blob: 8a8115af967289dce8a30bbc97ea864c82915fe0 [file] [log] [blame]
#include <stdio.h>
#include <stdlib.h>
#include <mach-o/loader.h>
#include <vector>
#include <string>
#include <mach/thread_status.h>
#include <string.h>
#include <uuid/uuid.h>
// Create an empty corefile with a "kern ver str" LC_NOTE.
// If an existing binary is given as an optional 2nd argument on the cmd line,
// the UUID from that binary will be encoded in the corefile.
// Otherwise a pre-set UUID will be put in the corefile that
// is created.
union uint32_buf {
uint8_t bytebuf[4];
uint32_t val;
};
union uint64_buf {
uint8_t bytebuf[8];
uint64_t val;
};
void
add_uint64(std::vector<uint8_t> &buf, uint64_t val)
{
uint64_buf conv;
conv.val = val;
for (int i = 0; i < 8; i++)
buf.push_back(conv.bytebuf[i]);
}
void
add_uint32(std::vector<uint8_t> &buf, uint32_t val)
{
uint32_buf conv;
conv.val = val;
for (int i = 0; i < 4; i++)
buf.push_back(conv.bytebuf[i]);
}
std::vector<uint8_t>
x86_lc_thread_load_command ()
{
std::vector<uint8_t> data;
add_uint32 (data, LC_THREAD); // thread_command.cmd
add_uint32 (data, 184); // thread_command.cmdsize
add_uint32 (data, x86_THREAD_STATE64); // thread_command.flavor
add_uint32 (data, x86_THREAD_STATE64_COUNT); // thread_command.count
add_uint64 (data, 0x0000000000000000); // rax
add_uint64 (data, 0x0000000000000400); // rbx
add_uint64 (data, 0x0000000000000000); // rcx
add_uint64 (data, 0x0000000000000000); // rdx
add_uint64 (data, 0x0000000000000000); // rdi
add_uint64 (data, 0x0000000000000000); // rsi
add_uint64 (data, 0xffffff9246e2ba20); // rbp
add_uint64 (data, 0xffffff9246e2ba10); // rsp
add_uint64 (data, 0x0000000000000000); // r8
add_uint64 (data, 0x0000000000000000); // r9
add_uint64 (data, 0x0000000000000000); // r10
add_uint64 (data, 0x0000000000000000); // r11
add_uint64 (data, 0xffffff7f96ce5fe1); // r12
add_uint64 (data, 0x0000000000000000); // r13
add_uint64 (data, 0x0000000000000000); // r14
add_uint64 (data, 0xffffff9246e2bac0); // r15
add_uint64 (data, 0xffffff8015a8f6d0); // rip
add_uint64 (data, 0x0000000000011111); // rflags
add_uint64 (data, 0x0000000000022222); // cs
add_uint64 (data, 0x0000000000033333); // fs
add_uint64 (data, 0x0000000000044444); // gs
return data;
}
void
add_lc_note_kern_ver_str_load_command (std::vector<std::vector<uint8_t> > &loadcmds,
std::vector<uint8_t> &payload,
int payload_file_offset,
std::string ident)
{
std::vector<uint8_t> loadcmd_data;
add_uint32 (loadcmd_data, LC_NOTE); // note_command.cmd
add_uint32 (loadcmd_data, 40); // note_command.cmdsize
char lc_note_name[16];
memset (lc_note_name, 0, 16);
strcpy (lc_note_name, "kern ver str");
// lc_note.data_owner
for (int i = 0; i < 16; i++)
loadcmd_data.push_back (lc_note_name[i]);
// we start writing the payload at payload_file_offset to leave
// room at the start for the header & the load commands.
uint64_t current_payload_offset = payload.size() + payload_file_offset;
add_uint64 (loadcmd_data, current_payload_offset); // note_command.offset
add_uint64 (loadcmd_data, 4 + ident.size() + 1); // note_command.size
loadcmds.push_back (loadcmd_data);
add_uint32 (payload, 1); // kerneL_version_string.version
for (int i = 0; i < ident.size() + 1; i++)
{
payload.push_back (ident[i]);
}
}
void
add_lc_segment (std::vector<std::vector<uint8_t> > &loadcmds,
std::vector<uint8_t> &payload,
int payload_file_offset)
{
std::vector<uint8_t> loadcmd_data;
struct segment_command_64 seg;
seg.cmd = LC_SEGMENT_64;
seg.cmdsize = sizeof (struct segment_command_64); // no sections
memset (seg.segname, 0, 16);
seg.vmaddr = 0xffffff7f96400000;
seg.vmsize = 4096;
seg.fileoff = payload.size() + payload_file_offset;
seg.filesize = 0;
seg.maxprot = 1;
seg.initprot = 1;
seg.nsects = 0;
seg.flags = 0;
uint8_t *p = (uint8_t*) &seg;
for (int i = 0; i < sizeof (struct segment_command_64); i++)
{
loadcmd_data.push_back (*(p + i));
}
loadcmds.push_back (loadcmd_data);
}
std::string
get_uuid_from_binary (const char *fn)
{
FILE *f = fopen(fn, "r");
if (f == nullptr)
{
fprintf (stderr, "Unable to open binary '%s' to get uuid\n", fn);
exit(1);
}
uint32_t num_of_load_cmds = 0;
uint32_t size_of_load_cmds = 0;
std::string uuid;
off_t file_offset = 0;
uint8_t magic[4];
if (::fread (magic, 1, 4, f) != 4)
{
fprintf (stderr, "Failed to read magic number from input file %s\n", fn);
exit (1);
}
uint8_t magic_32_be[] = {0xfe, 0xed, 0xfa, 0xce};
uint8_t magic_32_le[] = {0xce, 0xfa, 0xed, 0xfe};
uint8_t magic_64_be[] = {0xfe, 0xed, 0xfa, 0xcf};
uint8_t magic_64_le[] = {0xcf, 0xfa, 0xed, 0xfe};
if (memcmp (magic, magic_32_be, 4) == 0 || memcmp (magic, magic_64_be, 4) == 0)
{
fprintf (stderr, "big endian corefiles not supported\n");
exit (1);
}
::fseeko (f, 0, SEEK_SET);
if (memcmp (magic, magic_32_le, 4) == 0)
{
struct mach_header mh;
if (::fread (&mh, 1, sizeof (mh), f) != sizeof (mh))
{
fprintf (stderr, "error reading mach header from input file\n");
exit (1);
}
if (mh.cputype != CPU_TYPE_X86_64)
{
fprintf (stderr, "This tool creates an x86_64 corefile but "
"the supplied binary '%s' is cputype 0x%x\n",
fn, (uint32_t) mh.cputype);
exit (1);
}
num_of_load_cmds = mh.ncmds;
size_of_load_cmds = mh.sizeofcmds;
file_offset += sizeof (struct mach_header);
}
else
{
struct mach_header_64 mh;
if (::fread (&mh, 1, sizeof (mh), f) != sizeof (mh))
{
fprintf (stderr, "error reading mach header from input file\n");
exit (1);
}
if (mh.cputype != CPU_TYPE_X86_64)
{
fprintf (stderr, "This tool creates an x86_64 corefile but "
"the supplied binary '%s' is cputype 0x%x\n",
fn, (uint32_t) mh.cputype);
exit (1);
}
num_of_load_cmds = mh.ncmds;
size_of_load_cmds = mh.sizeofcmds;
file_offset += sizeof (struct mach_header_64);
}
off_t load_cmds_offset = file_offset;
for (int i = 0; i < num_of_load_cmds && (file_offset - load_cmds_offset) < size_of_load_cmds; i++)
{
::fseeko (f, file_offset, SEEK_SET);
uint32_t cmd;
uint32_t cmdsize;
::fread (&cmd, sizeof (uint32_t), 1, f);
::fread (&cmdsize, sizeof (uint32_t), 1, f);
if (cmd == LC_UUID)
{
struct uuid_command uuidcmd;
::fseeko (f, file_offset, SEEK_SET);
if (::fread (&uuidcmd, 1, sizeof (uuidcmd), f) != sizeof (uuidcmd))
{
fprintf (stderr, "Unable to read LC_UUID load command.\n");
exit (1);
}
uuid_string_t uuidstr;
uuid_unparse (uuidcmd.uuid, uuidstr);
uuid = uuidstr;
break;
}
file_offset += cmdsize;
}
return uuid;
}
int main (int argc, char **argv)
{
if (argc != 2 && argc != 3)
{
fprintf (stderr, "usage: create-empty-corefile <output-core-name> [binary-to-copy-uuid-from]\n");
fprintf (stderr, "Create a Mach-O corefile with an LC_NOTE 'kern ver str' load command/payload\n");
fprintf (stderr, "If a binary is given as a second argument, the Mach-O UUID of that file will\n");
fprintf (stderr, "be read and used in the corefile's LC_NOTE payload.\n");
exit (1);
}
std::string ident = "EFI UUID=3F9BA21F-55EA-356A-A349-BBA6F51FE8B1";
if (argc == 3)
{
std::string uuid_from_file = get_uuid_from_binary (argv[2]);
if (!uuid_from_file.empty())
{
ident = "EFI UUID=";
ident += uuid_from_file;
}
}
// An array of load commands (in the form of byte arrays)
std::vector<std::vector<uint8_t> > load_commands;
// An array of corefile contents (page data, lc_note data, etc)
std::vector<uint8_t> payload;
// First add all the load commands / payload so we can figure out how large
// the load commands will actually be.
load_commands.push_back (x86_lc_thread_load_command());
add_lc_note_kern_ver_str_load_command (load_commands, payload, 0, ident);
add_lc_segment (load_commands, payload, 0);
int size_of_load_commands = 0;
for (const auto &lc : load_commands)
size_of_load_commands += lc.size();
int header_and_load_cmd_room = sizeof (struct mach_header_64) + size_of_load_commands;
// Erease the load commands / payload now that we know how much space is needed,
// redo it.
load_commands.clear();
payload.clear();
load_commands.push_back (x86_lc_thread_load_command());
add_lc_note_kern_ver_str_load_command (load_commands, payload, header_and_load_cmd_room, ident);
add_lc_segment (load_commands, payload, header_and_load_cmd_room);
struct mach_header_64 mh;
mh.magic = MH_MAGIC_64;
mh.cputype = CPU_TYPE_X86_64;
mh.cpusubtype = CPU_SUBTYPE_X86_64_ALL;
mh.filetype = MH_CORE;
mh.ncmds = load_commands.size();
mh.sizeofcmds = size_of_load_commands;
mh.flags = 0;
mh.reserved = 0;
FILE *f = fopen (argv[1], "w");
if (f == nullptr)
{
fprintf (stderr, "Unable to open file %s for writing\n", argv[1]);
exit (1);
}
fwrite (&mh, sizeof (struct mach_header_64), 1, f);
for (const auto &lc : load_commands)
fwrite (lc.data(), lc.size(), 1, f);
fseek (f, header_and_load_cmd_room, SEEK_SET);
fwrite (payload.data(), payload.size(), 1, f);
fclose (f);
}