blob: f44ecd77337cf2ed0d616c25f6d51f44a6889580 [file] [log] [blame]
// RUN: %clang_cc1 -fenable-matrix -triple x86_64-apple-darwin %s -emit-llvm -disable-llvm-passes -o - | FileCheck %s
typedef double dx5x5_t __attribute__((matrix_type(5, 5)));
typedef float fx2x3_t __attribute__((matrix_type(2, 3)));
typedef int ix9x3_t __attribute__((matrix_type(9, 3)));
typedef unsigned long long ullx4x2_t __attribute__((matrix_type(4, 2)));
// Floating point matrix/scalar additions.
void add_matrix_matrix_double(dx5x5_t a, dx5x5_t b, dx5x5_t c) {
// CHECK-LABEL: define void @add_matrix_matrix_double(<25 x double> %a, <25 x double> %b, <25 x double> %c)
// CHECK: [[B:%.*]] = load <25 x double>, <25 x double>* {{.*}}, align 8
// CHECK-NEXT: [[C:%.*]] = load <25 x double>, <25 x double>* {{.*}}, align 8
// CHECK-NEXT: [[RES:%.*]] = fadd <25 x double> [[B]], [[C]]
// CHECK-NEXT: store <25 x double> [[RES]], <25 x double>* {{.*}}, align 8
a = b + c;
}
void add_matrix_matrix_float(fx2x3_t a, fx2x3_t b, fx2x3_t c) {
// CHECK-LABEL: define void @add_matrix_matrix_float(<6 x float> %a, <6 x float> %b, <6 x float> %c)
// CHECK: [[B:%.*]] = load <6 x float>, <6 x float>* {{.*}}, align 4
// CHECK-NEXT: [[C:%.*]] = load <6 x float>, <6 x float>* {{.*}}, align 4
// CHECK-NEXT: [[RES:%.*]] = fadd <6 x float> [[B]], [[C]]
// CHECK-NEXT: store <6 x float> [[RES]], <6 x float>* {{.*}}, align 4
a = b + c;
}
void add_matrix_scalar_double_float(dx5x5_t a, float vf) {
// CHECK-LABEL: define void @add_matrix_scalar_double_float(<25 x double> %a, float %vf)
// CHECK: [[MATRIX:%.*]] = load <25 x double>, <25 x double>* {{.*}}, align 8
// CHECK-NEXT: [[SCALAR:%.*]] = load float, float* %vf.addr, align 4
// CHECK-NEXT: [[SCALAR_EXT:%.*]] = fpext float [[SCALAR]] to double
// CHECK-NEXT: [[SCALAR_EMBED:%.*]] = insertelement <25 x double> undef, double [[SCALAR_EXT]], i32 0
// CHECK-NEXT: [[SCALAR_EMBED1:%.*]] = shufflevector <25 x double> [[SCALAR_EMBED]], <25 x double> undef, <25 x i32> zeroinitializer
// CHECK-NEXT: [[RES:%.*]] = fadd <25 x double> [[MATRIX]], [[SCALAR_EMBED1]]
// CHECK-NEXT: store <25 x double> [[RES]], <25 x double>* {{.*}}, align 8
a = a + vf;
}
void add_matrix_scalar_double_double(dx5x5_t a, double vd) {
// CHECK-LABEL: define void @add_matrix_scalar_double_double(<25 x double> %a, double %vd)
// CHECK: [[MATRIX:%.*]] = load <25 x double>, <25 x double>* {{.*}}, align 8
// CHECK-NEXT: [[SCALAR:%.*]] = load double, double* %vd.addr, align 8
// CHECK-NEXT: [[SCALAR_EMBED:%.*]] = insertelement <25 x double> undef, double [[SCALAR]], i32 0
// CHECK-NEXT: [[SCALAR_EMBED1:%.*]] = shufflevector <25 x double> [[SCALAR_EMBED]], <25 x double> undef, <25 x i32> zeroinitializer
// CHECK-NEXT: [[RES:%.*]] = fadd <25 x double> [[MATRIX]], [[SCALAR_EMBED1]]
// CHECK-NEXT: store <25 x double> [[RES]], <25 x double>* {{.*}}, align 8
a = a + vd;
}
void add_matrix_scalar_float_float(fx2x3_t b, float vf) {
// CHECK-LABEL: define void @add_matrix_scalar_float_float(<6 x float> %b, float %vf)
// CHECK: [[MATRIX:%.*]] = load <6 x float>, <6 x float>* {{.*}}, align 4
// CHECK-NEXT: [[SCALAR:%.*]] = load float, float* %vf.addr, align 4
// CHECK-NEXT: [[SCALAR_EMBED:%.*]] = insertelement <6 x float> undef, float [[SCALAR]], i32 0
// CHECK-NEXT: [[SCALAR_EMBED1:%.*]] = shufflevector <6 x float> [[SCALAR_EMBED]], <6 x float> undef, <6 x i32> zeroinitializer
// CHECK-NEXT: [[RES:%.*]] = fadd <6 x float> [[MATRIX]], [[SCALAR_EMBED1]]
// CHECK-NEXT: store <6 x float> [[RES]], <6 x float>* {{.*}}, align 4
b = b + vf;
}
void add_matrix_scalar_float_double(fx2x3_t b, double vd) {
// CHECK-LABEL: define void @add_matrix_scalar_float_double(<6 x float> %b, double %vd)
// CHECK: [[MATRIX:%.*]] = load <6 x float>, <6 x float>* {{.*}}, align 4
// CHECK-NEXT: [[SCALAR:%.*]] = load double, double* %vd.addr, align 8
// CHECK-NEXT: [[SCALAR_TRUNC:%.*]] = fptrunc double [[SCALAR]] to float
// CHECK-NEXT: [[SCALAR_EMBED:%.*]] = insertelement <6 x float> undef, float [[SCALAR_TRUNC]], i32 0
// CHECK-NEXT: [[SCALAR_EMBED1:%.*]] = shufflevector <6 x float> [[SCALAR_EMBED]], <6 x float> undef, <6 x i32> zeroinitializer
// CHECK-NEXT: [[RES:%.*]] = fadd <6 x float> [[MATRIX]], [[SCALAR_EMBED1]]
// CHECK-NEXT: store <6 x float> [[RES]], <6 x float>* {{.*}}, align 4
b = b + vd;
}
// Integer matrix/scalar additions
void add_matrix_matrix_int(ix9x3_t a, ix9x3_t b, ix9x3_t c) {
// CHECK-LABEL: define void @add_matrix_matrix_int(<27 x i32> %a, <27 x i32> %b, <27 x i32> %c)
// CHECK: [[B:%.*]] = load <27 x i32>, <27 x i32>* {{.*}}, align 4
// CHECK-NEXT: [[C:%.*]] = load <27 x i32>, <27 x i32>* {{.*}}, align 4
// CHECK-NEXT: [[RES:%.*]] = add <27 x i32> [[B]], [[C]]
// CHECK-NEXT: store <27 x i32> [[RES]], <27 x i32>* {{.*}}, align 4
a = b + c;
}
void add_matrix_matrix_unsigned_long_long(ullx4x2_t a, ullx4x2_t b, ullx4x2_t c) {
// CHECK-LABEL: define void @add_matrix_matrix_unsigned_long_long(<8 x i64> %a, <8 x i64> %b, <8 x i64> %c)
// CHECK: [[B:%.*]] = load <8 x i64>, <8 x i64>* {{.*}}, align 8
// CHECK-NEXT: [[C:%.*]] = load <8 x i64>, <8 x i64>* {{.*}}, align 8
// CHECK-NEXT: [[RES:%.*]] = add <8 x i64> [[B]], [[C]]
// CHECK-NEXT: store <8 x i64> [[RES]], <8 x i64>* {{.*}}, align 8
a = b + c;
}
void add_matrix_scalar_int_short(ix9x3_t a, short vs) {
// CHECK-LABEL: define void @add_matrix_scalar_int_short(<27 x i32> %a, i16 signext %vs)
// CHECK: [[MATRIX:%.*]] = load <27 x i32>, <27 x i32>* [[MAT_ADDR:%.*]], align 4
// CHECK-NEXT: [[SCALAR:%.*]] = load i16, i16* %vs.addr, align 2
// CHECK-NEXT: [[SCALAR_EXT:%.*]] = sext i16 [[SCALAR]] to i32
// CHECK-NEXT: [[SCALAR_EMBED:%.*]] = insertelement <27 x i32> undef, i32 [[SCALAR_EXT]], i32 0
// CHECK-NEXT: [[SCALAR_EMBED1:%.*]] = shufflevector <27 x i32> [[SCALAR_EMBED]], <27 x i32> undef, <27 x i32> zeroinitializer
// CHECK-NEXT: [[RES:%.*]] = add <27 x i32> [[MATRIX]], [[SCALAR_EMBED1]]
// CHECK-NEXT: store <27 x i32> [[RES]], <27 x i32>* [[MAT_ADDR]], align 4
a = a + vs;
}
void add_matrix_scalar_int_long_int(ix9x3_t a, long int vli) {
// CHECK-LABEL: define void @add_matrix_scalar_int_long_int(<27 x i32> %a, i64 %vli)
// CHECK: [[MATRIX:%.*]] = load <27 x i32>, <27 x i32>* [[MAT_ADDR:%.*]], align 4
// CHECK-NEXT: [[SCALAR:%.*]] = load i64, i64* %vli.addr, align 8
// CHECK-NEXT: [[SCALAR_TRUNC:%.*]] = trunc i64 [[SCALAR]] to i32
// CHECK-NEXT: [[SCALAR_EMBED:%.*]] = insertelement <27 x i32> undef, i32 [[SCALAR_TRUNC]], i32 0
// CHECK-NEXT: [[SCALAR_EMBED1:%.*]] = shufflevector <27 x i32> [[SCALAR_EMBED]], <27 x i32> undef, <27 x i32> zeroinitializer
// CHECK-NEXT: [[RES:%.*]] = add <27 x i32> [[MATRIX]], [[SCALAR_EMBED1]]
// CHECK-NEXT: store <27 x i32> [[RES]], <27 x i32>* [[MAT_ADDR]], align 4
a = a + vli;
}
void add_matrix_scalar_int_unsigned_long_long(ix9x3_t a, unsigned long long int vulli) {
// CHECK-LABEL: define void @add_matrix_scalar_int_unsigned_long_long(<27 x i32> %a, i64 %vulli)
// CHECK: [[MATRIX:%.*]] = load <27 x i32>, <27 x i32>* [[MAT_ADDR:%.*]], align 4
// CHECK-NEXT: [[SCALAR:%.*]] = load i64, i64* %vulli.addr, align 8
// CHECK-NEXT: [[SCALAR_TRUNC:%.*]] = trunc i64 [[SCALAR]] to i32
// CHECK-NEXT: [[SCALAR_EMBED:%.*]] = insertelement <27 x i32> undef, i32 [[SCALAR_TRUNC]], i32 0
// CHECK-NEXT: [[SCALAR_EMBED1:%.*]] = shufflevector <27 x i32> [[SCALAR_EMBED]], <27 x i32> undef, <27 x i32> zeroinitializer
// CHECK-NEXT: [[RES:%.*]] = add <27 x i32> [[MATRIX]], [[SCALAR_EMBED1]]
// CHECK-NEXT: store <27 x i32> [[RES]], <27 x i32>* [[MAT_ADDR]], align 4
a = a + vulli;
}
void add_matrix_scalar_long_long_int_short(ullx4x2_t b, short vs) {
// CHECK-LABEL: define void @add_matrix_scalar_long_long_int_short(<8 x i64> %b, i16 signext %vs)
// CHECK: [[SCALAR:%.*]] = load i16, i16* %vs.addr, align 2
// CHECK-NEXT: [[SCALAR_EXT:%.*]] = sext i16 [[SCALAR]] to i64
// CHECK-NEXT: [[MATRIX:%.*]] = load <8 x i64>, <8 x i64>* {{.*}}, align 8
// CHECK-NEXT: [[SCALAR_EMBED:%.*]] = insertelement <8 x i64> undef, i64 [[SCALAR_EXT]], i32 0
// CHECK-NEXT: [[SCALAR_EMBED1:%.*]] = shufflevector <8 x i64> [[SCALAR_EMBED]], <8 x i64> undef, <8 x i32> zeroinitializer
// CHECK-NEXT: [[RES:%.*]] = add <8 x i64> [[SCALAR_EMBED1]], [[MATRIX]]
// CHECK-NEXT: store <8 x i64> [[RES]], <8 x i64>* {{.*}}, align 8
b = vs + b;
}
void add_matrix_scalar_long_long_int_int(ullx4x2_t b, long int vli) {
// CHECK-LABEL: define void @add_matrix_scalar_long_long_int_int(<8 x i64> %b, i64 %vli)
// CHECK: [[SCALAR:%.*]] = load i64, i64* %vli.addr, align 8
// CHECK-NEXT: [[MATRIX:%.*]] = load <8 x i64>, <8 x i64>* {{.*}}, align 8
// CHECK-NEXT: [[SCALAR_EMBED:%.*]] = insertelement <8 x i64> undef, i64 [[SCALAR]], i32 0
// CHECK-NEXT: [[SCALAR_EMBED1:%.*]] = shufflevector <8 x i64> [[SCALAR_EMBED]], <8 x i64> undef, <8 x i32> zeroinitializer
// CHECK-NEXT: [[RES:%.*]] = add <8 x i64> [[SCALAR_EMBED1]], [[MATRIX]]
// CHECK-NEXT: store <8 x i64> [[RES]], <8 x i64>* {{.*}}, align 8
b = vli + b;
}
void add_matrix_scalar_long_long_int_unsigned_long_long(ullx4x2_t b, unsigned long long int vulli) {
// CHECK-LABEL: define void @add_matrix_scalar_long_long_int_unsigned_long_long
// CHECK: [[SCALAR:%.*]] = load i64, i64* %vulli.addr, align 8
// CHECK-NEXT: [[MATRIX:%.*]] = load <8 x i64>, <8 x i64>* %0, align 8
// CHECK-NEXT: [[SCALAR_EMBED:%.*]] = insertelement <8 x i64> undef, i64 [[SCALAR]], i32 0
// CHECK-NEXT: [[SCALAR_EMBED1:%.*]] = shufflevector <8 x i64> [[SCALAR_EMBED]], <8 x i64> undef, <8 x i32> zeroinitializer
// CHECK-NEXT: [[RES:%.*]] = add <8 x i64> [[SCALAR_EMBED1]], [[MATRIX]]
// CHECK-NEXT: store <8 x i64> [[RES]], <8 x i64>* {{.*}}, align 8
b = vulli + b;
}
// Tests for matrix multiplication.
void multiply_matrix_matrix_double(dx5x5_t b, dx5x5_t c) {
// CHECK-LABEL: @multiply_matrix_matrix_double(
// CHECK: [[B:%.*]] = load <25 x double>, <25 x double>* {{.*}}, align 8
// CHECK-NEXT: [[C:%.*]] = load <25 x double>, <25 x double>* {{.*}}, align 8
// CHECK-NEXT: [[RES:%.*]] = call <25 x double> @llvm.matrix.multiply.v25f64.v25f64.v25f64(<25 x double> [[B]], <25 x double> [[C]], i32 5, i32 5, i32 5)
// CHECK-NEXT: [[A_ADDR:%.*]] = bitcast [25 x double]* %a to <25 x double>*
// CHECK-NEXT: store <25 x double> [[RES]], <25 x double>* [[A_ADDR]], align 8
// CHECK-NEXT: ret void
//
dx5x5_t a;
a = b * c;
}
typedef int ix3x9_t __attribute__((matrix_type(3, 9)));
typedef int ix9x9_t __attribute__((matrix_type(9, 9)));
// CHECK-LABEL: @multiply_matrix_matrix_int(
// CHECK: [[B:%.*]] = load <27 x i32>, <27 x i32>* {{.*}}, align 4
// CHECK-NEXT: [[C:%.*]] = load <27 x i32>, <27 x i32>* {{.*}}, align 4
// CHECK-NEXT: [[RES:%.*]] = call <81 x i32> @llvm.matrix.multiply.v81i32.v27i32.v27i32(<27 x i32> [[B]], <27 x i32> [[C]], i32 9, i32 3, i32 9)
// CHECK-NEXT: [[A_ADDR:%.*]] = bitcast [81 x i32]* %a to <81 x i32>*
// CHECK-NEXT: store <81 x i32> [[RES]], <81 x i32>* [[A_ADDR]], align 4
// CHECK-NEXT: ret void
//
void multiply_matrix_matrix_int(ix9x3_t b, ix3x9_t c) {
ix9x9_t a;
a = b * c;
}
// CHECK-LABEL: @multiply_double_matrix_scalar_float(
// CHECK: [[A:%.*]] = load <25 x double>, <25 x double>* {{.*}}, align 8
// CHECK-NEXT: [[S:%.*]] = load float, float* %s.addr, align 4
// CHECK-NEXT: [[S_EXT:%.*]] = fpext float [[S]] to double
// CHECK-NEXT: [[VECINSERT:%.*]] = insertelement <25 x double> undef, double [[S_EXT]], i32 0
// CHECK-NEXT: [[VECSPLAT:%.*]] = shufflevector <25 x double> [[VECINSERT]], <25 x double> undef, <25 x i32> zeroinitializer
// CHECK-NEXT: [[RES:%.*]] = fmul <25 x double> [[A]], [[VECSPLAT]]
// CHECK-NEXT: store <25 x double> [[RES]], <25 x double>* {{.*}}, align 8
// CHECK-NEXT: ret void
//
void multiply_double_matrix_scalar_float(dx5x5_t a, float s) {
a = a * s;
}
// CHECK-LABEL: @multiply_double_matrix_scalar_double(
// CHECK: [[A:%.*]] = load <25 x double>, <25 x double>* {{.*}}, align 8
// CHECK-NEXT: [[S:%.*]] = load double, double* %s.addr, align 8
// CHECK-NEXT: [[VECINSERT:%.*]] = insertelement <25 x double> undef, double [[S]], i32 0
// CHECK-NEXT: [[VECSPLAT:%.*]] = shufflevector <25 x double> [[VECINSERT]], <25 x double> undef, <25 x i32> zeroinitializer
// CHECK-NEXT: [[RES:%.*]] = fmul <25 x double> [[A]], [[VECSPLAT]]
// CHECK-NEXT: store <25 x double> [[RES]], <25 x double>* {{.*}}, align 8
// CHECK-NEXT: ret void
//
void multiply_double_matrix_scalar_double(dx5x5_t a, double s) {
a = a * s;
}
// CHECK-LABEL: @multiply_float_matrix_scalar_double(
// CHECK: [[S:%.*]] = load double, double* %s.addr, align 8
// CHECK-NEXT: [[S_TRUNC:%.*]] = fptrunc double [[S]] to float
// CHECK-NEXT: [[MAT:%.*]] = load <6 x float>, <6 x float>* [[MAT_ADDR:%.*]], align 4
// CHECK-NEXT: [[VECINSERT:%.*]] = insertelement <6 x float> undef, float [[S_TRUNC]], i32 0
// CHECK-NEXT: [[VECSPLAT:%.*]] = shufflevector <6 x float> [[VECINSERT]], <6 x float> undef, <6 x i32> zeroinitializer
// CHECK-NEXT: [[RES:%.*]] = fmul <6 x float> [[VECSPLAT]], [[MAT]]
// CHECK-NEXT: store <6 x float> [[RES]], <6 x float>* [[MAT_ADDR]], align 4
// CHECK-NEXT: ret void
//
void multiply_float_matrix_scalar_double(fx2x3_t b, double s) {
b = s * b;
}
// CHECK-LABEL: @multiply_int_matrix_scalar_short(
// CHECK: [[S:%.*]] = load i16, i16* %s.addr, align 2
// CHECK-NEXT: [[S_EXT:%.*]] = sext i16 [[S]] to i32
// CHECK-NEXT: [[MAT:%.*]] = load <27 x i32>, <27 x i32>* [[MAT_ADDR:%.*]], align 4
// CHECK-NEXT: [[VECINSERT:%.*]] = insertelement <27 x i32> undef, i32 [[S_EXT]], i32 0
// CHECK-NEXT: [[VECSPLAT:%.*]] = shufflevector <27 x i32> [[VECINSERT]], <27 x i32> undef, <27 x i32> zeroinitializer
// CHECK-NEXT: [[RES:%.*]] = mul <27 x i32> [[VECSPLAT]], [[MAT]]
// CHECK-NEXT: store <27 x i32> [[RES]], <27 x i32>* [[MAT_ADDR]], align 4
// CHECK-NEXT: ret void
//
void multiply_int_matrix_scalar_short(ix9x3_t b, short s) {
b = s * b;
}
// CHECK-LABEL: @multiply_int_matrix_scalar_ull(
// CHECK: [[MAT:%.*]] = load <27 x i32>, <27 x i32>* [[MAT_ADDR:%.*]], align 4
// CHECK-NEXT: [[S:%.*]] = load i64, i64* %s.addr, align 8
// CHECK-NEXT: [[S_TRUNC:%.*]] = trunc i64 [[S]] to i32
// CHECK-NEXT: [[VECINSERT:%.*]] = insertelement <27 x i32> undef, i32 [[S_TRUNC]], i32 0
// CHECK-NEXT: [[VECSPLAT:%.*]] = shufflevector <27 x i32> [[VECINSERT]], <27 x i32> undef, <27 x i32> zeroinitializer
// CHECK-NEXT: [[RES:%.*]] = mul <27 x i32> [[MAT]], [[VECSPLAT]]
// CHECK-NEXT: store <27 x i32> [[RES]], <27 x i32>* [[MAT_ADDR]], align 4
// CHECK-NEXT: ret void
//
void multiply_int_matrix_scalar_ull(ix9x3_t b, unsigned long long s) {
b = b * s;
}
// CHECK-LABEL: @multiply_float_matrix_constant(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[A_ADDR:%.*]] = alloca [6 x float], align 4
// CHECK-NEXT: [[MAT_ADDR:%.*]] = bitcast [6 x float]* [[A_ADDR]] to <6 x float>*
// CHECK-NEXT: store <6 x float> [[A:%.*]], <6 x float>* [[MAT_ADDR]], align 4
// CHECK-NEXT: [[MAT:%.*]] = load <6 x float>, <6 x float>* [[MAT_ADDR]], align 4
// CHECK-NEXT: [[RES:%.*]] = fmul <6 x float> [[MAT]], <float 2.500000e+00, float 2.500000e+00, float 2.500000e+00, float 2.500000e+00, float 2.500000e+00, float 2.500000e+00>
// CHECK-NEXT: store <6 x float> [[RES]], <6 x float>* [[MAT_ADDR]], align 4
// CHECK-NEXT: ret void
//
void multiply_float_matrix_constant(fx2x3_t a) {
a = a * 2.5;
}
// CHECK-LABEL: @multiply_int_matrix_constant(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[A_ADDR:%.*]] = alloca [27 x i32], align 4
// CHECK-NEXT: [[MAT_ADDR:%.*]] = bitcast [27 x i32]* [[A_ADDR]] to <27 x i32>*
// CHECK-NEXT: store <27 x i32> [[A:%.*]], <27 x i32>* [[MAT_ADDR]], align 4
// CHECK-NEXT: [[MAT:%.*]] = load <27 x i32>, <27 x i32>* [[MAT_ADDR]], align 4
// CHECK-NEXT: [[RES:%.*]] = mul <27 x i32> <i32 5, i32 5, i32 5, i32 5, i32 5, i32 5, i32 5, i32 5, i32 5, i32 5, i32 5, i32 5, i32 5, i32 5, i32 5, i32 5, i32 5, i32 5, i32 5, i32 5, i32 5, i32 5, i32 5, i32 5, i32 5, i32 5, i32 5>, [[MAT]]
// CHECK-NEXT: store <27 x i32> [[RES]], <27 x i32>* [[MAT_ADDR]], align 4
// CHECK-NEXT: ret void
//
void multiply_int_matrix_constant(ix9x3_t a) {
a = 5 * a;
}
// Tests for the matrix type operators.
typedef double dx5x5_t __attribute__((matrix_type(5, 5)));
typedef float fx2x3_t __attribute__((matrix_type(2, 3)));
// Check that we can use matrix index expression on different floating point
// matrixes and indices.
void insert_double_matrix_const_idx_ll_u_double(dx5x5_t a, double d, fx2x3_t b, float e, int j, unsigned k) {
// CHECK-LABEL: @insert_double_matrix_const_idx_ll_u_double(
// CHECK: [[D:%.*]] = load double, double* %d.addr, align 8
// CHECK-NEXT: [[MAT:%.*]] = load <25 x double>, <25 x double>* {{.*}}, align 8
// CHECK-NEXT: [[MATINS:%.*]] = insertelement <25 x double> [[MAT]], double [[D]], i64 5
// CHECK-NEXT: store <25 x double> [[MATINS]], <25 x double>* {{.*}}, align 8
// CHECK-NEXT: ret void
a[0ll][1u] = d;
}
void insert_double_matrix_const_idx_i_u_double(dx5x5_t a, double d) {
// CHECK-LABEL: @insert_double_matrix_const_idx_i_u_double(
// CHECK: [[D:%.*]] = load double, double* %d.addr, align 8
// CHECK-NEXT: [[MAT:%.*]] = load <25 x double>, <25 x double>* [[MAT_ADDR:%.*]], align 8
// CHECK-NEXT: [[MATINS:%.*]] = insertelement <25 x double> [[MAT]], double [[D]], i64 21
// CHECK-NEXT: store <25 x double> [[MATINS]], <25 x double>* [[MAT_ADDR]], align 8
// CHECK-NEXT: ret void
a[1][4u] = d;
}
void insert_float_matrix_const_idx_ull_i_float(fx2x3_t b, float e) {
// CHECK-LABEL: @insert_float_matrix_const_idx_ull_i_float(
// CHECK: [[E:%.*]] = load float, float* %e.addr, align 4
// CHECK-NEXT: [[MAT:%.*]] = load <6 x float>, <6 x float>* [[MAT_ADDR:%.*]], align 4
// CHECK-NEXT: [[MATINS:%.*]] = insertelement <6 x float> [[MAT]], float [[E]], i64 3
// CHECK-NEXT: store <6 x float> [[MATINS]], <6 x float>* [[MAT_ADDR]], align 4
// CHECK-NEXT: ret void
b[1ull][1] = e;
}
void insert_float_matrix_idx_i_u_float(fx2x3_t b, float e, int j, unsigned k) {
// CHECK-LABEL: @insert_float_matrix_idx_i_u_float(
// CHECK: [[E:%.*]] = load float, float* %e.addr, align 4
// CHECK-NEXT: [[J:%.*]] = load i32, i32* %j.addr, align 4
// CHECK-NEXT: [[J_EXT:%.*]] = sext i32 [[J]] to i64
// CHECK-NEXT: [[K:%.*]] = load i32, i32* %k.addr, align 4
// CHECK-NEXT: [[K_EXT:%.*]] = zext i32 [[K]] to i64
// CHECK-NEXT: [[IDX1:%.*]] = mul i64 [[K_EXT]], 2
// CHECK-NEXT: [[IDX2:%.*]] = add i64 [[IDX1]], [[J_EXT]]
// CHECK-NEXT: [[MAT:%.*]] = load <6 x float>, <6 x float>* [[MAT_ADDR:%.*]], align 4
// CHECK-NEXT: [[MATINS:%.*]] = insertelement <6 x float> [[MAT]], float [[E]], i64 [[IDX2]]
// CHECK-NEXT: store <6 x float> [[MATINS]], <6 x float>* [[MAT_ADDR]], align 4
// CHECK-NEXT: ret void
b[j][k] = e;
}
void insert_float_matrix_idx_s_ull_float(fx2x3_t b, float e, short j, unsigned long long k) {
// CHECK-LABEL: @insert_float_matrix_idx_s_ull_float(
// CHECK: [[E:%.*]] = load float, float* %e.addr, align 4
// CHECK-NEXT: [[J:%.*]] = load i16, i16* %j.addr, align 2
// CHECK-NEXT: [[J_EXT:%.*]] = sext i16 [[J]] to i64
// CHECK-NEXT: [[K:%.*]] = load i64, i64* %k.addr, align 8
// CHECK-NEXT: [[IDX1:%.*]] = mul i64 [[K]], 2
// CHECK-NEXT: [[IDX2:%.*]] = add i64 [[IDX1]], [[J_EXT]]
// CHECK-NEXT: [[MAT:%.*]] = load <6 x float>, <6 x float>* [[MAT_ADDR:%.*]], align 4
// CHECK-NEXT: [[MATINS:%.*]] = insertelement <6 x float> [[MAT]], float [[E]], i64 [[IDX2]]
// CHECK-NEXT: store <6 x float> [[MATINS]], <6 x float>* [[MAT_ADDR]], align 4
// CHECK-NEXT: ret void
(b)[j][k] = e;
}
// Check that we can can use matrix index expressions on integer matrixes.
typedef int ix9x3_t __attribute__((matrix_type(9, 3)));
void insert_int_idx_expr(ix9x3_t a, int i) {
// CHECK-LABEL: @insert_int_idx_expr(
// CHECK: [[I1:%.*]] = load i32, i32* %i.addr, align 4
// CHECK-NEXT: [[I2:%.*]] = load i32, i32* %i.addr, align 4
// CHECK-NEXT: [[I2_ADD:%.*]] = add nsw i32 4, [[I2]]
// CHECK-NEXT: [[ADD_EXT:%.*]] = sext i32 [[I2_ADD]] to i64
// CHECK-NEXT: [[IDX2:%.*]] = add i64 18, [[ADD_EXT]]
// CHECK-NEXT: [[MAT:%.*]] = load <27 x i32>, <27 x i32>* [[MAT_ADDR:%.*]], align 4
// CHECK-NEXT: [[MATINS:%.*]] = insertelement <27 x i32> [[MAT]], i32 [[I1]], i64 [[IDX2]]
// CHECK-NEXT: store <27 x i32> [[MATINS]], <27 x i32>* [[MAT_ADDR]], align 4
// CHECK-NEXT: ret void
a[4 + i][1 + 1u] = i;
}
// Check that we can can use matrix index expressions on FP and integer
// matrixes.
typedef int ix9x3_t __attribute__((matrix_type(9, 3)));
void insert_float_into_int_matrix(ix9x3_t *a, int i) {
// CHECK-LABEL: @insert_float_into_int_matrix(
// CHECK: [[I:%.*]] = load i32, i32* %i.addr, align 4
// CHECK-NEXT: [[MAT_ADDR1:%.*]] = load [27 x i32]*, [27 x i32]** %a.addr, align 8
// CHECK-NEXT: [[MAT_ADDR2:%.*]] = bitcast [27 x i32]* [[MAT_ADDR1]] to <27 x i32>*
// CHECK-NEXT: [[MAT:%.*]] = load <27 x i32>, <27 x i32>* [[MAT_ADDR2]], align 4
// CHECK-NEXT: [[MATINS:%.*]] = insertelement <27 x i32> [[MAT]], i32 [[I]], i64 13
// CHECK-NEXT: store <27 x i32> [[MATINS]], <27 x i32>* [[MAT_ADDR2]], align 4
// CHECK-NEXT: ret void
(*a)[4][1] = i;
}
// Check that we can use overloaded matrix index expressions on matrixes with
// matching dimensions, but different element types.
typedef double dx3x3_t __attribute__((matrix_type(3, 3)));
typedef float fx3x3_t __attribute__((matrix_type(3, 3)));
void insert_matching_dimensions1(dx3x3_t a, double i) {
// CHECK-LABEL: @insert_matching_dimensions1(
// CHECK: [[I:%.*]] = load double, double* %i.addr, align 8
// CHECK-NEXT: [[MAT:%.*]] = load <9 x double>, <9 x double>* [[MAT_ADDR:%.*]], align 8
// CHECK-NEXT: [[MATINS:%.*]] = insertelement <9 x double> [[MAT]], double [[I]], i64 5
// CHECK-NEXT: store <9 x double> [[MATINS]], <9 x double>* [[MAT_ADDR]], align 8
// CHECK-NEXT: ret void
a[2u][1u] = i;
}
void insert_matching_dimensions(fx3x3_t b, float e) {
// CHECK-LABEL: @insert_matching_dimensions(
// CHECK: [[E:%.*]] = load float, float* %e.addr, align 4
// CHECK-NEXT: [[MAT:%.*]] = load <9 x float>, <9 x float>* [[MAT_ADDR:%.*]], align 4
// CHECK-NEXT: [[MATINS:%.*]] = insertelement <9 x float> [[MAT]], float [[E]], i64 7
// CHECK-NEXT: store <9 x float> [[MATINS]], <9 x float>* [[MAT_ADDR]], align 4
// CHECK-NEXT: ret void
b[1u][2u] = e;
}
double extract_double(dx5x5_t a) {
// CHECK-LABEL: @extract_double(
// CHECK: [[MAT:%.*]] = load <25 x double>, <25 x double>* {{.*}}, align 8
// CHECK-NEXT: [[MATEXT:%.*]] = extractelement <25 x double> [[MAT]], i64 12
// CHECK-NEXT: ret double [[MATEXT]]
return a[2][3 - 1u];
}
double extract_float(fx3x3_t b) {
// CHECK-LABEL: @extract_float(
// CHECK: [[MAT:%.*]] = load <9 x float>, <9 x float>* {{.*}}, align 4
// CHECK-NEXT: [[MATEXT:%.*]] = extractelement <9 x float> [[MAT]], i64 5
// CHECK-NEXT: [[TO_DOUBLE:%.*]] = fpext float [[MATEXT]] to double
// CHECK-NEXT: ret double [[TO_DOUBLE]]
return b[2][1];
}
int extract_int(ix9x3_t c, unsigned long j) {
// CHECK-LABEL: @extract_int(
// CHECK: [[J1:%.*]] = load i64, i64* %j.addr, align 8
// CHECK-NEXT: [[J2:%.*]] = load i64, i64* %j.addr, align 8
// CHECK-NEXT: [[MAT:%.*]] = load <27 x i32>, <27 x i32>* {{.*}}, align 4
// CHECK-NEXT: [[IDX1:%.*]] = mul i64 [[J2]], 9
// CHECK-NEXT: [[IDX2:%.*]] = add i64 [[IDX1]], [[J1]]
// CHECK-NEXT: [[MATEXT:%.*]] = extractelement <27 x i32> [[MAT]], i64 [[IDX2]]
// CHECK-NEXT: ret i32 [[MATEXT]]
return c[j][j];
}
typedef double dx3x2_t __attribute__((matrix_type(3, 2)));
double test_extract_matrix_pointer1(dx3x2_t **ptr, unsigned j) {
// CHECK-LABEL: @test_extract_matrix_pointer1(
// CHECK: [[J:%.*]] = load i32, i32* %j.addr, align 4
// CHECK-NEXT: [[J_EXT:%.*]] = zext i32 [[J]] to i64
// CHECK-NEXT: [[PTR:%.*]] = load [6 x double]**, [6 x double]*** %ptr.addr, align 8
// CHECK-NEXT: [[PTR_IDX:%.*]] = getelementptr inbounds [6 x double]*, [6 x double]** [[PTR]], i64 1
// CHECK-NEXT: [[PTR2:%.*]] = load [6 x double]*, [6 x double]** [[PTR_IDX]], align 8
// CHECK-NEXT: [[PTR2_IDX:%.*]] = getelementptr inbounds [6 x double], [6 x double]* [[PTR2]], i64 2
// CHECK-NEXT: [[MAT_ADDR:%.*]] = bitcast [6 x double]* [[PTR2_IDX]] to <6 x double>*
// CHECK-NEXT: [[MAT:%.*]] = load <6 x double>, <6 x double>* [[MAT_ADDR]], align 8
// CHECK-NEXT: [[IDX:%.*]] = add i64 3, [[J_EXT]]
// CHECK-NEXT: [[MATEXT:%.*]] = extractelement <6 x double> [[MAT]], i64 [[IDX]]
// CHECK-NEXT: ret double [[MATEXT]]
return ptr[1][2][j][1];
}
double test_extract_matrix_pointer2(dx3x2_t **ptr) {
// CHECK-LABEL: @test_extract_matrix_pointer2(
// CHECK-NEXT: entry:
// CHECK: [[PTR:%.*]] = load [6 x double]**, [6 x double]*** %ptr.addr, align 8
// CHECK-NEXT: [[PTR_IDX:%.*]] = getelementptr inbounds [6 x double]*, [6 x double]** [[PTR]], i64 4
// CHECK-NEXT: [[PTR2:%.*]] = load [6 x double]*, [6 x double]** [[PTR_IDX]], align 8
// CHECK-NEXT: [[PTR2_IDX:%.*]] = getelementptr inbounds [6 x double], [6 x double]* [[PTR2]], i64 6
// CHECK-NEXT: [[MAT_ADDR:%.*]] = bitcast [6 x double]* [[PTR2_IDX]] to <6 x double>*
// CHECK-NEXT: [[MAT:%.*]] = load <6 x double>, <6 x double>* [[MAT_ADDR]], align 8
// CHECK-NEXT: [[MATEXT:%.*]] = extractelement <6 x double> [[MAT]], i64 5
// CHECK-NEXT: ret double [[MATEXT]]
return (*(*(ptr + 4) + 6))[2][1 * 3 - 2];
}
void insert_extract(dx5x5_t a, fx3x3_t b, unsigned long j, short k) {
// CHECK-LABEL: @insert_extract(
// CHECK: [[K:%.*]] = load i16, i16* %k.addr, align 2
// CHECK-NEXT: [[K_EXT:%.*]] = sext i16 [[K]] to i64
// CHECK-NEXT: [[MAT:%.*]] = load <9 x float>, <9 x float>* [[MAT_ADDR:%.*]], align 4
// CHECK-NEXT: [[IDX1:%.*]] = mul i64 [[K_EXT]], 3
// CHECK-NEXT: [[IDX2:%.*]] = add i64 [[IDX1]], 0
// CHECK-NEXT: [[MATEXT:%.*]] = extractelement <9 x float> [[MAT]], i64 [[IDX]]
// CHECK-NEXT: [[J:%.*]] = load i64, i64* %j.addr, align 8
// CHECK-NEXT: [[IDX3:%.*]] = mul i64 [[J]], 3
// CHECK-NEXT: [[IDX4:%.*]] = add i64 [[IDX3]], 2
// CHECK-NEXT: [[MAT2:%.*]] = load <9 x float>, <9 x float>* [[MAT_ADDR]], align 4
// CHECK-NEXT: [[MATINS:%.*]] = insertelement <9 x float> [[MAT2]], float [[MATEXT]], i64 [[IDX4]]
// CHECK-NEXT: store <9 x float> [[MATINS]], <9 x float>* [[MAT_ADDR]], align 4
// CHECK-NEXT: ret void
b[2][j] = b[0][k];
}
void insert_compound_stmt(dx5x5_t a) {
// CHECK-LABEL: define void @insert_compound_stmt(<25 x double> %a)
// CHECK: [[A:%.*]] = load <25 x double>, <25 x double>* [[A_PTR:%.*]], align 8
// CHECK-NEXT: [[EXT:%.*]] = extractelement <25 x double> [[A]], i64 17
// CHECK-NEXT: [[SUB:%.*]] = fsub double [[EXT]], 1.000000e+00
// CHECK-NEXT: [[A2:%.*]] = load <25 x double>, <25 x double>* [[A_PTR]], align 8
// CHECK-NEXT: [[INS:%.*]] = insertelement <25 x double> [[A2]], double [[SUB]], i64 17
// CHECK-NEXT: store <25 x double> [[INS]], <25 x double>* [[A_PTR]], align 8
// CHECK-NEXT: ret void
a[2][3] -= 1.0;
}
struct Foo {
fx2x3_t mat;
};
void insert_compound_stmt_field(struct Foo *a, float f, unsigned i, unsigned j) {
// CHECK-LABEL: define void @insert_compound_stmt_field(%struct.Foo* %a, float %f, i32 %i, i32 %j)
// CHECK: [[I:%.*]] = load i32, i32* %i.addr, align 4
// CHECK-NEXT: [[I_EXT:%.*]] = zext i32 [[I]] to i64
// CHECK-NEXT: [[J:%.*]] = load i32, i32* %j.addr, align 4
// CHECK-NEXT: [[J_EXT:%.*]] = zext i32 [[J]] to i64
// CHECK-NEXT: [[IDX1:%.*]] = mul i64 [[J_EXT]], 2
// CHECK-NEXT: [[IDX2:%.*]] = add i64 [[IDX1]], [[I_EXT]]
// CHECK-NEXT: [[MAT_PTR:%.*]] = bitcast [6 x float]* %mat to <6 x float>*
// CHECK-NEXT: [[MAT:%.*]] = load <6 x float>, <6 x float>* [[MAT_PTR]], align 4
// CHECK-NEXT: [[EXT:%.*]] = extractelement <6 x float> [[MAT]], i64 [[IDX2]]
// CHECK-NEXT: [[SUM:%.*]] = fadd float [[EXT]], {{.*}}
// CHECK-NEXT: [[MAT2:%.*]] = load <6 x float>, <6 x float>* [[MAT_PTR]], align 4
// CHECK-NEXT: [[INS:%.*]] = insertelement <6 x float> [[MAT2]], float [[SUM]], i64 [[IDX2]]
// CHECK-NEXT: store <6 x float> [[INS]], <6 x float>* [[MAT_PTR]], align 4
// CHECK-NEXT: ret void
a->mat[i][j] += f;
}
void matrix_as_idx(ix9x3_t a, int i, int j, dx5x5_t b) {
// CHECK-LABEL: define void @matrix_as_idx(<27 x i32> %a, i32 %i, i32 %j, <25 x double> %b)
// CHECK: [[I1:%.*]] = load i32, i32* %i.addr, align 4
// CHECK-NEXT: [[I1_EXT:%.*]] = sext i32 [[I1]] to i64
// CHECK-NEXT: [[J1:%.*]] = load i32, i32* %j.addr, align 4
// CHECK-NEXT: [[J1_EXT:%.*]] = sext i32 [[J1]] to i64
// CHECK-NEXT: [[A:%.*]] = load <27 x i32>, <27 x i32>* %0, align 4
// CHECK-NEXT: [[IDX1_1:%.*]] = mul i64 [[J1_EXT]], 9
// CHECK-NEXT: [[IDX1_2:%.*]] = add i64 [[IDX1_1]], [[I1_EXT]]
// CHECK-NEXT: [[MI1:%.*]] = extractelement <27 x i32> [[A]], i64 [[IDX1_2]]
// CHECK-NEXT: [[MI1_EXT:%.*]] = sext i32 [[MI1]] to i64
// CHECK-NEXT: [[J2:%.*]] = load i32, i32* %j.addr, align 4
// CHECK-NEXT: [[J2_EXT:%.*]] = sext i32 [[J2]] to i64
// CHECK-NEXT: [[I2:%.*]] = load i32, i32* %i.addr, align 4
// CHECK-NEXT: [[I2_EXT:%.*]] = sext i32 [[I2]] to i64
// CHECK-NEXT: [[A2:%.*]] = load <27 x i32>, <27 x i32>* {{.*}}, align 4
// CHECK-NEXT: [[IDX2_1:%.*]] = mul i64 [[I2_EXT]], 9
// CHECK-NEXT: [[IDX2_2:%.*]] = add i64 [[IDX2_1]], [[J2_EXT]]
// CHECK-NEXT: [[MI2:%.*]] = extractelement <27 x i32> [[A2]], i64 [[IDX2_2]]
// CHECK-NEXT: [[MI3:%.*]] = add nsw i32 [[MI2]], 2
// CHECK-NEXT: [[MI3_EXT:%.*]] = sext i32 [[MI3]] to i64
// CHECK-NEXT: [[IDX3_1:%.*]] = mul i64 [[MI3_EXT]], 5
// CHECK-NEXT: [[IDX3_2:%.*]] = add i64 [[IDX3_1]], [[MI1_EXT]]
// CHECK-NEXT: [[B:%.*]] = load <25 x double>, <25 x double>* [[B_PTR:%.*]], align 8
// CHECK-NEXT: [[INS:%.*]] = insertelement <25 x double> [[B]], double 1.500000e+00, i64 [[IDX3_2]]
// CHECK-NEXT: store <25 x double> [[INS]], <25 x double>* [[B_PTR]], align 8
b[a[i][j]][a[j][i] + 2] = 1.5;
}