blob: 0a89addc0bab813d7e02c4ddfc7f26533abac544 [file] [log] [blame]
/* Copyright 2014, Kenneth MacKay. Licensed under the BSD 2-clause license. */
#ifndef _MICRO_ECC_H_
#define _MICRO_ECC_H_
#include <stdint.h>
/* Platform selection options.
If uECC_PLATFORM is not defined, the code will try to guess it based on compiler macros.
Possible values for uECC_PLATFORM are defined below: */
#define uECC_arch_other 0
#define uECC_x86 1
#define uECC_x86_64 2
#define uECC_arm 3
#define uECC_arm_thumb 4
#define uECC_avr 5
#define uECC_arm_thumb2 6
/* If desired, you can define uECC_WORD_SIZE as appropriate for your platform (1, 4, or 8 bytes).
If uECC_WORD_SIZE is not explicitly defined then it will be automatically set based on your platform. */
/* Inline assembly options.
uECC_asm_none - Use standard C99 only.
uECC_asm_small - Use GCC inline assembly for the target platform (if available), optimized for minimum size.
uECC_asm_fast - Use GCC inline assembly optimized for maximum speed. */
#define uECC_asm_none 0
#define uECC_asm_small 1
#define uECC_asm_fast 2
#ifndef uECC_ASM
#define uECC_ASM uECC_asm_fast
#endif
/* Curve selection options. */
#define uECC_secp160r1 1
#define uECC_secp192r1 2
#define uECC_secp256r1 3
#define uECC_secp256k1 4
#ifndef uECC_CURVE
#define uECC_CURVE uECC_secp160r1
#endif
/* uECC_SQUARE_FUNC - If enabled (defined as nonzero), this will cause a specific function to be used for (scalar) squaring
instead of the generic multiplication function. This will make things faster by about 8% but increases the code size. */
#ifndef uECC_SQUARE_FUNC
#define uECC_SQUARE_FUNC 1
#endif
#define uECC_CONCAT1(a, b) a##b
#define uECC_CONCAT(a, b) uECC_CONCAT1(a, b)
#define uECC_size_1 20 /* secp160r1 */
#define uECC_size_2 24 /* secp192r1 */
#define uECC_size_3 32 /* secp256r1 */
#define uECC_size_4 32 /* secp256k1 */
#define uECC_BYTES uECC_CONCAT(uECC_size_, uECC_CURVE)
#ifdef __cplusplus
extern "C"
{
#endif
/* uECC_RNG_Function type
The RNG function should fill p_size random bytes into p_dest. It should return 1 if
p_dest was filled with random data, or 0 if the random data could not be generated.
The filled-in values should be either truly random, or from a cryptographically-secure PRNG.
A correctly functioning RNG function must be set (using uECC_set_rng()) before calling
uECC_make_key() or uECC_sign().
A correct RNG function is set by default when building for Windows, Linux, or OS X.
If you are building on another POSIX-compliant system that supports /dev/random or /dev/urandom,
you can define uECC_POSIX to use the predefined RNG. For embedded platforms there is no predefined
RNG function; you must provide your own.
*/
typedef int (*uECC_RNG_Function)(uint8_t *p_dest, unsigned p_size);
/* uECC_set_rng() function.
Set the function that will be used to generate random bytes. The RNG function should
return 1 if the random data was generated, or 0 if the random data could not be generated.
On platforms where there is no predefined RNG function (eg embedded platforms), this must
be called before uECC_make_key() or uECC_sign() are used.
Inputs:
p_rng - The function that will be used to generate random bytes.
*/
void uECC_set_rng(uECC_RNG_Function p_rng);
/* uECC_make_key() function.
Create a public/private key pair.
Outputs:
p_publicKey - Will be filled in with the public key.
p_privateKey - Will be filled in with the private key.
Returns 1 if the key pair was generated successfully, 0 if an error occurred.
*/
int uECC_make_key(uint8_t p_publicKey[uECC_BYTES*2], uint8_t p_privateKey[uECC_BYTES]);
/* uECC_shared_secret() function.
Compute a shared secret given your secret key and someone else's public key.
Note: It is recommended that you hash the result of uECC_shared_secret() before using it for symmetric encryption or HMAC.
Inputs:
p_publicKey - The public key of the remote party.
p_privateKey - Your private key.
Outputs:
p_secret - Will be filled in with the shared secret value.
Returns 1 if the shared secret was generated successfully, 0 if an error occurred.
*/
int uECC_shared_secret(const uint8_t p_publicKey[uECC_BYTES*2], const uint8_t p_privateKey[uECC_BYTES], uint8_t p_secret[uECC_BYTES]);
/* uECC_sign() function.
Generate an ECDSA signature for a given hash value.
Usage: Compute a hash of the data you wish to sign (SHA-2 is recommended) and pass it in to
this function along with your private key.
Inputs:
p_privateKey - Your private key.
p_hash - The message hash to sign.
Outputs:
p_signature - Will be filled in with the signature value.
Returns 1 if the signature generated successfully, 0 if an error occurred.
*/
int uECC_sign(const uint8_t p_privateKey[uECC_BYTES], const uint8_t p_hash[uECC_BYTES], uint8_t p_signature[uECC_BYTES*2]);
/* uECC_verify() function.
Verify an ECDSA signature.
Usage: Compute the hash of the signed data using the same hash as the signer and
pass it to this function along with the signer's public key and the signature values (r and s).
Inputs:
p_publicKey - The signer's public key
p_hash - The hash of the signed data.
p_signature - The signature value.
Returns 1 if the signature is valid, 0 if it is invalid.
*/
int uECC_verify(const uint8_t p_publicKey[uECC_BYTES*2], const uint8_t p_hash[uECC_BYTES], const uint8_t p_signature[uECC_BYTES*2]);
/* uECC_compress() function.
Compress a public key.
Inputs:
p_publicKey - The public key to compress.
Outputs:
p_compressed - Will be filled in with the compressed public key.
*/
void uECC_compress(const uint8_t p_publicKey[uECC_BYTES*2], uint8_t p_compressed[uECC_BYTES+1]);
/* uECC_decompress() function.
Decompress a compressed public key.
Inputs:
p_compressed - The compressed public key.
Outputs:
p_publicKey - Will be filled in with the decompressed public key.
*/
void uECC_decompress(const uint8_t p_compressed[uECC_BYTES+1], uint8_t p_publicKey[uECC_BYTES*2]);
/* uECC_valid_public_key() function.
Check to see if a public key is valid.
Note that you are not required to check for a valid public key before using any other uECC
functions. However, you may wish to avoid spending CPU time computing a shared secret or
verifying a signature using an invalid public key.
Inputs:
p_publicKey - The public key to check.
Returns 1 if the public key is valid, 0 if it is invalid.
*/
int uECC_valid_public_key(const uint8_t p_publicKey[uECC_BYTES*2]);
/* uECC_compute_public_key() function.
Compute the corresponding public key for a private key.
Inputs:
p_privateKey - The private key to compute the public key for
Outputs:
p_publicKey - Will be filled in with the corresponding public key
Returns 1 if the key was computed successfully, 0 if an error occurred.
*/
int uECC_compute_public_key(const uint8_t p_privateKey[uECC_BYTES], uint8_t p_publicKey[uECC_BYTES * 2]);
/* uECC_bytes() function.
Returns the value of uECC_BYTES. Helpful for foreign-interfaces to higher-level languages.
*/
int uECC_bytes(void);
/* uECC_curve() function.
Returns the value of uECC_CURVE. Helpful for foreign-interfaces to higher-level languages.
*/
int uECC_curve(void);
#ifdef __cplusplus
} /* end of extern "C" */
#endif
#endif /* _MICRO_ECC_H_ */