blob: ac19ec1586b784b5b8708de99fbe215cfea5860b [file] [log] [blame]
//===- UnwindInfoSection.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "UnwindInfoSection.h"
#include "Config.h"
#include "InputSection.h"
#include "MergedOutputSection.h"
#include "OutputSection.h"
#include "OutputSegment.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/BinaryFormat/MachO.h"
using namespace llvm;
using namespace llvm::MachO;
using namespace lld;
using namespace lld::macho;
// Compact Unwind format is a Mach-O evolution of DWARF Unwind that
// optimizes space and exception-time lookup. Most DWARF unwind
// entries can be replaced with Compact Unwind entries, but the ones
// that cannot are retained in DWARF form.
//
// This comment will address macro-level organization of the pre-link
// and post-link compact unwind tables. For micro-level organization
// pertaining to the bitfield layout of the 32-bit compact unwind
// entries, see libunwind/include/mach-o/compact_unwind_encoding.h
//
// Important clarifying factoids:
//
// * __LD,__compact_unwind is the compact unwind format for compiler
// output and linker input. It is never a final output. It could be
// an intermediate output with the `-r` option which retains relocs.
//
// * __TEXT,__unwind_info is the compact unwind format for final
// linker output. It is never an input.
//
// * __TEXT,__eh_frame is the DWARF format for both linker input and output.
//
// * __TEXT,__unwind_info entries are divided into 4 KiB pages (2nd
// level) by ascending address, and the pages are referenced by an
// index (1st level) in the section header.
//
// * Following the headers in __TEXT,__unwind_info, the bulk of the
// section contains a vector of compact unwind entries
// `{functionOffset, encoding}` sorted by ascending `functionOffset`.
// Adjacent entries with the same encoding can be folded to great
// advantage, achieving a 3-order-of-magnitude reduction in the
// number of entries.
//
// * The __TEXT,__unwind_info format can accommodate up to 127 unique
// encodings for the space-efficient compressed format. In practice,
// fewer than a dozen unique encodings are used by C++ programs of
// all sizes. Therefore, we don't even bother implementing the regular
// non-compressed format. Time will tell if anyone in the field ever
// overflows the 127-encodings limit.
// TODO(gkm): prune __eh_frame entries superseded by __unwind_info
// TODO(gkm): how do we align the 2nd-level pages?
UnwindInfoSection::UnwindInfoSection()
: SyntheticSection(segment_names::text, section_names::unwindInfo) {
align = WordSize; // TODO(gkm): make this 4 KiB ?
}
bool UnwindInfoSection::isNeeded() const {
return (compactUnwindSection != nullptr);
}
// Scan the __LD,__compact_unwind entries and compute the space needs of
// __TEXT,__unwind_info and __TEXT,__eh_frame
void UnwindInfoSection::finalize() {
if (compactUnwindSection == nullptr)
return;
// At this point, the address space for __TEXT,__text has been
// assigned, so we can relocate the __LD,__compact_unwind entries
// into a temporary buffer. Relocation is necessary in order to sort
// the CU entries by function address. Sorting is necessary so that
// we can fold adjacent CU entries with identical
// encoding+personality+lsda. Folding is necessary because it reduces
// the number of CU entries by as much as 3 orders of magnitude!
compactUnwindSection->finalize();
assert(compactUnwindSection->getSize() % sizeof(CompactUnwindEntry64) == 0);
size_t cuCount =
compactUnwindSection->getSize() / sizeof(CompactUnwindEntry64);
cuVector.resize(cuCount);
// Relocate all __LD,__compact_unwind entries
compactUnwindSection->writeTo(reinterpret_cast<uint8_t *>(cuVector.data()));
// Rather than sort & fold the 32-byte entries directly, we create a
// vector of pointers to entries and sort & fold that instead.
cuPtrVector.reserve(cuCount);
for (const auto &cuEntry : cuVector)
cuPtrVector.emplace_back(&cuEntry);
std::sort(cuPtrVector.begin(), cuPtrVector.end(),
[](const CompactUnwindEntry64 *a, const CompactUnwindEntry64 *b) {
return a->functionAddress < b->functionAddress;
});
// Fold adjacent entries with matching encoding+personality+lsda
// We use three iterators on the same cuPtrVector to fold in-situ:
// (1) `foldBegin` is the first of a potential sequence of matching entries
// (2) `foldEnd` is the first non-matching entry after `foldBegin`.
// The semi-open interval [ foldBegin .. foldEnd ) contains a range
// entries that can be folded into a single entry and written to ...
// (3) `foldWrite`
auto foldWrite = cuPtrVector.begin();
for (auto foldBegin = cuPtrVector.begin(); foldBegin < cuPtrVector.end();) {
auto foldEnd = foldBegin;
while (++foldEnd < cuPtrVector.end() &&
(*foldBegin)->encoding == (*foldEnd)->encoding &&
(*foldBegin)->personality == (*foldEnd)->personality &&
(*foldBegin)->lsda == (*foldEnd)->lsda)
;
*foldWrite++ = *foldBegin;
foldBegin = foldEnd;
}
cuPtrVector.erase(foldWrite, cuPtrVector.end());
// Count frequencies of the folded encodings
llvm::DenseMap<compact_unwind_encoding_t, size_t> encodingFrequencies;
for (auto cuPtrEntry : cuPtrVector)
encodingFrequencies[cuPtrEntry->encoding]++;
if (encodingFrequencies.size() > UNWIND_INFO_COMMON_ENCODINGS_MAX)
error("TODO(gkm): handle common encodings table overflow");
// Make a table of encodings, sorted by descending frequency
for (const auto &frequency : encodingFrequencies)
commonEncodings.emplace_back(frequency);
std::sort(commonEncodings.begin(), commonEncodings.end(),
[](const std::pair<compact_unwind_encoding_t, size_t> &a,
const std::pair<compact_unwind_encoding_t, size_t> &b) {
if (a.second == b.second)
// When frequencies match, secondarily sort on encoding
// to maintain parity with validate-unwind-info.py
return a.first > b.first;
return a.second > b.second;
});
// Split folded encodings into pages, limited by capacity of a page
// and the 24-bit range of function offset
//
// Record the page splits as a vector of iterators on cuPtrVector
// such that successive elements form a semi-open interval. E.g.,
// page X's bounds are thus: [ pageBounds[X] .. pageBounds[X+1] )
//
// Note that pageBounds.size() is one greater than the number of
// pages, and pageBounds.back() holds the sentinel cuPtrVector.cend()
pageBounds.push_back(cuPtrVector.cbegin());
// TODO(gkm): cut 1st page entries short to accommodate section headers ???
CompactUnwindEntry64 cuEntryKey;
for (size_t i = 0;;) {
// Limit the search to entries that can fit within a 4 KiB page.
const auto pageBegin = pageBounds[0] + i;
const auto pageMax =
pageBounds[0] +
std::min(i + UNWIND_INFO_COMPRESSED_SECOND_LEVEL_ENTRIES_MAX,
cuPtrVector.size());
// Exclude entries with functionOffset that would overflow 24 bits
cuEntryKey.functionAddress = (*pageBegin)->functionAddress +
UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET_MASK;
const auto pageBreak = std::lower_bound(
pageBegin, pageMax, &cuEntryKey,
[](const CompactUnwindEntry64 *a, const CompactUnwindEntry64 *b) {
return a->functionAddress < b->functionAddress;
});
pageBounds.push_back(pageBreak);
if (pageBreak == cuPtrVector.cend())
break;
i = pageBreak - cuPtrVector.cbegin();
}
// compute size of __TEXT,__unwind_info section
level2PagesOffset =
sizeof(unwind_info_section_header) +
commonEncodings.size() * sizeof(uint32_t) +
personalities.size() * sizeof(uint32_t) +
pageBounds.size() * sizeof(unwind_info_section_header_index_entry) +
lsdaEntries.size() * sizeof(unwind_info_section_header_lsda_index_entry);
unwindInfoSize = level2PagesOffset +
(pageBounds.size() - 1) *
sizeof(unwind_info_compressed_second_level_page_header) +
cuPtrVector.size() * sizeof(uint32_t);
}
// All inputs are relocated and output adddresses are known, so write!
void UnwindInfoSection::writeTo(uint8_t *buf) const {
// section header
auto *uip = reinterpret_cast<unwind_info_section_header *>(buf);
uip->version = 1;
uip->commonEncodingsArraySectionOffset = sizeof(unwind_info_section_header);
uip->commonEncodingsArrayCount = commonEncodings.size();
uip->personalityArraySectionOffset =
uip->commonEncodingsArraySectionOffset +
(uip->commonEncodingsArrayCount * sizeof(uint32_t));
uip->personalityArrayCount = personalities.size();
uip->indexSectionOffset = uip->personalityArraySectionOffset +
(uip->personalityArrayCount * sizeof(uint32_t));
uip->indexCount = pageBounds.size();
// Common encodings
auto *i32p = reinterpret_cast<uint32_t *>(&uip[1]);
for (const auto &encoding : commonEncodings)
*i32p++ = encoding.first;
// Personalities
for (const auto &personality : personalities)
*i32p++ = personality;
// Level-1 index
uint32_t lsdaOffset =
uip->indexSectionOffset +
uip->indexCount * sizeof(unwind_info_section_header_index_entry);
uint64_t l2PagesOffset = level2PagesOffset;
auto *iep = reinterpret_cast<unwind_info_section_header_index_entry *>(i32p);
for (size_t i = 0; i < pageBounds.size() - 1; i++) {
iep->functionOffset = (*pageBounds[i])->functionAddress;
iep->secondLevelPagesSectionOffset = l2PagesOffset;
iep->lsdaIndexArraySectionOffset = lsdaOffset;
iep++;
// TODO(gkm): pad to 4 KiB page boundary ???
size_t entryCount = pageBounds[i + 1] - pageBounds[i];
uint64_t pageSize = sizeof(unwind_info_section_header_index_entry) +
entryCount * sizeof(uint32_t);
l2PagesOffset += pageSize;
}
// Level-1 sentinel
const CompactUnwindEntry64 &cuEnd = cuVector.back();
iep->functionOffset = cuEnd.functionAddress + cuEnd.functionLength;
iep->secondLevelPagesSectionOffset = 0;
iep->lsdaIndexArraySectionOffset = lsdaOffset;
iep++;
// LSDAs
auto *lep =
reinterpret_cast<unwind_info_section_header_lsda_index_entry *>(iep);
for (const auto &lsda : lsdaEntries) {
lep->functionOffset = lsda.functionOffset;
lep->lsdaOffset = lsda.lsdaOffset;
}
// create map from encoding to common-encoding-table index compact
// encoding entries use 7 bits to index the common-encoding table
size_t i = 0;
llvm::DenseMap<compact_unwind_encoding_t, size_t> commonEncodingIndexes;
for (const auto &encoding : commonEncodings)
commonEncodingIndexes[encoding.first] = i++;
// Level-2 pages
auto *p2p =
reinterpret_cast<unwind_info_compressed_second_level_page_header *>(lep);
for (size_t i = 0; i < pageBounds.size() - 1; i++) {
p2p->kind = UNWIND_SECOND_LEVEL_COMPRESSED;
p2p->entryPageOffset =
sizeof(unwind_info_compressed_second_level_page_header);
p2p->entryCount = pageBounds[i + 1] - pageBounds[i];
p2p->encodingsPageOffset =
p2p->entryPageOffset + p2p->entryCount * sizeof(uint32_t);
p2p->encodingsCount = 0;
auto *ep = reinterpret_cast<uint32_t *>(&p2p[1]);
auto cuPtrVectorIt = pageBounds[i];
uintptr_t functionAddressBase = (*cuPtrVectorIt)->functionAddress;
while (cuPtrVectorIt < pageBounds[i + 1]) {
const CompactUnwindEntry64 *cuep = *cuPtrVectorIt++;
size_t cueIndex = commonEncodingIndexes.lookup(cuep->encoding);
*ep++ = ((cueIndex << UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET_BITS) |
(cuep->functionAddress - functionAddressBase));
}
p2p =
reinterpret_cast<unwind_info_compressed_second_level_page_header *>(ep);
}
assert(getSize() ==
static_cast<size_t>((reinterpret_cast<uint8_t *>(p2p) - buf)));
}