/* ------------------------------------------------------------------ */ | |
/* Decimal 32-bit format module */ | |
/* ------------------------------------------------------------------ */ | |
/* Copyright (c) IBM Corporation, 2000, 2008. All rights reserved. */ | |
/* */ | |
/* This software is made available under the terms of the */ | |
/* ICU License -- ICU 1.8.1 and later. */ | |
/* */ | |
/* The description and User's Guide ("The decNumber C Library") for */ | |
/* this software is called decNumber.pdf. This document is */ | |
/* available, together with arithmetic and format specifications, */ | |
/* testcases, and Web links, on the General Decimal Arithmetic page. */ | |
/* */ | |
/* Please send comments, suggestions, and corrections to the author: */ | |
/* mfc@uk.ibm.com */ | |
/* Mike Cowlishaw, IBM Fellow */ | |
/* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */ | |
/* ------------------------------------------------------------------ */ | |
/* This module comprises the routines for decimal32 format numbers. */ | |
/* Conversions are supplied to and from decNumber and String. */ | |
/* */ | |
/* This is used when decNumber provides operations, either for all */ | |
/* operations or as a proxy between decNumber and decSingle. */ | |
/* */ | |
/* Error handling is the same as decNumber (qv.). */ | |
/* ------------------------------------------------------------------ */ | |
#include <string.h> // [for memset/memcpy] | |
#include <stdio.h> // [for printf] | |
#define DECNUMDIGITS 7 // make decNumbers with space for 7 | |
#include "decNumber.h" // base number library | |
#include "decNumberLocal.h" // decNumber local types, etc. | |
#include "decimal32.h" // our primary include | |
/* Utility tables and routines [in decimal64.c] */ | |
// DPD2BIN and the reverse are renamed to prevent link-time conflict | |
// if decQuad is also built in the same executable | |
#define DPD2BIN DPD2BINx | |
#define BIN2DPD BIN2DPDx | |
extern const uInt COMBEXP[32], COMBMSD[32]; | |
extern const uShort DPD2BIN[1024]; | |
extern const uShort BIN2DPD[1000]; | |
extern const uByte BIN2CHAR[4001]; | |
extern void decDigitsToDPD(const decNumber *, uInt *, Int); | |
extern void decDigitsFromDPD(decNumber *, const uInt *, Int); | |
#if DECTRACE || DECCHECK | |
void decimal32Show(const decimal32 *); // for debug | |
extern void decNumberShow(const decNumber *); // .. | |
#endif | |
/* Useful macro */ | |
// Clear a structure (e.g., a decNumber) | |
#define DEC_clear(d) memset(d, 0, sizeof(*d)) | |
/* ------------------------------------------------------------------ */ | |
/* decimal32FromNumber -- convert decNumber to decimal32 */ | |
/* */ | |
/* ds is the target decimal32 */ | |
/* dn is the source number (assumed valid) */ | |
/* set is the context, used only for reporting errors */ | |
/* */ | |
/* The set argument is used only for status reporting and for the */ | |
/* rounding mode (used if the coefficient is more than DECIMAL32_Pmax */ | |
/* digits or an overflow is detected). If the exponent is out of the */ | |
/* valid range then Overflow or Underflow will be raised. */ | |
/* After Underflow a subnormal result is possible. */ | |
/* */ | |
/* DEC_Clamped is set if the number has to be 'folded down' to fit, */ | |
/* by reducing its exponent and multiplying the coefficient by a */ | |
/* power of ten, or if the exponent on a zero had to be clamped. */ | |
/* ------------------------------------------------------------------ */ | |
decimal32 * decimal32FromNumber(decimal32 *d32, const decNumber *dn, | |
decContext *set) { | |
uInt status=0; // status accumulator | |
Int ae; // adjusted exponent | |
decNumber dw; // work | |
decContext dc; // .. | |
uInt comb, exp; // .. | |
uInt uiwork; // for macros | |
uInt targ=0; // target 32-bit | |
// If the number has too many digits, or the exponent could be | |
// out of range then reduce the number under the appropriate | |
// constraints. This could push the number to Infinity or zero, | |
// so this check and rounding must be done before generating the | |
// decimal32] | |
ae=dn->exponent+dn->digits-1; // [0 if special] | |
if (dn->digits>DECIMAL32_Pmax // too many digits | |
|| ae>DECIMAL32_Emax // likely overflow | |
|| ae<DECIMAL32_Emin) { // likely underflow | |
decContextDefault(&dc, DEC_INIT_DECIMAL32); // [no traps] | |
dc.round=set->round; // use supplied rounding | |
decNumberPlus(&dw, dn, &dc); // (round and check) | |
// [this changes -0 to 0, so enforce the sign...] | |
dw.bits|=dn->bits&DECNEG; | |
status=dc.status; // save status | |
dn=&dw; // use the work number | |
} // maybe out of range | |
if (dn->bits&DECSPECIAL) { // a special value | |
if (dn->bits&DECINF) targ=DECIMAL_Inf<<24; | |
else { // sNaN or qNaN | |
if ((*dn->lsu!=0 || dn->digits>1) // non-zero coefficient | |
&& (dn->digits<DECIMAL32_Pmax)) { // coefficient fits | |
decDigitsToDPD(dn, &targ, 0); | |
} | |
if (dn->bits&DECNAN) targ|=DECIMAL_NaN<<24; | |
else targ|=DECIMAL_sNaN<<24; | |
} // a NaN | |
} // special | |
else { // is finite | |
if (decNumberIsZero(dn)) { // is a zero | |
// set and clamp exponent | |
if (dn->exponent<-DECIMAL32_Bias) { | |
exp=0; // low clamp | |
status|=DEC_Clamped; | |
} | |
else { | |
exp=dn->exponent+DECIMAL32_Bias; // bias exponent | |
if (exp>DECIMAL32_Ehigh) { // top clamp | |
exp=DECIMAL32_Ehigh; | |
status|=DEC_Clamped; | |
} | |
} | |
comb=(exp>>3) & 0x18; // msd=0, exp top 2 bits .. | |
} | |
else { // non-zero finite number | |
uInt msd; // work | |
Int pad=0; // coefficient pad digits | |
// the dn is known to fit, but it may need to be padded | |
exp=(uInt)(dn->exponent+DECIMAL32_Bias); // bias exponent | |
if (exp>DECIMAL32_Ehigh) { // fold-down case | |
pad=exp-DECIMAL32_Ehigh; | |
exp=DECIMAL32_Ehigh; // [to maximum] | |
status|=DEC_Clamped; | |
} | |
// fastpath common case | |
if (DECDPUN==3 && pad==0) { | |
targ=BIN2DPD[dn->lsu[0]]; | |
if (dn->digits>3) targ|=(uInt)(BIN2DPD[dn->lsu[1]])<<10; | |
msd=(dn->digits==7 ? dn->lsu[2] : 0); | |
} | |
else { // general case | |
decDigitsToDPD(dn, &targ, pad); | |
// save and clear the top digit | |
msd=targ>>20; | |
targ&=0x000fffff; | |
} | |
// create the combination field | |
if (msd>=8) comb=0x18 | ((exp>>5) & 0x06) | (msd & 0x01); | |
else comb=((exp>>3) & 0x18) | msd; | |
} | |
targ|=comb<<26; // add combination field .. | |
targ|=(exp&0x3f)<<20; // .. and exponent continuation | |
} // finite | |
if (dn->bits&DECNEG) targ|=0x80000000; // add sign bit | |
// now write to storage; this is endian | |
UBFROMUI(d32->bytes, targ); // directly store the int | |
if (status!=0) decContextSetStatus(set, status); // pass on status | |
// decimal32Show(d32); | |
return d32; | |
} // decimal32FromNumber | |
/* ------------------------------------------------------------------ */ | |
/* decimal32ToNumber -- convert decimal32 to decNumber */ | |
/* d32 is the source decimal32 */ | |
/* dn is the target number, with appropriate space */ | |
/* No error is possible. */ | |
/* ------------------------------------------------------------------ */ | |
decNumber * decimal32ToNumber(const decimal32 *d32, decNumber *dn) { | |
uInt msd; // coefficient MSD | |
uInt exp; // exponent top two bits | |
uInt comb; // combination field | |
uInt sour; // source 32-bit | |
uInt uiwork; // for macros | |
// load source from storage; this is endian | |
sour=UBTOUI(d32->bytes); // directly load the int | |
comb=(sour>>26)&0x1f; // combination field | |
decNumberZero(dn); // clean number | |
if (sour&0x80000000) dn->bits=DECNEG; // set sign if negative | |
msd=COMBMSD[comb]; // decode the combination field | |
exp=COMBEXP[comb]; // .. | |
if (exp==3) { // is a special | |
if (msd==0) { | |
dn->bits|=DECINF; | |
return dn; // no coefficient needed | |
} | |
else if (sour&0x02000000) dn->bits|=DECSNAN; | |
else dn->bits|=DECNAN; | |
msd=0; // no top digit | |
} | |
else { // is a finite number | |
dn->exponent=(exp<<6)+((sour>>20)&0x3f)-DECIMAL32_Bias; // unbiased | |
} | |
// get the coefficient | |
sour&=0x000fffff; // clean coefficient continuation | |
if (msd) { // non-zero msd | |
sour|=msd<<20; // prefix to coefficient | |
decDigitsFromDPD(dn, &sour, 3); // process 3 declets | |
return dn; | |
} | |
// msd=0 | |
if (!sour) return dn; // easy: coefficient is 0 | |
if (sour&0x000ffc00) // need 2 declets? | |
decDigitsFromDPD(dn, &sour, 2); // process 2 declets | |
else | |
decDigitsFromDPD(dn, &sour, 1); // process 1 declet | |
return dn; | |
} // decimal32ToNumber | |
/* ------------------------------------------------------------------ */ | |
/* to-scientific-string -- conversion to numeric string */ | |
/* to-engineering-string -- conversion to numeric string */ | |
/* */ | |
/* decimal32ToString(d32, string); */ | |
/* decimal32ToEngString(d32, string); */ | |
/* */ | |
/* d32 is the decimal32 format number to convert */ | |
/* string is the string where the result will be laid out */ | |
/* */ | |
/* string must be at least 24 characters */ | |
/* */ | |
/* No error is possible, and no status can be set. */ | |
/* ------------------------------------------------------------------ */ | |
char * decimal32ToEngString(const decimal32 *d32, char *string){ | |
decNumber dn; // work | |
decimal32ToNumber(d32, &dn); | |
decNumberToEngString(&dn, string); | |
return string; | |
} // decimal32ToEngString | |
char * decimal32ToString(const decimal32 *d32, char *string){ | |
uInt msd; // coefficient MSD | |
Int exp; // exponent top two bits or full | |
uInt comb; // combination field | |
char *cstart; // coefficient start | |
char *c; // output pointer in string | |
const uByte *u; // work | |
char *s, *t; // .. (source, target) | |
Int dpd; // .. | |
Int pre, e; // .. | |
uInt uiwork; // for macros | |
uInt sour; // source 32-bit | |
// load source from storage; this is endian | |
sour=UBTOUI(d32->bytes); // directly load the int | |
c=string; // where result will go | |
if (((Int)sour)<0) *c++='-'; // handle sign | |
comb=(sour>>26)&0x1f; // combination field | |
msd=COMBMSD[comb]; // decode the combination field | |
exp=COMBEXP[comb]; // .. | |
if (exp==3) { | |
if (msd==0) { // infinity | |
strcpy(c, "Inf"); | |
strcpy(c+3, "inity"); | |
return string; // easy | |
} | |
if (sour&0x02000000) *c++='s'; // sNaN | |
strcpy(c, "NaN"); // complete word | |
c+=3; // step past | |
if ((sour&0x000fffff)==0) return string; // zero payload | |
// otherwise drop through to add integer; set correct exp | |
exp=0; msd=0; // setup for following code | |
} | |
else exp=(exp<<6)+((sour>>20)&0x3f)-DECIMAL32_Bias; // unbiased | |
// convert 7 digits of significand to characters | |
cstart=c; // save start of coefficient | |
if (msd) *c++='0'+(char)msd; // non-zero most significant digit | |
// Now decode the declets. After extracting each one, it is | |
// decoded to binary and then to a 4-char sequence by table lookup; | |
// the 4-chars are a 1-char length (significant digits, except 000 | |
// has length 0). This allows us to left-align the first declet | |
// with non-zero content, then remaining ones are full 3-char | |
// length. We use fixed-length memcpys because variable-length | |
// causes a subroutine call in GCC. (These are length 4 for speed | |
// and are safe because the array has an extra terminator byte.) | |
#define dpd2char u=&BIN2CHAR[DPD2BIN[dpd]*4]; \ | |
if (c!=cstart) {memcpy(c, u+1, 4); c+=3;} \ | |
else if (*u) {memcpy(c, u+4-*u, 4); c+=*u;} | |
dpd=(sour>>10)&0x3ff; // declet 1 | |
dpd2char; | |
dpd=(sour)&0x3ff; // declet 2 | |
dpd2char; | |
if (c==cstart) *c++='0'; // all zeros -- make 0 | |
if (exp==0) { // integer or NaN case -- easy | |
*c='\0'; // terminate | |
return string; | |
} | |
/* non-0 exponent */ | |
e=0; // assume no E | |
pre=c-cstart+exp; | |
// [here, pre-exp is the digits count (==1 for zero)] | |
if (exp>0 || pre<-5) { // need exponential form | |
e=pre-1; // calculate E value | |
pre=1; // assume one digit before '.' | |
} // exponential form | |
/* modify the coefficient, adding 0s, '.', and E+nn as needed */ | |
s=c-1; // source (LSD) | |
if (pre>0) { // ddd.ddd (plain), perhaps with E | |
char *dotat=cstart+pre; | |
if (dotat<c) { // if embedded dot needed... | |
t=c; // target | |
for (; s>=dotat; s--, t--) *t=*s; // open the gap; leave t at gap | |
*t='.'; // insert the dot | |
c++; // length increased by one | |
} | |
// finally add the E-part, if needed; it will never be 0, and has | |
// a maximum length of 3 digits (E-101 case) | |
if (e!=0) { | |
*c++='E'; // starts with E | |
*c++='+'; // assume positive | |
if (e<0) { | |
*(c-1)='-'; // oops, need '-' | |
e=-e; // uInt, please | |
} | |
u=&BIN2CHAR[e*4]; // -> length byte | |
memcpy(c, u+4-*u, 4); // copy fixed 4 characters [is safe] | |
c+=*u; // bump pointer appropriately | |
} | |
*c='\0'; // add terminator | |
//printf("res %s\n", string); | |
return string; | |
} // pre>0 | |
/* -5<=pre<=0: here for plain 0.ddd or 0.000ddd forms (can never have E) */ | |
t=c+1-pre; | |
*(t+1)='\0'; // can add terminator now | |
for (; s>=cstart; s--, t--) *t=*s; // shift whole coefficient right | |
c=cstart; | |
*c++='0'; // always starts with 0. | |
*c++='.'; | |
for (; pre<0; pre++) *c++='0'; // add any 0's after '.' | |
//printf("res %s\n", string); | |
return string; | |
} // decimal32ToString | |
/* ------------------------------------------------------------------ */ | |
/* to-number -- conversion from numeric string */ | |
/* */ | |
/* decimal32FromString(result, string, set); */ | |
/* */ | |
/* result is the decimal32 format number which gets the result of */ | |
/* the conversion */ | |
/* *string is the character string which should contain a valid */ | |
/* number (which may be a special value) */ | |
/* set is the context */ | |
/* */ | |
/* The context is supplied to this routine is used for error handling */ | |
/* (setting of status and traps) and for the rounding mode, only. */ | |
/* If an error occurs, the result will be a valid decimal32 NaN. */ | |
/* ------------------------------------------------------------------ */ | |
decimal32 * decimal32FromString(decimal32 *result, const char *string, | |
decContext *set) { | |
decContext dc; // work | |
decNumber dn; // .. | |
decContextDefault(&dc, DEC_INIT_DECIMAL32); // no traps, please | |
dc.round=set->round; // use supplied rounding | |
decNumberFromString(&dn, string, &dc); // will round if needed | |
decimal32FromNumber(result, &dn, &dc); | |
if (dc.status!=0) { // something happened | |
decContextSetStatus(set, dc.status); // .. pass it on | |
} | |
return result; | |
} // decimal32FromString | |
/* ------------------------------------------------------------------ */ | |
/* decimal32IsCanonical -- test whether encoding is canonical */ | |
/* d32 is the source decimal32 */ | |
/* returns 1 if the encoding of d32 is canonical, 0 otherwise */ | |
/* No error is possible. */ | |
/* ------------------------------------------------------------------ */ | |
uInt decimal32IsCanonical(const decimal32 *d32) { | |
decNumber dn; // work | |
decimal32 canon; // .. | |
decContext dc; // .. | |
decContextDefault(&dc, DEC_INIT_DECIMAL32); | |
decimal32ToNumber(d32, &dn); | |
decimal32FromNumber(&canon, &dn, &dc);// canon will now be canonical | |
return memcmp(d32, &canon, DECIMAL32_Bytes)==0; | |
} // decimal32IsCanonical | |
/* ------------------------------------------------------------------ */ | |
/* decimal32Canonical -- copy an encoding, ensuring it is canonical */ | |
/* d32 is the source decimal32 */ | |
/* result is the target (may be the same decimal32) */ | |
/* returns result */ | |
/* No error is possible. */ | |
/* ------------------------------------------------------------------ */ | |
decimal32 * decimal32Canonical(decimal32 *result, const decimal32 *d32) { | |
decNumber dn; // work | |
decContext dc; // .. | |
decContextDefault(&dc, DEC_INIT_DECIMAL32); | |
decimal32ToNumber(d32, &dn); | |
decimal32FromNumber(result, &dn, &dc);// result will now be canonical | |
return result; | |
} // decimal32Canonical | |
#if DECTRACE || DECCHECK | |
/* Macros for accessing decimal32 fields. These assume the argument | |
is a reference (pointer) to the decimal32 structure, and the | |
decimal32 is in network byte order (big-endian) */ | |
// Get sign | |
#define decimal32Sign(d) ((unsigned)(d)->bytes[0]>>7) | |
// Get combination field | |
#define decimal32Comb(d) (((d)->bytes[0] & 0x7c)>>2) | |
// Get exponent continuation [does not remove bias] | |
#define decimal32ExpCon(d) ((((d)->bytes[0] & 0x03)<<4) \ | |
| ((unsigned)(d)->bytes[1]>>4)) | |
// Set sign [this assumes sign previously 0] | |
#define decimal32SetSign(d, b) { \ | |
(d)->bytes[0]|=((unsigned)(b)<<7);} | |
// Set exponent continuation [does not apply bias] | |
// This assumes range has been checked and exponent previously 0; | |
// type of exponent must be unsigned | |
#define decimal32SetExpCon(d, e) { \ | |
(d)->bytes[0]|=(uByte)((e)>>4); \ | |
(d)->bytes[1]|=(uByte)(((e)&0x0F)<<4);} | |
/* ------------------------------------------------------------------ */ | |
/* decimal32Show -- display a decimal32 in hexadecimal [debug aid] */ | |
/* d32 -- the number to show */ | |
/* ------------------------------------------------------------------ */ | |
// Also shows sign/cob/expconfields extracted - valid bigendian only | |
void decimal32Show(const decimal32 *d32) { | |
char buf[DECIMAL32_Bytes*2+1]; | |
Int i, j=0; | |
if (DECLITEND) { | |
for (i=0; i<DECIMAL32_Bytes; i++, j+=2) { | |
sprintf(&buf[j], "%02x", d32->bytes[3-i]); | |
} | |
printf(" D32> %s [S:%d Cb:%02x Ec:%02x] LittleEndian\n", buf, | |
d32->bytes[3]>>7, (d32->bytes[3]>>2)&0x1f, | |
((d32->bytes[3]&0x3)<<4)| (d32->bytes[2]>>4)); | |
} | |
else { | |
for (i=0; i<DECIMAL32_Bytes; i++, j+=2) { | |
sprintf(&buf[j], "%02x", d32->bytes[i]); | |
} | |
printf(" D32> %s [S:%d Cb:%02x Ec:%02x] BigEndian\n", buf, | |
decimal32Sign(d32), decimal32Comb(d32), decimal32ExpCon(d32)); | |
} | |
} // decimal32Show | |
#endif |