilder::CreateVariableDecl(PdbSymUid uid, CVSymbol sym,
clang::DeclContext &scope) {
VariableInfo var_info = GetVariableNameInfo(sym);
clang::QualType qt = GetOrCreateType(var_info.type);
clang::VarDecl *var_decl = m_clang.CreateVariableDeclaration(
&scope, var_info.name.str().c_str(), qt);
m_uid_to_decl[toOpaqueUid(uid)] = var_decl;
DeclStatus status;
status.resolved = true;
status.uid = toOpaqueUid(uid);
m_decl_to_status.insert({var_decl, status});
return var_decl;
}
clang::VarDecl *
PdbAstBuilder::GetOrCreateVariableDecl(PdbCompilandSymId scope_id,
PdbCompilandSymId var_id) {
if (clang::Decl *decl = TryGetDecl(var_id))
return llvm::dyn_cast<clang::VarDecl>(decl);
clang::DeclContext *scope = GetOrCreateDeclContextForUid(scope_id);
CVSymbol sym = m_index.ReadSymbolRecord(var_id);
return CreateVariableDecl(PdbSymUid(var_id), sym, *scope);
}
clang::VarDecl *PdbAstBuilder::GetOrCreateVariableDecl(PdbGlobalSymId var_id) {
if (clang::Decl *decl = TryGetDecl(var_id))
return llvm::dyn_cast<clang::VarDecl>(decl);
CVSymbol sym = m_index.ReadSymbolRecord(var_id);
auto context = FromCompilerDeclContext(GetTranslationUnitDecl());
return CreateVariableDecl(PdbSymUid(var_id), sym, *context);
}
clang::TypedefNameDecl *
PdbAstBuilder::GetOrCreateTypedefDecl(PdbGlobalSymId id) {
if (clang::Decl *decl = TryGetDecl(id))
return llvm::dyn_cast<clang::TypedefNameDecl>(decl);
CVSymbol sym = m_index.ReadSymbolRecord(id);
lldbassert(sym.kind() == S_UDT);
UDTSym udt = llvm::cantFail(SymbolDeserializer::deserializeAs<UDTSym>(sym));
clang::DeclContext *scope = GetParentDeclContext(id);
PdbTypeSymId real_type_id{udt.Type, false};
clang::QualType qt = GetOrCreateType(real_type_id);
std::string uname = DropNameScope(udt.Name);
CompilerType ct = m_clang.CreateTypedefType(ToCompilerType(qt), uname.c_str(),
ToCompilerDeclContext(*scope));
clang::TypedefNameDecl *tnd = m_clang.GetAsTypedefDecl(ct);
DeclStatus status;
status.resolved = true;
status.uid = toOpaqueUid(id);
m_decl_to_status.insert({tnd, status});
return tnd;
}
clang::QualType PdbAstBuilder::GetBasicType(lldb::BasicType type) {
CompilerType ct = m_clang.GetBasicType(type);
return clang::QualType::getFromOpaquePtr(ct.GetOpaqueQualType());
}
clang::QualType PdbAstBuilder::CreateType(PdbTypeSymId type) {
if (type.index.isSimple())
return CreateSimpleType(type.index);
CVType cvt = m_index.tpi().getType(type.index);
if (cvt.kind() == LF_MODIFIER) {
ModifierRecord modifier;
llvm::cantFail(
TypeDeserializer::deserializeAs<ModifierRecord>(cvt, modifier));
return CreateModifierType(modifier);
}
if (cvt.kind() == LF_POINTER) {
PointerRecord pointer;
llvm::cantFail(
TypeDeserializer::deserializeAs<PointerRecord>(cvt, pointer));
return CreatePointerType(pointer);
}
if (IsTagRecord(cvt)) {
CVTagRecord tag = CVTagRecord::create(cvt);
if (tag.kind() == CVTagRecord::Union)
return CreateRecordType(type.index, tag.asUnion());
if (tag.kind() == CVTagRecord::Enum)
return CreateEnumType(type.index, tag.asEnum());
return CreateRecordType(type.index, tag.asClass());
}
if (cvt.kind() == LF_ARRAY) {
ArrayRecord ar;
llvm::cantFail(TypeDeserializer::deserializeAs<ArrayRecord>(cvt, ar));
return CreateArrayType(ar);
}
if (cvt.kind() == LF_PROCEDURE) {
ProcedureRecord pr;
llvm::cantFail(TypeDeserializer::deserializeAs<ProcedureRecord>(cvt, pr));
return CreateFunctionType(pr.ArgumentList, pr.ReturnType, pr.CallConv);
}
if (cvt.kind() == LF_MFUNCTION) {
MemberFunctionRecord mfr;
llvm::cantFail(
TypeDeserializer::deserializeAs<MemberFunctionRecord>(cvt, mfr));
return CreateFunctionType(mfr.ArgumentList, mfr.ReturnType, mfr.CallConv);
}
return {};
}
clang::QualType PdbAstBuilder::GetOrCreateType(PdbTypeSymId type) {
lldb::user_id_t uid = toOpaqueUid(type);
auto iter = m_uid_to_type.find(uid);
if (iter != m_uid_to_type.end())
return iter->second;
PdbTypeSymId best_type = GetBestPossibleDecl(type, m_index.tpi());
clang::QualType qt;
if (best_type.index != type.index) {
// This is a forward decl. Call GetOrCreate on the full decl, then map the
// forward decl id to the full decl QualType.
clang::QualType qt = GetOrCreateType(best_type);
m_uid_to_type[toOpaqueUid(type)] = qt;
return qt;
}
// This is either a full decl, or a forward decl with no matching full decl
// in the debug info.
qt = CreateType(type);
m_uid_to_type[toOpaqueUid(type)] = qt;
if (IsTagRecord(type, m_index.tpi())) {
clang::TagDecl *tag = qt->getAsTagDecl();
lldbassert(m_decl_to_status.count(tag) == 0);
DeclStatus &status = m_decl_to_status[tag];
status.uid = uid;
status.resolved = false;
}
return qt;
}
clang::FunctionDecl *
PdbAstBuilder::GetOrCreateFunctionDecl(PdbCompilandSymId func_id) {
if (clang::Decl *decl = TryGetDecl(func_id))
return llvm::dyn_cast<clang::FunctionDecl>(decl);
clang::DeclContext *parent = GetParentDeclContext(PdbSymUid(func_id));
std::string context_name;
if (clang::NamespaceDecl *ns = llvm::dyn_cast<clang::NamespaceDecl>(parent)) {
context_name = ns->getQualifiedNameAsString();
} else if (clang::TagDecl *tag = llvm::dyn_cast<clang::TagDecl>(parent)) {
context_name = tag->getQualifiedNameAsString();
}
CVSymbol cvs = m_index.ReadSymbolRecord(func_id);
ProcSym proc(static_cast<SymbolRecordKind>(cvs.kind()));
llvm::cantFail(SymbolDeserializer::deserializeAs<ProcSym>(cvs, proc));
PdbTypeSymId type_id(proc.FunctionType);
clang::QualType qt = GetOrCreateType(type_id);
if (qt.isNull())
return nullptr;
clang::StorageClass storage = clang::SC_None;
if (proc.Kind == SymbolRecordKind::ProcSym)
storage = clang::SC_Static;
const clang::FunctionProtoType *func_type =
llvm::dyn_cast<clang::FunctionProtoType>(qt);
CompilerType func_ct = ToCompilerType(qt);
llvm::StringRef proc_name = proc.Name;
proc_name.consume_front(context_name);
proc_name.consume_front("::");
clang::FunctionDecl *function_decl = m_clang.CreateFunctionDeclaration(
parent, proc_name.str().c_str(), func_ct, storage, false);
lldbassert(m_uid_to_decl.count(toOpaqueUid(func_id)) == 0);
m_uid_to_decl[toOpaqueUid(func_id)] = function_decl;
DeclStatus status;
status.resolved = true;
status.uid = toOpaqueUid(func_id);
m_decl_to_status.insert({function_decl, status});
CreateFunctionParameters(func_id, *function_decl, func_type->getNumParams());
return function_decl;
}
void PdbAstBuilder::CreateFunctionParameters(PdbCompilandSymId func_id,
clang::FunctionDecl &function_decl,
uint32_t param_count) {
CompilandIndexItem *cii = m_index.compilands().GetCompiland(func_id.modi);
CVSymbolArray scope =
cii->m_debug_stream.getSymbolArrayForScope(func_id.offset);
auto begin = scope.begin();
auto end = scope.end();
std::vector<clang::ParmVarDecl *> params;
while (begin != end && param_count > 0) {
uint32_t record_offset = begin.offset();
CVSymbol sym = *begin++;
TypeIndex param_type;
llvm::StringRef param_name;
switch (sym.kind()) {
case S_REGREL32: {
RegRelativeSym reg(SymbolRecordKind::RegRelativeSym);
cantFail(SymbolDeserializer::deserializeAs<RegRelativeSym>(sym, reg));
param_type = reg.Type;
param_name = reg.Name;
break;
}
case S_REGISTER: {
RegisterSym reg(SymbolRecordKind::RegisterSym);
cantFail(SymbolDeserializer::deserializeAs<RegisterSym>(sym, reg));
param_type = reg.Index;
param_name = reg.Name;
break;
}
case S_LOCAL: {
LocalSym local(SymbolRecordKind::LocalSym);
cantFail(SymbolDeserializer::deserializeAs<LocalSym>(sym, local));
if ((local.Flags & LocalSymFlags::IsParameter) == LocalSymFlags::None)
continue;
param_type = local.Type;
param_name = local.Name;
break;
}
case S_BLOCK32:
// All parameters should come before the first block. If that isn't the
// case, then perhaps this is bad debug info that doesn't contain
// information about all parameters.
return;
default:
continue;
}
PdbCompilandSymId param_uid(func_id.modi, record_offset);
clang::QualType qt = GetOrCreateType(param_type);
CompilerType param_type_ct = m_clang.GetType(qt);
clang::ParmVarDecl *param = m_clang.CreateParameterDeclaration(
&function_decl, param_name.str().c_str(), param_type_ct,
clang::SC_None, true);
lldbassert(m_uid_to_decl.count(toOpaqueUid(param_uid)) == 0);
m_uid_to_decl[toOpaqueUid(param_uid)] = param;
params.push_back(param);
--param_count;
}
if (!params.empty())
m_clang.SetFunctionParameters(&function_decl, params.data(), params.size());
}
clang::QualType PdbAstBuilder::CreateEnumType(PdbTypeSymId id,
const EnumRecord &er) {
clang::DeclContext *decl_context = nullptr;
std::string uname;
std::tie(decl_context, uname) = CreateDeclInfoForType(er, id.index);
clang::QualType underlying_type = GetOrCreateType(er.UnderlyingType);
Declaration declaration;
CompilerType enum_ct = m_clang.CreateEnumerationType(
uname.c_str(), decl_context, declaration, ToCompilerType(underlying_type),
er.isScoped());
ClangASTContext::StartTagDeclarationDefinition(enum_ct);
ClangASTContext::SetHasExternalStorage(enum_ct.GetOpaqueQualType(), true);
return clang::QualType::getFromOpaquePtr(enum_ct.GetOpaqueQualType());
}
clang::QualType PdbAstBuilder::CreateArrayType(const ArrayRecord &ar) {
clang::QualType element_type = GetOrCreateType(ar.ElementType);
uint64_t element_count =
ar.Size / GetSizeOfType({ar.ElementType}, m_index.tpi());
CompilerType array_ct = m_clang.CreateArrayType(ToCompilerType(element_type),
element_count, false);
return clang::QualType::getFromOpaquePtr(array_ct.GetOpaqueQualType());
}
clang::QualType PdbAstBuilder::CreateFunctionType(
TypeIndex args_type_idx, TypeIndex return_type_idx,
llvm::codeview::CallingConvention calling_convention) {
TpiStream &stream = m_index.tpi();
CVType args_cvt = stream.getType(args_type_idx);
ArgListRecord args;
llvm::cantFail(
TypeDeserializer::deserializeAs<ArgListRecord>(args_cvt, args));
llvm::ArrayRef<TypeIndex> arg_indices = llvm::makeArrayRef(args.ArgIndices);
bool is_variadic = IsCVarArgsFunction(arg_indices);
if (is_variadic)
arg_indices = arg_indices.drop_back();
std::vector<CompilerType> arg_types;
arg_types.reserve(arg_indices.size());
for (TypeIndex arg_index : arg_indices) {
clang::QualType arg_type = GetOrCreateType(arg_index);
arg_types.push_back(ToCompilerType(arg_type));
}
clang::QualType return_type = GetOrCreateType(return_type_idx);
llvm::Optional<clang::CallingConv> cc =
TranslateCallingConvention(calling_convention);
if (!cc)
return {};
CompilerType return_ct = ToCompilerType(return_type);
CompilerType func_sig_ast_type = m_clang.CreateFunctionType(
return_ct, arg_types.data(), arg_types.size(), is_variadic, 0, *cc);
return clang::QualType::getFromOpaquePtr(
func_sig_ast_type.GetOpaqueQualType());
}
static bool isTagDecl(clang::DeclContext &context) {
return !!llvm::dyn_cast<clang::TagDecl>(&context);
}
static bool isFunctionDecl(clang::DeclContext &context) {
return !!llvm::dyn_cast<clang::FunctionDecl>(&context);
}
static bool isBlockDecl(clang::DeclContext &context) {
return !!llvm::dyn_cast<clang::BlockDecl>(&context);
}
void PdbAstBuilder::ParseAllNamespacesPlusChildrenOf(
llvm::Optional<llvm::StringRef> parent) {
TypeIndex ti{m_index.tpi().TypeIndexBegin()};
for (const CVType &cvt : m_index.tpi().typeArray()) {
PdbTypeSymId tid{ti};
++ti;
if (!IsTagRecord(cvt))
continue;
CVTagRecord tag = CVTagRecord::create(cvt);
if (!parent.hasValue()) {
clang::QualType qt = GetOrCreateType(tid);
CompleteType(qt);
continue;
}
// Call CreateDeclInfoForType unconditionally so that the namespace info
// gets created. But only call CreateRecordType if the namespace name
// matches.
clang::DeclContext *context = nullptr;
std::string uname;
std::tie(context, uname) = CreateDeclInfoForType(tag.asTag(), tid.index);
if (!context->isNamespace())
continue;
clang::NamespaceDecl *ns = llvm::dyn_cast<clang::NamespaceDecl>(context);
std::string actual_ns = ns->getQualifiedNameAsString();
if (llvm::StringRef(actual_ns).startswith(*parent)) {
clang::QualType qt = GetOrCreateType(tid);
CompleteType(qt);
continue;
}
}
uint32_t module_count = m_index.dbi().modules().getModuleCount();
for (uint16_t modi = 0; modi < module_count; ++modi) {
CompilandIndexItem &cii = m_index.compilands().GetOrCreateCompiland(modi);
const CVSymbolArray &symbols = cii.m_debug_stream.getSymbolArray();
auto iter = symbols.begin();
while (iter != symbols.end()) {
PdbCompilandSymId sym_id{modi, iter.offset()};
switch (iter->kind()) {
case S_GPROC32:
case S_LPROC32:
GetOrCreateFunctionDecl(sym_id);
iter = symbols.at(getScopeEndOffset(*iter));
break;
case S_GDATA32:
case S_GTHREAD32:
case S_LDATA32:
case S_LTHREAD32:
GetOrCreateVariableDecl(PdbCompilandSymId(modi, 0), sym_id);
++iter;
break;
default:
++iter;
continue;
}
}
}
}
static CVSymbolArray skipFunctionParameters(clang::Decl &decl,
const CVSymbolArray &symbols) {
clang::FunctionDecl *func_decl = llvm::dyn_cast<clang::FunctionDecl>(&decl);
if (!func_decl)
return symbols;
unsigned int params = func_decl->getNumParams();
if (params == 0)
return symbols;
CVSymbolArray result = symbols;
while (!result.empty()) {
if (params == 0)
return result;
CVSymbol sym = *result.begin();
result.drop_front();
if (!isLocalVariableType(sym.kind()))
continue;
--params;
}
return result;
}
void PdbAstBuilder::ParseBlockChildren(PdbCompilandSymId block_id) {
CVSymbol sym = m_index.ReadSymbolRecord(block_id);
lldbassert(sym.kind() == S_GPROC32 || sym.kind() == S_LPROC32 ||
sym.kind() == S_BLOCK32);
CompilandIndexItem &cii =
m_index.compilands().GetOrCreateCompiland(block_id.modi);
CVSymbolArray symbols =
cii.m_debug_stream.getSymbolArrayForScope(block_id.offset);
// Function parameters should already have been created when the function was
// parsed.
if (sym.kind() == S_GPROC32 || sym.kind() == S_LPROC32)
symbols =
skipFunctionParameters(*m_uid_to_decl[toOpaqueUid(block_id)], symbols);
auto begin = symbols.begin();
while (begin != symbols.end()) {
PdbCompilandSymId child_sym_id(block_id.modi, begin.offset());
GetOrCreateSymbolForId(child_sym_id);
if (begin->kind() == S_BLOCK32) {
ParseBlockChildren(child_sym_id);
begin = symbols.at(getScopeEndOffset(*begin));
}
++begin;
}
}
void PdbAstBuilder::ParseDeclsForSimpleContext(clang::DeclContext &context) {
clang::Decl *decl = clang::Decl::castFromDeclContext(&context);
lldbassert(decl);
auto iter = m_decl_to_status.find(decl);
lldbassert(iter != m_decl_to_status.end());
if (auto *tag = llvm::dyn_cast<clang::TagDecl>(&context)) {
CompleteTagDecl(*tag);
return;
}
if (isFunctionDecl(context) || isBlockDecl(context)) {
PdbCompilandSymId block_id = PdbSymUid(iter->second.uid).asCompilandSym();
ParseBlockChildren(block_id);
}
}
void PdbAstBuilder::ParseDeclsForContext(clang::DeclContext &context) {
// Namespaces aren't explicitly represented in the debug info, and the only
// way to parse them is to parse all type info, demangling every single type
// and trying to reconstruct the DeclContext hierarchy this way. Since this
// is an expensive operation, we have to special case it so that we do other
// work (such as parsing the items that appear within the namespaces) at the
// same time.
if (context.isTranslationUnit()) {
ParseAllNamespacesPlusChildrenOf(llvm::None);
return;
}
if (context.isNamespace()) {
clang::NamespaceDecl &ns = *llvm::dyn_cast<clang::NamespaceDecl>(&context);
std::string qname = ns.getQualifiedNameAsString();
ParseAllNamespacesPlusChildrenOf(llvm::StringRef{qname});
return;
}
if (isTagDecl(context) || isFunctionDecl(context) || isBlockDecl(context)) {
ParseDeclsForSimpleContext(context);
return;
}
}
CompilerDecl PdbAstBuilder::ToCompilerDecl(clang::Decl &decl) {
return {&m_clang, &decl};
}
CompilerType PdbAstBuilder::ToCompilerType(clang::QualType qt) {
return {&m_clang, qt.getAsOpaquePtr()};
}
CompilerDeclContext
PdbAstBuilder::ToCompilerDeclContext(clang::DeclContext &context) {
return m_clang.CreateDeclContext(&context);
}
clang::Decl * PdbAstBuilder::FromCompilerDecl(CompilerDecl decl) {
return static_cast<clang::Decl *>(decl.GetOpaqueDecl());
}
clang::DeclContext *
PdbAstBuilder::FromCompilerDeclContext(CompilerDeclContext context) {
return static_cast<clang::DeclContext *>(context.GetOpaqueDeclContext());
}
void PdbAstBuilder::Dump(Stream &stream) { m_clang.Dump(stream); }