/* ------------------------------------------------------------------ */ | |
/* decBasic.c -- common base code for Basic decimal types */ | |
/* ------------------------------------------------------------------ */ | |
/* Copyright (c) IBM Corporation, 2000, 2010. All rights reserved. */ | |
/* */ | |
/* This software is made available under the terms of the */ | |
/* ICU License -- ICU 1.8.1 and later. */ | |
/* */ | |
/* The description and User's Guide ("The decNumber C Library") for */ | |
/* this software is included in the package as decNumber.pdf. This */ | |
/* document is also available in HTML, together with specifications, */ | |
/* testcases, and Web links, on the General Decimal Arithmetic page. */ | |
/* */ | |
/* Please send comments, suggestions, and corrections to the author: */ | |
/* mfc@uk.ibm.com */ | |
/* Mike Cowlishaw, IBM Fellow */ | |
/* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */ | |
/* ------------------------------------------------------------------ */ | |
/* This module comprises code that is shared between decDouble and */ | |
/* decQuad (but not decSingle). The main arithmetic operations are */ | |
/* here (Add, Subtract, Multiply, FMA, and Division operators). */ | |
/* */ | |
/* Unlike decNumber, parameterization takes place at compile time */ | |
/* rather than at runtime. The parameters are set in the decDouble.c */ | |
/* (etc.) files, which then include this one to produce the compiled */ | |
/* code. The functions here, therefore, are code shared between */ | |
/* multiple formats. */ | |
/* */ | |
/* This must be included after decCommon.c. */ | |
/* ------------------------------------------------------------------ */ | |
// Names here refer to decFloat rather than to decDouble, etc., and | |
// the functions are in strict alphabetical order. | |
// The compile-time flags SINGLE, DOUBLE, and QUAD are set up in | |
// decCommon.c | |
#if !defined(QUAD) | |
#error decBasic.c must be included after decCommon.c | |
#endif | |
#if SINGLE | |
#error Routines in decBasic.c are for decDouble and decQuad only | |
#endif | |
/* Private constants */ | |
#define DIVIDE 0x80000000 // Divide operations [as flags] | |
#define REMAINDER 0x40000000 // .. | |
#define DIVIDEINT 0x20000000 // .. | |
#define REMNEAR 0x10000000 // .. | |
/* Private functions (local, used only by routines in this module) */ | |
static decFloat *decDivide(decFloat *, const decFloat *, | |
const decFloat *, decContext *, uInt); | |
static decFloat *decCanonical(decFloat *, const decFloat *); | |
static void decFiniteMultiply(bcdnum *, uByte *, const decFloat *, | |
const decFloat *); | |
static decFloat *decInfinity(decFloat *, const decFloat *); | |
static decFloat *decInvalid(decFloat *, decContext *); | |
static decFloat *decNaNs(decFloat *, const decFloat *, const decFloat *, | |
decContext *); | |
static Int decNumCompare(const decFloat *, const decFloat *, Flag); | |
static decFloat *decToIntegral(decFloat *, const decFloat *, decContext *, | |
enum rounding, Flag); | |
static uInt decToInt32(const decFloat *, decContext *, enum rounding, | |
Flag, Flag); | |
/* ------------------------------------------------------------------ */ | |
/* decCanonical -- copy a decFloat, making canonical */ | |
/* */ | |
/* result gets the canonicalized df */ | |
/* df is the decFloat to copy and make canonical */ | |
/* returns result */ | |
/* */ | |
/* This is exposed via decFloatCanonical for Double and Quad only. */ | |
/* This works on specials, too; no error or exception is possible. */ | |
/* ------------------------------------------------------------------ */ | |
static decFloat * decCanonical(decFloat *result, const decFloat *df) { | |
uInt encode, precode, dpd; // work | |
uInt inword, uoff, canon; // .. | |
Int n; // counter (down) | |
if (df!=result) *result=*df; // effect copy if needed | |
if (DFISSPECIAL(result)) { | |
if (DFISINF(result)) return decInfinity(result, df); // clean Infinity | |
// is a NaN | |
DFWORD(result, 0)&=~ECONNANMASK; // clear ECON except selector | |
if (DFISCCZERO(df)) return result; // coefficient continuation is 0 | |
// drop through to check payload | |
} | |
// return quickly if the coefficient continuation is canonical | |
{ // declare block | |
#if DOUBLE | |
uInt sourhi=DFWORD(df, 0); | |
uInt sourlo=DFWORD(df, 1); | |
if (CANONDPDOFF(sourhi, 8) | |
&& CANONDPDTWO(sourhi, sourlo, 30) | |
&& CANONDPDOFF(sourlo, 20) | |
&& CANONDPDOFF(sourlo, 10) | |
&& CANONDPDOFF(sourlo, 0)) return result; | |
#elif QUAD | |
uInt sourhi=DFWORD(df, 0); | |
uInt sourmh=DFWORD(df, 1); | |
uInt sourml=DFWORD(df, 2); | |
uInt sourlo=DFWORD(df, 3); | |
if (CANONDPDOFF(sourhi, 4) | |
&& CANONDPDTWO(sourhi, sourmh, 26) | |
&& CANONDPDOFF(sourmh, 16) | |
&& CANONDPDOFF(sourmh, 6) | |
&& CANONDPDTWO(sourmh, sourml, 28) | |
&& CANONDPDOFF(sourml, 18) | |
&& CANONDPDOFF(sourml, 8) | |
&& CANONDPDTWO(sourml, sourlo, 30) | |
&& CANONDPDOFF(sourlo, 20) | |
&& CANONDPDOFF(sourlo, 10) | |
&& CANONDPDOFF(sourlo, 0)) return result; | |
#endif | |
} // block | |
// Loop to repair a non-canonical coefficent, as needed | |
inword=DECWORDS-1; // current input word | |
uoff=0; // bit offset of declet | |
encode=DFWORD(result, inword); | |
for (n=DECLETS-1; n>=0; n--) { // count down declets of 10 bits | |
dpd=encode>>uoff; | |
uoff+=10; | |
if (uoff>32) { // crossed uInt boundary | |
inword--; | |
encode=DFWORD(result, inword); | |
uoff-=32; | |
dpd|=encode<<(10-uoff); // get pending bits | |
} | |
dpd&=0x3ff; // clear uninteresting bits | |
if (dpd<0x16e) continue; // must be canonical | |
canon=BIN2DPD[DPD2BIN[dpd]]; // determine canonical declet | |
if (canon==dpd) continue; // have canonical declet | |
// need to replace declet | |
if (uoff>=10) { // all within current word | |
encode&=~(0x3ff<<(uoff-10)); // clear the 10 bits ready for replace | |
encode|=canon<<(uoff-10); // insert the canonical form | |
DFWORD(result, inword)=encode; // .. and save | |
continue; | |
} | |
// straddled words | |
precode=DFWORD(result, inword+1); // get previous | |
precode&=0xffffffff>>(10-uoff); // clear top bits | |
DFWORD(result, inword+1)=precode|(canon<<(32-(10-uoff))); | |
encode&=0xffffffff<<uoff; // clear bottom bits | |
encode|=canon>>(10-uoff); // insert canonical | |
DFWORD(result, inword)=encode; // .. and save | |
} // n | |
return result; | |
} // decCanonical | |
/* ------------------------------------------------------------------ */ | |
/* decDivide -- divide operations */ | |
/* */ | |
/* result gets the result of dividing dfl by dfr: */ | |
/* dfl is the first decFloat (lhs) */ | |
/* dfr is the second decFloat (rhs) */ | |
/* set is the context */ | |
/* op is the operation selector */ | |
/* returns result */ | |
/* */ | |
/* op is one of DIVIDE, REMAINDER, DIVIDEINT, or REMNEAR. */ | |
/* ------------------------------------------------------------------ */ | |
#define DIVCOUNT 0 // 1 to instrument subtractions counter | |
#define DIVBASE ((uInt)BILLION) // the base used for divide | |
#define DIVOPLEN DECPMAX9 // operand length ('digits' base 10**9) | |
#define DIVACCLEN (DIVOPLEN*3) // accumulator length (ditto) | |
static decFloat * decDivide(decFloat *result, const decFloat *dfl, | |
const decFloat *dfr, decContext *set, uInt op) { | |
decFloat quotient; // for remainders | |
bcdnum num; // for final conversion | |
uInt acc[DIVACCLEN]; // coefficent in base-billion .. | |
uInt div[DIVOPLEN]; // divisor in base-billion .. | |
uInt quo[DIVOPLEN+1]; // quotient in base-billion .. | |
uByte bcdacc[(DIVOPLEN+1)*9+2]; // for quotient in BCD, +1, +1 | |
uInt *msua, *msud, *msuq; // -> msu of acc, div, and quo | |
Int divunits, accunits; // lengths | |
Int quodigits; // digits in quotient | |
uInt *lsua, *lsuq; // -> current acc and quo lsus | |
Int length, multiplier; // work | |
uInt carry, sign; // .. | |
uInt *ua, *ud, *uq; // .. | |
uByte *ub; // .. | |
uInt uiwork; // for macros | |
uInt divtop; // top unit of div adjusted for estimating | |
#if DIVCOUNT | |
static uInt maxcount=0; // worst-seen subtractions count | |
uInt divcount=0; // subtractions count [this divide] | |
#endif | |
// calculate sign | |
num.sign=(DFWORD(dfl, 0)^DFWORD(dfr, 0)) & DECFLOAT_Sign; | |
if (DFISSPECIAL(dfl) || DFISSPECIAL(dfr)) { // either is special? | |
// NaNs are handled as usual | |
if (DFISNAN(dfl) || DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set); | |
// one or two infinities | |
if (DFISINF(dfl)) { | |
if (DFISINF(dfr)) return decInvalid(result, set); // Two infinities bad | |
if (op&(REMAINDER|REMNEAR)) return decInvalid(result, set); // as is rem | |
// Infinity/x is infinite and quiet, even if x=0 | |
DFWORD(result, 0)=num.sign; | |
return decInfinity(result, result); | |
} | |
// must be x/Infinity -- remainders are lhs | |
if (op&(REMAINDER|REMNEAR)) return decCanonical(result, dfl); | |
// divides: return zero with correct sign and exponent depending | |
// on op (Etiny for divide, 0 for divideInt) | |
decFloatZero(result); | |
if (op==DIVIDEINT) DFWORD(result, 0)|=num.sign; // add sign | |
else DFWORD(result, 0)=num.sign; // zeros the exponent, too | |
return result; | |
} | |
// next, handle zero operands (x/0 and 0/x) | |
if (DFISZERO(dfr)) { // x/0 | |
if (DFISZERO(dfl)) { // 0/0 is undefined | |
decFloatZero(result); | |
DFWORD(result, 0)=DECFLOAT_qNaN; | |
set->status|=DEC_Division_undefined; | |
return result; | |
} | |
if (op&(REMAINDER|REMNEAR)) return decInvalid(result, set); // bad rem | |
set->status|=DEC_Division_by_zero; | |
DFWORD(result, 0)=num.sign; | |
return decInfinity(result, result); // x/0 -> signed Infinity | |
} | |
num.exponent=GETEXPUN(dfl)-GETEXPUN(dfr); // ideal exponent | |
if (DFISZERO(dfl)) { // 0/x (x!=0) | |
// if divide, result is 0 with ideal exponent; divideInt has | |
// exponent=0, remainders give zero with lower exponent | |
if (op&DIVIDEINT) { | |
decFloatZero(result); | |
DFWORD(result, 0)|=num.sign; // add sign | |
return result; | |
} | |
if (!(op&DIVIDE)) { // a remainder | |
// exponent is the minimum of the operands | |
num.exponent=MINI(GETEXPUN(dfl), GETEXPUN(dfr)); | |
// if the result is zero the sign shall be sign of dfl | |
num.sign=DFWORD(dfl, 0)&DECFLOAT_Sign; | |
} | |
bcdacc[0]=0; | |
num.msd=bcdacc; // -> 0 | |
num.lsd=bcdacc; // .. | |
return decFinalize(result, &num, set); // [divide may clamp exponent] | |
} // 0/x | |
// [here, both operands are known to be finite and non-zero] | |
// extract the operand coefficents into 'units' which are | |
// base-billion; the lhs is high-aligned in acc and the msu of both | |
// acc and div is at the right-hand end of array (offset length-1); | |
// the quotient can need one more unit than the operands as digits | |
// in it are not necessarily aligned neatly; further, the quotient | |
// may not start accumulating until after the end of the initial | |
// operand in acc if that is small (e.g., 1) so the accumulator | |
// must have at least that number of units extra (at the ls end) | |
GETCOEFFBILL(dfl, acc+DIVACCLEN-DIVOPLEN); | |
GETCOEFFBILL(dfr, div); | |
// zero the low uInts of acc | |
acc[0]=0; | |
acc[1]=0; | |
acc[2]=0; | |
acc[3]=0; | |
#if DOUBLE | |
#if DIVOPLEN!=2 | |
#error Unexpected Double DIVOPLEN | |
#endif | |
#elif QUAD | |
acc[4]=0; | |
acc[5]=0; | |
acc[6]=0; | |
acc[7]=0; | |
#if DIVOPLEN!=4 | |
#error Unexpected Quad DIVOPLEN | |
#endif | |
#endif | |
// set msu and lsu pointers | |
msua=acc+DIVACCLEN-1; // [leading zeros removed below] | |
msuq=quo+DIVOPLEN; | |
//[loop for div will terminate because operands are non-zero] | |
for (msud=div+DIVOPLEN-1; *msud==0;) msud--; | |
// the initial least-significant unit of acc is set so acc appears | |
// to have the same length as div. | |
// This moves one position towards the least possible for each | |
// iteration | |
divunits=(Int)(msud-div+1); // precalculate | |
lsua=msua-divunits+1; // initial working lsu of acc | |
lsuq=msuq; // and of quo | |
// set up the estimator for the multiplier; this is the msu of div, | |
// plus two bits from the unit below (if any) rounded up by one if | |
// there are any non-zero bits or units below that [the extra two | |
// bits makes for a much better estimate when the top unit is small] | |
divtop=*msud<<2; | |
if (divunits>1) { | |
uInt *um=msud-1; | |
uInt d=*um; | |
if (d>=750000000) {divtop+=3; d-=750000000;} | |
else if (d>=500000000) {divtop+=2; d-=500000000;} | |
else if (d>=250000000) {divtop++; d-=250000000;} | |
if (d) divtop++; | |
else for (um--; um>=div; um--) if (*um) { | |
divtop++; | |
break; | |
} | |
} // >1 unit | |
#if DECTRACE | |
{Int i; | |
printf("----- div="); | |
for (i=divunits-1; i>=0; i--) printf("%09ld ", (LI)div[i]); | |
printf("\n");} | |
#endif | |
// now collect up to DECPMAX+1 digits in the quotient (this may | |
// need OPLEN+1 uInts if unaligned) | |
quodigits=0; // no digits yet | |
for (;; lsua--) { // outer loop -- each input position | |
#if DECCHECK | |
if (lsua<acc) { | |
printf("Acc underrun...\n"); | |
break; | |
} | |
#endif | |
#if DECTRACE | |
printf("Outer: quodigits=%ld acc=", (LI)quodigits); | |
for (ua=msua; ua>=lsua; ua--) printf("%09ld ", (LI)*ua); | |
printf("\n"); | |
#endif | |
*lsuq=0; // default unit result is 0 | |
for (;;) { // inner loop -- calculate quotient unit | |
// strip leading zero units from acc (either there initially or | |
// from subtraction below); this may strip all if exactly 0 | |
for (; *msua==0 && msua>=lsua;) msua--; | |
accunits=(Int)(msua-lsua+1); // [maybe 0] | |
// subtraction is only necessary and possible if there are as | |
// least as many units remaining in acc for this iteration as | |
// there are in div | |
if (accunits<divunits) { | |
if (accunits==0) msua++; // restore | |
break; | |
} | |
// If acc is longer than div then subtraction is definitely | |
// possible (as msu of both is non-zero), but if they are the | |
// same length a comparison is needed. | |
// If a subtraction is needed then a good estimate of the | |
// multiplier for the subtraction is also needed in order to | |
// minimise the iterations of this inner loop because the | |
// subtractions needed dominate division performance. | |
if (accunits==divunits) { | |
// compare the high divunits of acc and div: | |
// acc<div: this quotient unit is unchanged; subtraction | |
// will be possible on the next iteration | |
// acc==div: quotient gains 1, set acc=0 | |
// acc>div: subtraction necessary at this position | |
for (ud=msud, ua=msua; ud>div; ud--, ua--) if (*ud!=*ua) break; | |
// [now at first mismatch or lsu] | |
if (*ud>*ua) break; // next time... | |
if (*ud==*ua) { // all compared equal | |
*lsuq+=1; // increment result | |
msua=lsua; // collapse acc units | |
*msua=0; // .. to a zero | |
break; | |
} | |
// subtraction necessary; estimate multiplier [see above] | |
// if both *msud and *msua are small it is cost-effective to | |
// bring in part of the following units (if any) to get a | |
// better estimate (assume some other non-zero in div) | |
#define DIVLO 1000000U | |
#define DIVHI (DIVBASE/DIVLO) | |
#if DECUSE64 | |
if (divunits>1) { | |
// there cannot be a *(msud-2) for DECDOUBLE so next is | |
// an exact calculation unless DECQUAD (which needs to | |
// assume bits out there if divunits>2) | |
uLong mul=(uLong)*msua * DIVBASE + *(msua-1); | |
uLong div=(uLong)*msud * DIVBASE + *(msud-1); | |
#if QUAD | |
if (divunits>2) div++; | |
#endif | |
mul/=div; | |
multiplier=(Int)mul; | |
} | |
else multiplier=*msua/(*msud); | |
#else | |
if (divunits>1 && *msua<DIVLO && *msud<DIVLO) { | |
multiplier=(*msua*DIVHI + *(msua-1)/DIVLO) | |
/(*msud*DIVHI + *(msud-1)/DIVLO +1); | |
} | |
else multiplier=(*msua<<2)/divtop; | |
#endif | |
} | |
else { // accunits>divunits | |
// msud is one unit 'lower' than msua, so estimate differently | |
#if DECUSE64 | |
uLong mul; | |
// as before, bring in extra digits if possible | |
if (divunits>1 && *msua<DIVLO && *msud<DIVLO) { | |
mul=((uLong)*msua * DIVHI * DIVBASE) + *(msua-1) * DIVHI | |
+ *(msua-2)/DIVLO; | |
mul/=(*msud*DIVHI + *(msud-1)/DIVLO +1); | |
} | |
else if (divunits==1) { | |
mul=(uLong)*msua * DIVBASE + *(msua-1); | |
mul/=*msud; // no more to the right | |
} | |
else { | |
mul=(uLong)(*msua) * (uInt)(DIVBASE<<2) | |
+ (*(msua-1)<<2); | |
mul/=divtop; // [divtop already allows for sticky bits] | |
} | |
multiplier=(Int)mul; | |
#else | |
multiplier=*msua * ((DIVBASE<<2)/divtop); | |
#endif | |
} | |
if (multiplier==0) multiplier=1; // marginal case | |
*lsuq+=multiplier; | |
#if DIVCOUNT | |
// printf("Multiplier: %ld\n", (LI)multiplier); | |
divcount++; | |
#endif | |
// Carry out the subtraction acc-(div*multiplier); for each | |
// unit in div, do the multiply, split to units (see | |
// decFloatMultiply for the algorithm), and subtract from acc | |
#define DIVMAGIC 2305843009U // 2**61/10**9 | |
#define DIVSHIFTA 29 | |
#define DIVSHIFTB 32 | |
carry=0; | |
for (ud=div, ua=lsua; ud<=msud; ud++, ua++) { | |
uInt lo, hop; | |
#if DECUSE64 | |
uLong sub=(uLong)multiplier*(*ud)+carry; | |
if (sub<DIVBASE) { | |
carry=0; | |
lo=(uInt)sub; | |
} | |
else { | |
hop=(uInt)(sub>>DIVSHIFTA); | |
carry=(uInt)(((uLong)hop*DIVMAGIC)>>DIVSHIFTB); | |
// the estimate is now in hi; now calculate sub-hi*10**9 | |
// to get the remainder (which will be <DIVBASE)) | |
lo=(uInt)sub; | |
lo-=carry*DIVBASE; // low word of result | |
if (lo>=DIVBASE) { | |
lo-=DIVBASE; // correct by +1 | |
carry++; | |
} | |
} | |
#else // 32-bit | |
uInt hi; | |
// calculate multiplier*(*ud) into hi and lo | |
LONGMUL32HI(hi, *ud, multiplier); // get the high word | |
lo=multiplier*(*ud); // .. and the low | |
lo+=carry; // add the old hi | |
carry=hi+(lo<carry); // .. with any carry | |
if (carry || lo>=DIVBASE) { // split is needed | |
hop=(carry<<3)+(lo>>DIVSHIFTA); // hi:lo/2**29 | |
LONGMUL32HI(carry, hop, DIVMAGIC); // only need the high word | |
// [DIVSHIFTB is 32, so carry can be used directly] | |
// the estimate is now in carry; now calculate hi:lo-est*10**9; | |
// happily the top word of the result is irrelevant because it | |
// will always be zero so this needs only one multiplication | |
lo-=(carry*DIVBASE); | |
// the correction here will be at most +1; do it | |
if (lo>=DIVBASE) { | |
lo-=DIVBASE; | |
carry++; | |
} | |
} | |
#endif | |
if (lo>*ua) { // borrow needed | |
*ua+=DIVBASE; | |
carry++; | |
} | |
*ua-=lo; | |
} // ud loop | |
if (carry) *ua-=carry; // accdigits>divdigits [cannot borrow] | |
} // inner loop | |
// the outer loop terminates when there is either an exact result | |
// or enough digits; first update the quotient digit count and | |
// pointer (if any significant digits) | |
#if DECTRACE | |
if (*lsuq || quodigits) printf("*lsuq=%09ld\n", (LI)*lsuq); | |
#endif | |
if (quodigits) { | |
quodigits+=9; // had leading unit earlier | |
lsuq--; | |
if (quodigits>DECPMAX+1) break; // have enough | |
} | |
else if (*lsuq) { // first quotient digits | |
const uInt *pow; | |
for (pow=DECPOWERS; *lsuq>=*pow; pow++) quodigits++; | |
lsuq--; | |
// [cannot have >DECPMAX+1 on first unit] | |
} | |
if (*msua!=0) continue; // not an exact result | |
// acc is zero iff used all of original units and zero down to lsua | |
// (must also continue to original lsu for correct quotient length) | |
if (lsua>acc+DIVACCLEN-DIVOPLEN) continue; | |
for (; msua>lsua && *msua==0;) msua--; | |
if (*msua==0 && msua==lsua) break; | |
} // outer loop | |
// all of the original operand in acc has been covered at this point | |
// quotient now has at least DECPMAX+2 digits | |
// *msua is now non-0 if inexact and sticky bits | |
// lsuq is one below the last uint of the quotient | |
lsuq++; // set -> true lsu of quo | |
if (*msua) *lsuq|=1; // apply sticky bit | |
// quo now holds the (unrounded) quotient in base-billion; one | |
// base-billion 'digit' per uInt. | |
#if DECTRACE | |
printf("DivQuo:"); | |
for (uq=msuq; uq>=lsuq; uq--) printf(" %09ld", (LI)*uq); | |
printf("\n"); | |
#endif | |
// Now convert to BCD for rounding and cleanup, starting from the | |
// most significant end [offset by one into bcdacc to leave room | |
// for a possible carry digit if rounding for REMNEAR is needed] | |
for (uq=msuq, ub=bcdacc+1; uq>=lsuq; uq--, ub+=9) { | |
uInt top, mid, rem; // work | |
if (*uq==0) { // no split needed | |
UBFROMUI(ub, 0); // clear 9 BCD8s | |
UBFROMUI(ub+4, 0); // .. | |
*(ub+8)=0; // .. | |
continue; | |
} | |
// *uq is non-zero -- split the base-billion digit into | |
// hi, mid, and low three-digits | |
#define divsplit9 1000000 // divisor | |
#define divsplit6 1000 // divisor | |
// The splitting is done by simple divides and remainders, | |
// assuming the compiler will optimize these [GCC does] | |
top=*uq/divsplit9; | |
rem=*uq%divsplit9; | |
mid=rem/divsplit6; | |
rem=rem%divsplit6; | |
// lay out the nine BCD digits (plus one unwanted byte) | |
UBFROMUI(ub, UBTOUI(&BIN2BCD8[top*4])); | |
UBFROMUI(ub+3, UBTOUI(&BIN2BCD8[mid*4])); | |
UBFROMUI(ub+6, UBTOUI(&BIN2BCD8[rem*4])); | |
} // BCD conversion loop | |
ub--; // -> lsu | |
// complete the bcdnum; quodigits is correct, so the position of | |
// the first non-zero is known | |
num.msd=bcdacc+1+(msuq-lsuq+1)*9-quodigits; | |
num.lsd=ub; | |
// make exponent adjustments, etc | |
if (lsua<acc+DIVACCLEN-DIVOPLEN) { // used extra digits | |
num.exponent-=(Int)((acc+DIVACCLEN-DIVOPLEN-lsua)*9); | |
// if the result was exact then there may be up to 8 extra | |
// trailing zeros in the overflowed quotient final unit | |
if (*msua==0) { | |
for (; *ub==0;) ub--; // drop zeros | |
num.exponent+=(Int)(num.lsd-ub); // and adjust exponent | |
num.lsd=ub; | |
} | |
} // adjustment needed | |
#if DIVCOUNT | |
if (divcount>maxcount) { // new high-water nark | |
maxcount=divcount; | |
printf("DivNewMaxCount: %ld\n", (LI)maxcount); | |
} | |
#endif | |
if (op&DIVIDE) return decFinalize(result, &num, set); // all done | |
// Is DIVIDEINT or a remainder; there is more to do -- first form | |
// the integer (this is done 'after the fact', unlike as in | |
// decNumber, so as not to tax DIVIDE) | |
// The first non-zero digit will be in the first 9 digits, known | |
// from quodigits and num.msd, so there is always space for DECPMAX | |
// digits | |
length=(Int)(num.lsd-num.msd+1); | |
//printf("Length exp: %ld %ld\n", (LI)length, (LI)num.exponent); | |
if (length+num.exponent>DECPMAX) { // cannot fit | |
decFloatZero(result); | |
DFWORD(result, 0)=DECFLOAT_qNaN; | |
set->status|=DEC_Division_impossible; | |
return result; | |
} | |
if (num.exponent>=0) { // already an int, or need pad zeros | |
for (ub=num.lsd+1; ub<=num.lsd+num.exponent; ub++) *ub=0; | |
num.lsd+=num.exponent; | |
} | |
else { // too long: round or truncate needed | |
Int drop=-num.exponent; | |
if (!(op&REMNEAR)) { // simple truncate | |
num.lsd-=drop; | |
if (num.lsd<num.msd) { // truncated all | |
num.lsd=num.msd; // make 0 | |
*num.lsd=0; // .. [sign still relevant] | |
} | |
} | |
else { // round to nearest even [sigh] | |
// round-to-nearest, in-place; msd is at or to right of bcdacc+1 | |
// (this is a special case of Quantize -- q.v. for commentary) | |
uByte *roundat; // -> re-round digit | |
uByte reround; // reround value | |
*(num.msd-1)=0; // in case of left carry, or make 0 | |
if (drop<length) roundat=num.lsd-drop+1; | |
else if (drop==length) roundat=num.msd; | |
else roundat=num.msd-1; // [-> 0] | |
reround=*roundat; | |
for (ub=roundat+1; ub<=num.lsd; ub++) { | |
if (*ub!=0) { | |
reround=DECSTICKYTAB[reround]; | |
break; | |
} | |
} // check stickies | |
if (roundat>num.msd) num.lsd=roundat-1; | |
else { | |
num.msd--; // use the 0 .. | |
num.lsd=num.msd; // .. at the new MSD place | |
} | |
if (reround!=0) { // discarding non-zero | |
uInt bump=0; | |
// rounding is DEC_ROUND_HALF_EVEN always | |
if (reround>5) bump=1; // >0.5 goes up | |
else if (reround==5) // exactly 0.5000 .. | |
bump=*(num.lsd) & 0x01; // .. up iff [new] lsd is odd | |
if (bump!=0) { // need increment | |
// increment the coefficient; this might end up with 1000... | |
ub=num.lsd; | |
for (; UBTOUI(ub-3)==0x09090909; ub-=4) UBFROMUI(ub-3, 0); | |
for (; *ub==9; ub--) *ub=0; // at most 3 more | |
*ub+=1; | |
if (ub<num.msd) num.msd--; // carried | |
} // bump needed | |
} // reround!=0 | |
} // remnear | |
} // round or truncate needed | |
num.exponent=0; // all paths | |
//decShowNum(&num, "int"); | |
if (op&DIVIDEINT) return decFinalize(result, &num, set); // all done | |
// Have a remainder to calculate | |
decFinalize("ient, &num, set); // lay out the integer so far | |
DFWORD("ient, 0)^=DECFLOAT_Sign; // negate it | |
sign=DFWORD(dfl, 0); // save sign of dfl | |
decFloatFMA(result, "ient, dfr, dfl, set); | |
if (!DFISZERO(result)) return result; | |
// if the result is zero the sign shall be sign of dfl | |
DFWORD("ient, 0)=sign; // construct decFloat of sign | |
return decFloatCopySign(result, result, "ient); | |
} // decDivide | |
/* ------------------------------------------------------------------ */ | |
/* decFiniteMultiply -- multiply two finite decFloats */ | |
/* */ | |
/* num gets the result of multiplying dfl and dfr */ | |
/* bcdacc .. with the coefficient in this array */ | |
/* dfl is the first decFloat (lhs) */ | |
/* dfr is the second decFloat (rhs) */ | |
/* */ | |
/* This effects the multiplication of two decFloats, both known to be */ | |
/* finite, leaving the result in a bcdnum ready for decFinalize (for */ | |
/* use in Multiply) or in a following addition (FMA). */ | |
/* */ | |
/* bcdacc must have space for at least DECPMAX9*18+1 bytes. */ | |
/* No error is possible and no status is set. */ | |
/* ------------------------------------------------------------------ */ | |
// This routine has two separate implementations of the core | |
// multiplication; both using base-billion. One uses only 32-bit | |
// variables (Ints and uInts) or smaller; the other uses uLongs (for | |
// multiplication and addition only). Both implementations cover | |
// both arithmetic sizes (DOUBLE and QUAD) in order to allow timing | |
// comparisons. In any one compilation only one implementation for | |
// each size can be used, and if DECUSE64 is 0 then use of the 32-bit | |
// version is forced. | |
// | |
// Historical note: an earlier version of this code also supported the | |
// 256-bit format and has been preserved. That is somewhat trickier | |
// during lazy carry splitting because the initial quotient estimate | |
// (est) can exceed 32 bits. | |
#define MULTBASE ((uInt)BILLION) // the base used for multiply | |
#define MULOPLEN DECPMAX9 // operand length ('digits' base 10**9) | |
#define MULACCLEN (MULOPLEN*2) // accumulator length (ditto) | |
#define LEADZEROS (MULACCLEN*9 - DECPMAX*2) // leading zeros always | |
// Assertions: exponent not too large and MULACCLEN is a multiple of 4 | |
#if DECEMAXD>9 | |
#error Exponent may overflow when doubled for Multiply | |
#endif | |
#if MULACCLEN!=(MULACCLEN/4)*4 | |
// This assumption is used below only for initialization | |
#error MULACCLEN is not a multiple of 4 | |
#endif | |
static void decFiniteMultiply(bcdnum *num, uByte *bcdacc, | |
const decFloat *dfl, const decFloat *dfr) { | |
uInt bufl[MULOPLEN]; // left coefficient (base-billion) | |
uInt bufr[MULOPLEN]; // right coefficient (base-billion) | |
uInt *ui, *uj; // work | |
uByte *ub; // .. | |
uInt uiwork; // for macros | |
#if DECUSE64 | |
uLong accl[MULACCLEN]; // lazy accumulator (base-billion+) | |
uLong *pl; // work -> lazy accumulator | |
uInt acc[MULACCLEN]; // coefficent in base-billion .. | |
#else | |
uInt acc[MULACCLEN*2]; // accumulator in base-billion .. | |
#endif | |
uInt *pa; // work -> accumulator | |
//printf("Base10**9: OpLen=%d MulAcclen=%d\n", OPLEN, MULACCLEN); | |
/* Calculate sign and exponent */ | |
num->sign=(DFWORD(dfl, 0)^DFWORD(dfr, 0)) & DECFLOAT_Sign; | |
num->exponent=GETEXPUN(dfl)+GETEXPUN(dfr); // [see assertion above] | |
/* Extract the coefficients and prepare the accumulator */ | |
// the coefficients of the operands are decoded into base-billion | |
// numbers in uInt arrays (bufl and bufr, LSD at offset 0) of the | |
// appropriate size. | |
GETCOEFFBILL(dfl, bufl); | |
GETCOEFFBILL(dfr, bufr); | |
#if DECTRACE && 0 | |
printf("CoeffbL:"); | |
for (ui=bufl+MULOPLEN-1; ui>=bufl; ui--) printf(" %08lx", (LI)*ui); | |
printf("\n"); | |
printf("CoeffbR:"); | |
for (uj=bufr+MULOPLEN-1; uj>=bufr; uj--) printf(" %08lx", (LI)*uj); | |
printf("\n"); | |
#endif | |
// start the 64-bit/32-bit differing paths... | |
#if DECUSE64 | |
// zero the accumulator | |
#if MULACCLEN==4 | |
accl[0]=0; accl[1]=0; accl[2]=0; accl[3]=0; | |
#else // use a loop | |
// MULACCLEN is a multiple of four, asserted above | |
for (pl=accl; pl<accl+MULACCLEN; pl+=4) { | |
*pl=0; *(pl+1)=0; *(pl+2)=0; *(pl+3)=0;// [reduce overhead] | |
} // pl | |
#endif | |
/* Effect the multiplication */ | |
// The multiplcation proceeds using MFC's lazy-carry resolution | |
// algorithm from decNumber. First, the multiplication is | |
// effected, allowing accumulation of the partial products (which | |
// are in base-billion at each column position) into 64 bits | |
// without resolving back to base=billion after each addition. | |
// These 64-bit numbers (which may contain up to 19 decimal digits) | |
// are then split using the Clark & Cowlishaw algorithm (see below). | |
// [Testing for 0 in the inner loop is not really a 'win'] | |
for (ui=bufr; ui<bufr+MULOPLEN; ui++) { // over each item in rhs | |
if (*ui==0) continue; // product cannot affect result | |
pl=accl+(ui-bufr); // where to add the lhs | |
for (uj=bufl; uj<bufl+MULOPLEN; uj++, pl++) { // over each item in lhs | |
// if (*uj==0) continue; // product cannot affect result | |
*pl+=((uLong)*ui)*(*uj); | |
} // uj | |
} // ui | |
// The 64-bit carries must now be resolved; this means that a | |
// quotient/remainder has to be calculated for base-billion (1E+9). | |
// For this, Clark & Cowlishaw's quotient estimation approach (also | |
// used in decNumber) is needed, because 64-bit divide is generally | |
// extremely slow on 32-bit machines, and may be slower than this | |
// approach even on 64-bit machines. This algorithm splits X | |
// using: | |
// | |
// magic=2**(A+B)/1E+9; // 'magic number' | |
// hop=X/2**A; // high order part of X (by shift) | |
// est=magic*hop/2**B // quotient estimate (may be low by 1) | |
// | |
// A and B are quite constrained; hop and magic must fit in 32 bits, | |
// and 2**(A+B) must be as large as possible (which is 2**61 if | |
// magic is to fit). Further, maxX increases with the length of | |
// the operands (and hence the number of partial products | |
// accumulated); maxX is OPLEN*(10**18), which is up to 19 digits. | |
// | |
// It can be shown that when OPLEN is 2 then the maximum error in | |
// the estimated quotient is <1, but for larger maximum x the | |
// maximum error is above 1 so a correction that is >1 may be | |
// needed. Values of A and B are chosen to satisfy the constraints | |
// just mentioned while minimizing the maximum error (and hence the | |
// maximum correction), as shown in the following table: | |
// | |
// Type OPLEN A B maxX maxError maxCorrection | |
// --------------------------------------------------------- | |
// DOUBLE 2 29 32 <2*10**18 0.63 1 | |
// QUAD 4 30 31 <4*10**18 1.17 2 | |
// | |
// In the OPLEN==2 case there is most choice, but the value for B | |
// of 32 has a big advantage as then the calculation of the | |
// estimate requires no shifting; the compiler can extract the high | |
// word directly after multiplying magic*hop. | |
#define MULMAGIC 2305843009U // 2**61/10**9 [both cases] | |
#if DOUBLE | |
#define MULSHIFTA 29 | |
#define MULSHIFTB 32 | |
#elif QUAD | |
#define MULSHIFTA 30 | |
#define MULSHIFTB 31 | |
#else | |
#error Unexpected type | |
#endif | |
#if DECTRACE | |
printf("MulAccl:"); | |
for (pl=accl+MULACCLEN-1; pl>=accl; pl--) | |
printf(" %08lx:%08lx", (LI)(*pl>>32), (LI)(*pl&0xffffffff)); | |
printf("\n"); | |
#endif | |
for (pl=accl, pa=acc; pl<accl+MULACCLEN; pl++, pa++) { // each column position | |
uInt lo, hop; // work | |
uInt est; // cannot exceed 4E+9 | |
if (*pl>=MULTBASE) { | |
// *pl holds a binary number which needs to be split | |
hop=(uInt)(*pl>>MULSHIFTA); | |
est=(uInt)(((uLong)hop*MULMAGIC)>>MULSHIFTB); | |
// the estimate is now in est; now calculate hi:lo-est*10**9; | |
// happily the top word of the result is irrelevant because it | |
// will always be zero so this needs only one multiplication | |
lo=(uInt)(*pl-((uLong)est*MULTBASE)); // low word of result | |
// If QUAD, the correction here could be +2 | |
if (lo>=MULTBASE) { | |
lo-=MULTBASE; // correct by +1 | |
est++; | |
#if QUAD | |
// may need to correct by +2 | |
if (lo>=MULTBASE) { | |
lo-=MULTBASE; | |
est++; | |
} | |
#endif | |
} | |
// finally place lo as the new coefficient 'digit' and add est to | |
// the next place up [this is safe because this path is never | |
// taken on the final iteration as *pl will fit] | |
*pa=lo; | |
*(pl+1)+=est; | |
} // *pl needed split | |
else { // *pl<MULTBASE | |
*pa=(uInt)*pl; // just copy across | |
} | |
} // pl loop | |
#else // 32-bit | |
for (pa=acc;; pa+=4) { // zero the accumulator | |
*pa=0; *(pa+1)=0; *(pa+2)=0; *(pa+3)=0; // [reduce overhead] | |
if (pa==acc+MULACCLEN*2-4) break; // multiple of 4 asserted | |
} // pa | |
/* Effect the multiplication */ | |
// uLongs are not available (and in particular, there is no uLong | |
// divide) but it is still possible to use MFC's lazy-carry | |
// resolution algorithm from decNumber. First, the multiplication | |
// is effected, allowing accumulation of the partial products | |
// (which are in base-billion at each column position) into 64 bits | |
// [with the high-order 32 bits in each position being held at | |
// offset +ACCLEN from the low-order 32 bits in the accumulator]. | |
// These 64-bit numbers (which may contain up to 19 decimal digits) | |
// are then split using the Clark & Cowlishaw algorithm (see | |
// below). | |
for (ui=bufr;; ui++) { // over each item in rhs | |
uInt hi, lo; // words of exact multiply result | |
pa=acc+(ui-bufr); // where to add the lhs | |
for (uj=bufl;; uj++, pa++) { // over each item in lhs | |
LONGMUL32HI(hi, *ui, *uj); // calculate product of digits | |
lo=(*ui)*(*uj); // .. | |
*pa+=lo; // accumulate low bits and .. | |
*(pa+MULACCLEN)+=hi+(*pa<lo); // .. high bits with any carry | |
if (uj==bufl+MULOPLEN-1) break; | |
} | |
if (ui==bufr+MULOPLEN-1) break; | |
} | |
// The 64-bit carries must now be resolved; this means that a | |
// quotient/remainder has to be calculated for base-billion (1E+9). | |
// For this, Clark & Cowlishaw's quotient estimation approach (also | |
// used in decNumber) is needed, because 64-bit divide is generally | |
// extremely slow on 32-bit machines. This algorithm splits X | |
// using: | |
// | |
// magic=2**(A+B)/1E+9; // 'magic number' | |
// hop=X/2**A; // high order part of X (by shift) | |
// est=magic*hop/2**B // quotient estimate (may be low by 1) | |
// | |
// A and B are quite constrained; hop and magic must fit in 32 bits, | |
// and 2**(A+B) must be as large as possible (which is 2**61 if | |
// magic is to fit). Further, maxX increases with the length of | |
// the operands (and hence the number of partial products | |
// accumulated); maxX is OPLEN*(10**18), which is up to 19 digits. | |
// | |
// It can be shown that when OPLEN is 2 then the maximum error in | |
// the estimated quotient is <1, but for larger maximum x the | |
// maximum error is above 1 so a correction that is >1 may be | |
// needed. Values of A and B are chosen to satisfy the constraints | |
// just mentioned while minimizing the maximum error (and hence the | |
// maximum correction), as shown in the following table: | |
// | |
// Type OPLEN A B maxX maxError maxCorrection | |
// --------------------------------------------------------- | |
// DOUBLE 2 29 32 <2*10**18 0.63 1 | |
// QUAD 4 30 31 <4*10**18 1.17 2 | |
// | |
// In the OPLEN==2 case there is most choice, but the value for B | |
// of 32 has a big advantage as then the calculation of the | |
// estimate requires no shifting; the high word is simply | |
// calculated from multiplying magic*hop. | |
#define MULMAGIC 2305843009U // 2**61/10**9 [both cases] | |
#if DOUBLE | |
#define MULSHIFTA 29 | |
#define MULSHIFTB 32 | |
#elif QUAD | |
#define MULSHIFTA 30 | |
#define MULSHIFTB 31 | |
#else | |
#error Unexpected type | |
#endif | |
#if DECTRACE | |
printf("MulHiLo:"); | |
for (pa=acc+MULACCLEN-1; pa>=acc; pa--) | |
printf(" %08lx:%08lx", (LI)*(pa+MULACCLEN), (LI)*pa); | |
printf("\n"); | |
#endif | |
for (pa=acc;; pa++) { // each low uInt | |
uInt hi, lo; // words of exact multiply result | |
uInt hop, estlo; // work | |
#if QUAD | |
uInt esthi; // .. | |
#endif | |
lo=*pa; | |
hi=*(pa+MULACCLEN); // top 32 bits | |
// hi and lo now hold a binary number which needs to be split | |
#if DOUBLE | |
hop=(hi<<3)+(lo>>MULSHIFTA); // hi:lo/2**29 | |
LONGMUL32HI(estlo, hop, MULMAGIC);// only need the high word | |
// [MULSHIFTB is 32, so estlo can be used directly] | |
// the estimate is now in estlo; now calculate hi:lo-est*10**9; | |
// happily the top word of the result is irrelevant because it | |
// will always be zero so this needs only one multiplication | |
lo-=(estlo*MULTBASE); | |
// esthi=0; // high word is ignored below | |
// the correction here will be at most +1; do it | |
if (lo>=MULTBASE) { | |
lo-=MULTBASE; | |
estlo++; | |
} | |
#elif QUAD | |
hop=(hi<<2)+(lo>>MULSHIFTA); // hi:lo/2**30 | |
LONGMUL32HI(esthi, hop, MULMAGIC);// shift will be 31 .. | |
estlo=hop*MULMAGIC; // .. so low word needed | |
estlo=(esthi<<1)+(estlo>>MULSHIFTB); // [just the top bit] | |
// esthi=0; // high word is ignored below | |
lo-=(estlo*MULTBASE); // as above | |
// the correction here could be +1 or +2 | |
if (lo>=MULTBASE) { | |
lo-=MULTBASE; | |
estlo++; | |
} | |
if (lo>=MULTBASE) { | |
lo-=MULTBASE; | |
estlo++; | |
} | |
#else | |
#error Unexpected type | |
#endif | |
// finally place lo as the new accumulator digit and add est to | |
// the next place up; this latter add could cause a carry of 1 | |
// to the high word of the next place | |
*pa=lo; | |
*(pa+1)+=estlo; | |
// esthi is always 0 for DOUBLE and QUAD so this is skipped | |
// *(pa+1+MULACCLEN)+=esthi; | |
if (*(pa+1)<estlo) *(pa+1+MULACCLEN)+=1; // carry | |
if (pa==acc+MULACCLEN-2) break; // [MULACCLEN-1 will never need split] | |
} // pa loop | |
#endif | |
// At this point, whether using the 64-bit or the 32-bit paths, the | |
// accumulator now holds the (unrounded) result in base-billion; | |
// one base-billion 'digit' per uInt. | |
#if DECTRACE | |
printf("MultAcc:"); | |
for (pa=acc+MULACCLEN-1; pa>=acc; pa--) printf(" %09ld", (LI)*pa); | |
printf("\n"); | |
#endif | |
// Now convert to BCD for rounding and cleanup, starting from the | |
// most significant end | |
pa=acc+MULACCLEN-1; | |
if (*pa!=0) num->msd=bcdacc+LEADZEROS;// drop known lead zeros | |
else { // >=1 word of leading zeros | |
num->msd=bcdacc; // known leading zeros are gone | |
pa--; // skip first word .. | |
for (; *pa==0; pa--) if (pa==acc) break; // .. and any more leading 0s | |
} | |
for (ub=bcdacc;; pa--, ub+=9) { | |
if (*pa!=0) { // split(s) needed | |
uInt top, mid, rem; // work | |
// *pa is non-zero -- split the base-billion acc digit into | |
// hi, mid, and low three-digits | |
#define mulsplit9 1000000 // divisor | |
#define mulsplit6 1000 // divisor | |
// The splitting is done by simple divides and remainders, | |
// assuming the compiler will optimize these where useful | |
// [GCC does] | |
top=*pa/mulsplit9; | |
rem=*pa%mulsplit9; | |
mid=rem/mulsplit6; | |
rem=rem%mulsplit6; | |
// lay out the nine BCD digits (plus one unwanted byte) | |
UBFROMUI(ub, UBTOUI(&BIN2BCD8[top*4])); | |
UBFROMUI(ub+3, UBTOUI(&BIN2BCD8[mid*4])); | |
UBFROMUI(ub+6, UBTOUI(&BIN2BCD8[rem*4])); | |
} | |
else { // *pa==0 | |
UBFROMUI(ub, 0); // clear 9 BCD8s | |
UBFROMUI(ub+4, 0); // .. | |
*(ub+8)=0; // .. | |
} | |
if (pa==acc) break; | |
} // BCD conversion loop | |
num->lsd=ub+8; // complete the bcdnum .. | |
#if DECTRACE | |
decShowNum(num, "postmult"); | |
decFloatShow(dfl, "dfl"); | |
decFloatShow(dfr, "dfr"); | |
#endif | |
return; | |
} // decFiniteMultiply | |
/* ------------------------------------------------------------------ */ | |
/* decFloatAbs -- absolute value, heeding NaNs, etc. */ | |
/* */ | |
/* result gets the canonicalized df with sign 0 */ | |
/* df is the decFloat to abs */ | |
/* set is the context */ | |
/* returns result */ | |
/* */ | |
/* This has the same effect as decFloatPlus unless df is negative, */ | |
/* in which case it has the same effect as decFloatMinus. The */ | |
/* effect is also the same as decFloatCopyAbs except that NaNs are */ | |
/* handled normally (the sign of a NaN is not affected, and an sNaN */ | |
/* will signal) and the result will be canonical. */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatAbs(decFloat *result, const decFloat *df, | |
decContext *set) { | |
if (DFISNAN(df)) return decNaNs(result, df, NULL, set); | |
decCanonical(result, df); // copy and check | |
DFBYTE(result, 0)&=~0x80; // zero sign bit | |
return result; | |
} // decFloatAbs | |
/* ------------------------------------------------------------------ */ | |
/* decFloatAdd -- add two decFloats */ | |
/* */ | |
/* result gets the result of adding dfl and dfr: */ | |
/* dfl is the first decFloat (lhs) */ | |
/* dfr is the second decFloat (rhs) */ | |
/* set is the context */ | |
/* returns result */ | |
/* */ | |
/* ------------------------------------------------------------------ */ | |
#if QUAD | |
// Table for testing MSDs for fastpath elimination; returns the MSD of | |
// a decDouble or decQuad (top 6 bits tested) ignoring the sign. | |
// Infinities return -32 and NaNs return -128 so that summing the two | |
// MSDs also allows rapid tests for the Specials (see code below). | |
const Int DECTESTMSD[64]={ | |
0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 9, 8, 9, -32, -128, | |
0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 9, 8, 9, -32, -128}; | |
#else | |
// The table for testing MSDs is shared between the modules | |
extern const Int DECTESTMSD[64]; | |
#endif | |
decFloat * decFloatAdd(decFloat *result, | |
const decFloat *dfl, const decFloat *dfr, | |
decContext *set) { | |
bcdnum num; // for final conversion | |
Int bexpl, bexpr; // left and right biased exponents | |
uByte *ub, *us, *ut; // work | |
uInt uiwork; // for macros | |
#if QUAD | |
uShort uswork; // .. | |
#endif | |
uInt sourhil, sourhir; // top words from source decFloats | |
// [valid only through end of | |
// fastpath code -- before swap] | |
uInt diffsign; // non-zero if signs differ | |
uInt carry; // carry: 0 or 1 before add loop | |
Int overlap; // coefficient overlap (if full) | |
Int summ; // sum of the MSDs | |
// the following buffers hold coefficients with various alignments | |
// (see commentary and diagrams below) | |
uByte acc[4+2+DECPMAX*3+8]; | |
uByte buf[4+2+DECPMAX*2]; | |
uByte *umsd, *ulsd; // local MSD and LSD pointers | |
#if DECLITEND | |
#define CARRYPAT 0x01000000 // carry=1 pattern | |
#else | |
#define CARRYPAT 0x00000001 // carry=1 pattern | |
#endif | |
/* Start decoding the arguments */ | |
// The initial exponents are placed into the opposite Ints to | |
// that which might be expected; there are two sets of data to | |
// keep track of (each decFloat and the corresponding exponent), | |
// and this scheme means that at the swap point (after comparing | |
// exponents) only one pair of words needs to be swapped | |
// whichever path is taken (thereby minimising worst-case path). | |
// The calculated exponents will be nonsense when the arguments are | |
// Special, but are not used in that path | |
sourhil=DFWORD(dfl, 0); // LHS top word | |
summ=DECTESTMSD[sourhil>>26]; // get first MSD for testing | |
bexpr=DECCOMBEXP[sourhil>>26]; // get exponent high bits (in place) | |
bexpr+=GETECON(dfl); // .. + continuation | |
sourhir=DFWORD(dfr, 0); // RHS top word | |
summ+=DECTESTMSD[sourhir>>26]; // sum MSDs for testing | |
bexpl=DECCOMBEXP[sourhir>>26]; | |
bexpl+=GETECON(dfr); | |
// here bexpr has biased exponent from lhs, and vice versa | |
diffsign=(sourhil^sourhir)&DECFLOAT_Sign; | |
// now determine whether to take a fast path or the full-function | |
// slow path. The slow path must be taken when: | |
// -- both numbers are finite, and: | |
// the exponents are different, or | |
// the signs are different, or | |
// the sum of the MSDs is >8 (hence might overflow) | |
// specialness and the sum of the MSDs can be tested at once using | |
// the summ value just calculated, so the test for specials is no | |
// longer on the worst-case path (as of 3.60) | |
if (summ<=8) { // MSD+MSD is good, or there is a special | |
if (summ<0) { // there is a special | |
// Inf+Inf would give -64; Inf+finite is -32 or higher | |
if (summ<-64) return decNaNs(result, dfl, dfr, set); // one or two NaNs | |
// two infinities with different signs is invalid | |
if (summ==-64 && diffsign) return decInvalid(result, set); | |
if (DFISINF(dfl)) return decInfinity(result, dfl); // LHS is infinite | |
return decInfinity(result, dfr); // RHS must be Inf | |
} | |
// Here when both arguments are finite; fast path is possible | |
// (currently only for aligned and same-sign) | |
if (bexpr==bexpl && !diffsign) { | |
uInt tac[DECLETS+1]; // base-1000 coefficient | |
uInt encode; // work | |
// Get one coefficient as base-1000 and add the other | |
GETCOEFFTHOU(dfl, tac); // least-significant goes to [0] | |
ADDCOEFFTHOU(dfr, tac); | |
// here the sum of the MSDs (plus any carry) will be <10 due to | |
// the fastpath test earlier | |
// construct the result; low word is the same for both formats | |
encode =BIN2DPD[tac[0]]; | |
encode|=BIN2DPD[tac[1]]<<10; | |
encode|=BIN2DPD[tac[2]]<<20; | |
encode|=BIN2DPD[tac[3]]<<30; | |
DFWORD(result, (DECBYTES/4)-1)=encode; | |
// collect next two declets (all that remains, for Double) | |
encode =BIN2DPD[tac[3]]>>2; | |
encode|=BIN2DPD[tac[4]]<<8; | |
#if QUAD | |
// complete and lay out middling words | |
encode|=BIN2DPD[tac[5]]<<18; | |
encode|=BIN2DPD[tac[6]]<<28; | |
DFWORD(result, 2)=encode; | |
encode =BIN2DPD[tac[6]]>>4; | |
encode|=BIN2DPD[tac[7]]<<6; | |
encode|=BIN2DPD[tac[8]]<<16; | |
encode|=BIN2DPD[tac[9]]<<26; | |
DFWORD(result, 1)=encode; | |
// and final two declets | |
encode =BIN2DPD[tac[9]]>>6; | |
encode|=BIN2DPD[tac[10]]<<4; | |
#endif | |
// add exponent continuation and sign (from either argument) | |
encode|=sourhil & (ECONMASK | DECFLOAT_Sign); | |
// create lookup index = MSD + top two bits of biased exponent <<4 | |
tac[DECLETS]|=(bexpl>>DECECONL)<<4; | |
encode|=DECCOMBFROM[tac[DECLETS]]; // add constructed combination field | |
DFWORD(result, 0)=encode; // complete | |
// decFloatShow(result, ">"); | |
return result; | |
} // fast path OK | |
// drop through to slow path | |
} // low sum or Special(s) | |
/* Slow path required -- arguments are finite and might overflow, */ | |
/* or require alignment, or might have different signs */ | |
// now swap either exponents or argument pointers | |
if (bexpl<=bexpr) { | |
// original left is bigger | |
Int bexpswap=bexpl; | |
bexpl=bexpr; | |
bexpr=bexpswap; | |
// printf("left bigger\n"); | |
} | |
else { | |
const decFloat *dfswap=dfl; | |
dfl=dfr; | |
dfr=dfswap; | |
// printf("right bigger\n"); | |
} | |
// [here dfl and bexpl refer to the datum with the larger exponent, | |
// of if the exponents are equal then the original LHS argument] | |
// if lhs is zero then result will be the rhs (now known to have | |
// the smaller exponent), which also may need to be tested for zero | |
// for the weird IEEE 754 sign rules | |
if (DFISZERO(dfl)) { | |
decCanonical(result, dfr); // clean copy | |
// "When the sum of two operands with opposite signs is | |
// exactly zero, the sign of that sum shall be '+' in all | |
// rounding modes except round toward -Infinity, in which | |
// mode that sign shall be '-'." | |
if (diffsign && DFISZERO(result)) { | |
DFWORD(result, 0)&=~DECFLOAT_Sign; // assume sign 0 | |
if (set->round==DEC_ROUND_FLOOR) DFWORD(result, 0)|=DECFLOAT_Sign; | |
} | |
return result; | |
} // numfl is zero | |
// [here, LHS is non-zero; code below assumes that] | |
// Coefficients layout during the calculations to follow: | |
// | |
// Overlap case: | |
// +------------------------------------------------+ | |
// acc: |0000| coeffa | tail B | | | |
// +------------------------------------------------+ | |
// buf: |0000| pad0s | coeffb | | | |
// +------------------------------------------------+ | |
// | |
// Touching coefficients or gap: | |
// +------------------------------------------------+ | |
// acc: |0000| coeffa | gap | coeffb | | |
// +------------------------------------------------+ | |
// [buf not used or needed; gap clamped to Pmax] | |
// lay out lhs coefficient into accumulator; this starts at acc+4 | |
// for decDouble or acc+6 for decQuad so the LSD is word- | |
// aligned; the top word gap is there only in case a carry digit | |
// is prefixed after the add -- it does not need to be zeroed | |
#if DOUBLE | |
#define COFF 4 // offset into acc | |
#elif QUAD | |
UBFROMUS(acc+4, 0); // prefix 00 | |
#define COFF 6 // offset into acc | |
#endif | |
GETCOEFF(dfl, acc+COFF); // decode from decFloat | |
ulsd=acc+COFF+DECPMAX-1; | |
umsd=acc+4; // [having this here avoids | |
#if DECTRACE | |
{bcdnum tum; | |
tum.msd=umsd; | |
tum.lsd=ulsd; | |
tum.exponent=bexpl-DECBIAS; | |
tum.sign=DFWORD(dfl, 0) & DECFLOAT_Sign; | |
decShowNum(&tum, "dflx");} | |
#endif | |
// if signs differ, take ten's complement of lhs (here the | |
// coefficient is subtracted from all-nines; the 1 is added during | |
// the later add cycle -- zeros to the right do not matter because | |
// the complement of zero is zero); these are fixed-length inverts | |
// where the lsd is known to be at a 4-byte boundary (so no borrow | |
// possible) | |
carry=0; // assume no carry | |
if (diffsign) { | |
carry=CARRYPAT; // for +1 during add | |
UBFROMUI(acc+ 4, 0x09090909-UBTOUI(acc+ 4)); | |
UBFROMUI(acc+ 8, 0x09090909-UBTOUI(acc+ 8)); | |
UBFROMUI(acc+12, 0x09090909-UBTOUI(acc+12)); | |
UBFROMUI(acc+16, 0x09090909-UBTOUI(acc+16)); | |
#if QUAD | |
UBFROMUI(acc+20, 0x09090909-UBTOUI(acc+20)); | |
UBFROMUI(acc+24, 0x09090909-UBTOUI(acc+24)); | |
UBFROMUI(acc+28, 0x09090909-UBTOUI(acc+28)); | |
UBFROMUI(acc+32, 0x09090909-UBTOUI(acc+32)); | |
UBFROMUI(acc+36, 0x09090909-UBTOUI(acc+36)); | |
#endif | |
} // diffsign | |
// now process the rhs coefficient; if it cannot overlap lhs then | |
// it can be put straight into acc (with an appropriate gap, if | |
// needed) because no actual addition will be needed (except | |
// possibly to complete ten's complement) | |
overlap=DECPMAX-(bexpl-bexpr); | |
#if DECTRACE | |
printf("exps: %ld %ld\n", (LI)(bexpl-DECBIAS), (LI)(bexpr-DECBIAS)); | |
printf("Overlap=%ld carry=%08lx\n", (LI)overlap, (LI)carry); | |
#endif | |
if (overlap<=0) { // no overlap possible | |
uInt gap; // local work | |
// since a full addition is not needed, a ten's complement | |
// calculation started above may need to be completed | |
if (carry) { | |
for (ub=ulsd; *ub==9; ub--) *ub=0; | |
*ub+=1; | |
carry=0; // taken care of | |
} | |
// up to DECPMAX-1 digits of the final result can extend down | |
// below the LSD of the lhs, so if the gap is >DECPMAX then the | |
// rhs will be simply sticky bits. In this case the gap is | |
// clamped to DECPMAX and the exponent adjusted to suit [this is | |
// safe because the lhs is non-zero]. | |
gap=-overlap; | |
if (gap>DECPMAX) { | |
bexpr+=gap-1; | |
gap=DECPMAX; | |
} | |
ub=ulsd+gap+1; // where MSD will go | |
// Fill the gap with 0s; note that there is no addition to do | |
ut=acc+COFF+DECPMAX; // start of gap | |
for (; ut<ub; ut+=4) UBFROMUI(ut, 0); // mind the gap | |
if (overlap<-DECPMAX) { // gap was > DECPMAX | |
*ub=(uByte)(!DFISZERO(dfr)); // make sticky digit | |
} | |
else { // need full coefficient | |
GETCOEFF(dfr, ub); // decode from decFloat | |
ub+=DECPMAX-1; // new LSD... | |
} | |
ulsd=ub; // save new LSD | |
} // no overlap possible | |
else { // overlap>0 | |
// coefficients overlap (perhaps completely, although also | |
// perhaps only where zeros) | |
if (overlap==DECPMAX) { // aligned | |
ub=buf+COFF; // where msd will go | |
#if QUAD | |
UBFROMUS(buf+4, 0); // clear quad's 00 | |
#endif | |
GETCOEFF(dfr, ub); // decode from decFloat | |
} | |
else { // unaligned | |
ub=buf+COFF+DECPMAX-overlap; // where MSD will go | |
// Fill the prefix gap with 0s; 8 will cover most common | |
// unalignments, so start with direct assignments (a loop is | |
// then used for any remaining -- the loop (and the one in a | |
// moment) is not then on the critical path because the number | |
// of additions is reduced by (at least) two in this case) | |
UBFROMUI(buf+4, 0); // [clears decQuad 00 too] | |
UBFROMUI(buf+8, 0); | |
if (ub>buf+12) { | |
ut=buf+12; // start any remaining | |
for (; ut<ub; ut+=4) UBFROMUI(ut, 0); // fill them | |
} | |
GETCOEFF(dfr, ub); // decode from decFloat | |
// now move tail of rhs across to main acc; again use direct | |
// copies for 8 digits-worth | |
UBFROMUI(acc+COFF+DECPMAX, UBTOUI(buf+COFF+DECPMAX)); | |
UBFROMUI(acc+COFF+DECPMAX+4, UBTOUI(buf+COFF+DECPMAX+4)); | |
if (buf+COFF+DECPMAX+8<ub+DECPMAX) { | |
us=buf+COFF+DECPMAX+8; // source | |
ut=acc+COFF+DECPMAX+8; // target | |
for (; us<ub+DECPMAX; us+=4, ut+=4) UBFROMUI(ut, UBTOUI(us)); | |
} | |
} // unaligned | |
ulsd=acc+(ub-buf+DECPMAX-1); // update LSD pointer | |
// Now do the add of the non-tail; this is all nicely aligned, | |
// and is over a multiple of four digits (because for Quad two | |
// zero digits were added on the left); words in both acc and | |
// buf (buf especially) will often be zero | |
// [byte-by-byte add, here, is about 15% slower total effect than | |
// the by-fours] | |
// Now effect the add; this is harder on a little-endian | |
// machine as the inter-digit carry cannot use the usual BCD | |
// addition trick because the bytes are loaded in the wrong order | |
// [this loop could be unrolled, but probably scarcely worth it] | |
ut=acc+COFF+DECPMAX-4; // target LSW (acc) | |
us=buf+COFF+DECPMAX-4; // source LSW (buf, to add to acc) | |
#if !DECLITEND | |
for (; ut>=acc+4; ut-=4, us-=4) { // big-endian add loop | |
// bcd8 add | |
carry+=UBTOUI(us); // rhs + carry | |
if (carry==0) continue; // no-op | |
carry+=UBTOUI(ut); // lhs | |
// Big-endian BCD adjust (uses internal carry) | |
carry+=0x76f6f6f6; // note top nibble not all bits | |
// apply BCD adjust and save | |
UBFROMUI(ut, (carry & 0x0f0f0f0f) - ((carry & 0x60606060)>>4)); | |
carry>>=31; // true carry was at far left | |
} // add loop | |
#else | |
for (; ut>=acc+4; ut-=4, us-=4) { // little-endian add loop | |
// bcd8 add | |
carry+=UBTOUI(us); // rhs + carry | |
if (carry==0) continue; // no-op [common if unaligned] | |
carry+=UBTOUI(ut); // lhs | |
// Little-endian BCD adjust; inter-digit carry must be manual | |
// because the lsb from the array will be in the most-significant | |
// byte of carry | |
carry+=0x76767676; // note no inter-byte carries | |
carry+=(carry & 0x80000000)>>15; | |
carry+=(carry & 0x00800000)>>15; | |
carry+=(carry & 0x00008000)>>15; | |
carry-=(carry & 0x60606060)>>4; // BCD adjust back | |
UBFROMUI(ut, carry & 0x0f0f0f0f); // clear debris and save | |
// here, final carry-out bit is at 0x00000080; move it ready | |
// for next word-add (i.e., to 0x01000000) | |
carry=(carry & 0x00000080)<<17; | |
} // add loop | |
#endif | |
#if DECTRACE | |
{bcdnum tum; | |
printf("Add done, carry=%08lx, diffsign=%ld\n", (LI)carry, (LI)diffsign); | |
tum.msd=umsd; // acc+4; | |
tum.lsd=ulsd; | |
tum.exponent=0; | |
tum.sign=0; | |
decShowNum(&tum, "dfadd");} | |
#endif | |
} // overlap possible | |
// ordering here is a little strange in order to have slowest path | |
// first in GCC asm listing | |
if (diffsign) { // subtraction | |
if (!carry) { // no carry out means RHS<LHS | |
// borrowed -- take ten's complement | |
// sign is lhs sign | |
num.sign=DFWORD(dfl, 0) & DECFLOAT_Sign; | |
// invert the coefficient first by fours, then add one; space | |
// at the end of the buffer ensures the by-fours is always | |
// safe, but lsd+1 must be cleared to prevent a borrow | |
// if big-endian | |
#if !DECLITEND | |
*(ulsd+1)=0; | |
#endif | |
// there are always at least four coefficient words | |
UBFROMUI(umsd, 0x09090909-UBTOUI(umsd)); | |
UBFROMUI(umsd+4, 0x09090909-UBTOUI(umsd+4)); | |
UBFROMUI(umsd+8, 0x09090909-UBTOUI(umsd+8)); | |
UBFROMUI(umsd+12, 0x09090909-UBTOUI(umsd+12)); | |
#if DOUBLE | |
#define BNEXT 16 | |
#elif QUAD | |
UBFROMUI(umsd+16, 0x09090909-UBTOUI(umsd+16)); | |
UBFROMUI(umsd+20, 0x09090909-UBTOUI(umsd+20)); | |
UBFROMUI(umsd+24, 0x09090909-UBTOUI(umsd+24)); | |
UBFROMUI(umsd+28, 0x09090909-UBTOUI(umsd+28)); | |
UBFROMUI(umsd+32, 0x09090909-UBTOUI(umsd+32)); | |
#define BNEXT 36 | |
#endif | |
if (ulsd>=umsd+BNEXT) { // unaligned | |
// eight will handle most unaligments for Double; 16 for Quad | |
UBFROMUI(umsd+BNEXT, 0x09090909-UBTOUI(umsd+BNEXT)); | |
UBFROMUI(umsd+BNEXT+4, 0x09090909-UBTOUI(umsd+BNEXT+4)); | |
#if DOUBLE | |
#define BNEXTY (BNEXT+8) | |
#elif QUAD | |
UBFROMUI(umsd+BNEXT+8, 0x09090909-UBTOUI(umsd+BNEXT+8)); | |
UBFROMUI(umsd+BNEXT+12, 0x09090909-UBTOUI(umsd+BNEXT+12)); | |
#define BNEXTY (BNEXT+16) | |
#endif | |
if (ulsd>=umsd+BNEXTY) { // very unaligned | |
ut=umsd+BNEXTY; // -> continue | |
for (;;ut+=4) { | |
UBFROMUI(ut, 0x09090909-UBTOUI(ut)); // invert four digits | |
if (ut>=ulsd-3) break; // all done | |
} | |
} | |
} | |
// complete the ten's complement by adding 1 | |
for (ub=ulsd; *ub==9; ub--) *ub=0; | |
*ub+=1; | |
} // borrowed | |
else { // carry out means RHS>=LHS | |
num.sign=DFWORD(dfr, 0) & DECFLOAT_Sign; | |
// all done except for the special IEEE 754 exact-zero-result | |
// rule (see above); while testing for zero, strip leading | |
// zeros (which will save decFinalize doing it) (this is in | |
// diffsign path, so carry impossible and true umsd is | |
// acc+COFF) | |
// Check the initial coefficient area using the fast macro; | |
// this will often be all that needs to be done (as on the | |
// worst-case path when the subtraction was aligned and | |
// full-length) | |
if (ISCOEFFZERO(acc+COFF)) { | |
umsd=acc+COFF+DECPMAX-1; // so far, so zero | |
if (ulsd>umsd) { // more to check | |
umsd++; // to align after checked area | |
for (; UBTOUI(umsd)==0 && umsd+3<ulsd;) umsd+=4; | |
for (; *umsd==0 && umsd<ulsd;) umsd++; | |
} | |
if (*umsd==0) { // must be true zero (and diffsign) | |
num.sign=0; // assume + | |
if (set->round==DEC_ROUND_FLOOR) num.sign=DECFLOAT_Sign; | |
} | |
} | |
// [else was not zero, might still have leading zeros] | |
} // subtraction gave positive result | |
} // diffsign | |
else { // same-sign addition | |
num.sign=DFWORD(dfl, 0)&DECFLOAT_Sign; | |
#if DOUBLE | |
if (carry) { // only possible with decDouble | |
*(acc+3)=1; // [Quad has leading 00] | |
umsd=acc+3; | |
} | |
#endif | |
} // same sign | |
num.msd=umsd; // set MSD .. | |
num.lsd=ulsd; // .. and LSD | |
num.exponent=bexpr-DECBIAS; // set exponent to smaller, unbiassed | |
#if DECTRACE | |
decFloatShow(dfl, "dfl"); | |
decFloatShow(dfr, "dfr"); | |
decShowNum(&num, "postadd"); | |
#endif | |
return decFinalize(result, &num, set); // round, check, and lay out | |
} // decFloatAdd | |
/* ------------------------------------------------------------------ */ | |
/* decFloatAnd -- logical digitwise AND of two decFloats */ | |
/* */ | |
/* result gets the result of ANDing dfl and dfr */ | |
/* dfl is the first decFloat (lhs) */ | |
/* dfr is the second decFloat (rhs) */ | |
/* set is the context */ | |
/* returns result, which will be canonical with sign=0 */ | |
/* */ | |
/* The operands must be positive, finite with exponent q=0, and */ | |
/* comprise just zeros and ones; if not, Invalid operation results. */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatAnd(decFloat *result, | |
const decFloat *dfl, const decFloat *dfr, | |
decContext *set) { | |
if (!DFISUINT01(dfl) || !DFISUINT01(dfr) | |
|| !DFISCC01(dfl) || !DFISCC01(dfr)) return decInvalid(result, set); | |
// the operands are positive finite integers (q=0) with just 0s and 1s | |
#if DOUBLE | |
DFWORD(result, 0)=ZEROWORD | |
|((DFWORD(dfl, 0) & DFWORD(dfr, 0))&0x04009124); | |
DFWORD(result, 1)=(DFWORD(dfl, 1) & DFWORD(dfr, 1))&0x49124491; | |
#elif QUAD | |
DFWORD(result, 0)=ZEROWORD | |
|((DFWORD(dfl, 0) & DFWORD(dfr, 0))&0x04000912); | |
DFWORD(result, 1)=(DFWORD(dfl, 1) & DFWORD(dfr, 1))&0x44912449; | |
DFWORD(result, 2)=(DFWORD(dfl, 2) & DFWORD(dfr, 2))&0x12449124; | |
DFWORD(result, 3)=(DFWORD(dfl, 3) & DFWORD(dfr, 3))&0x49124491; | |
#endif | |
return result; | |
} // decFloatAnd | |
/* ------------------------------------------------------------------ */ | |
/* decFloatCanonical -- copy a decFloat, making canonical */ | |
/* */ | |
/* result gets the canonicalized df */ | |
/* df is the decFloat to copy and make canonical */ | |
/* returns result */ | |
/* */ | |
/* This works on specials, too; no error or exception is possible. */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatCanonical(decFloat *result, const decFloat *df) { | |
return decCanonical(result, df); | |
} // decFloatCanonical | |
/* ------------------------------------------------------------------ */ | |
/* decFloatClass -- return the class of a decFloat */ | |
/* */ | |
/* df is the decFloat to test */ | |
/* returns the decClass that df falls into */ | |
/* ------------------------------------------------------------------ */ | |
enum decClass decFloatClass(const decFloat *df) { | |
Int exp; // exponent | |
if (DFISSPECIAL(df)) { | |
if (DFISQNAN(df)) return DEC_CLASS_QNAN; | |
if (DFISSNAN(df)) return DEC_CLASS_SNAN; | |
// must be an infinity | |
if (DFISSIGNED(df)) return DEC_CLASS_NEG_INF; | |
return DEC_CLASS_POS_INF; | |
} | |
if (DFISZERO(df)) { // quite common | |
if (DFISSIGNED(df)) return DEC_CLASS_NEG_ZERO; | |
return DEC_CLASS_POS_ZERO; | |
} | |
// is finite and non-zero; similar code to decFloatIsNormal, here | |
// [this could be speeded up slightly by in-lining decFloatDigits] | |
exp=GETEXPUN(df) // get unbiased exponent .. | |
+decFloatDigits(df)-1; // .. and make adjusted exponent | |
if (exp>=DECEMIN) { // is normal | |
if (DFISSIGNED(df)) return DEC_CLASS_NEG_NORMAL; | |
return DEC_CLASS_POS_NORMAL; | |
} | |
// is subnormal | |
if (DFISSIGNED(df)) return DEC_CLASS_NEG_SUBNORMAL; | |
return DEC_CLASS_POS_SUBNORMAL; | |
} // decFloatClass | |
/* ------------------------------------------------------------------ */ | |
/* decFloatClassString -- return the class of a decFloat as a string */ | |
/* */ | |
/* df is the decFloat to test */ | |
/* returns a constant string describing the class df falls into */ | |
/* ------------------------------------------------------------------ */ | |
const char *decFloatClassString(const decFloat *df) { | |
enum decClass eclass=decFloatClass(df); | |
if (eclass==DEC_CLASS_POS_NORMAL) return DEC_ClassString_PN; | |
if (eclass==DEC_CLASS_NEG_NORMAL) return DEC_ClassString_NN; | |
if (eclass==DEC_CLASS_POS_ZERO) return DEC_ClassString_PZ; | |
if (eclass==DEC_CLASS_NEG_ZERO) return DEC_ClassString_NZ; | |
if (eclass==DEC_CLASS_POS_SUBNORMAL) return DEC_ClassString_PS; | |
if (eclass==DEC_CLASS_NEG_SUBNORMAL) return DEC_ClassString_NS; | |
if (eclass==DEC_CLASS_POS_INF) return DEC_ClassString_PI; | |
if (eclass==DEC_CLASS_NEG_INF) return DEC_ClassString_NI; | |
if (eclass==DEC_CLASS_QNAN) return DEC_ClassString_QN; | |
if (eclass==DEC_CLASS_SNAN) return DEC_ClassString_SN; | |
return DEC_ClassString_UN; // Unknown | |
} // decFloatClassString | |
/* ------------------------------------------------------------------ */ | |
/* decFloatCompare -- compare two decFloats; quiet NaNs allowed */ | |
/* */ | |
/* result gets the result of comparing dfl and dfr */ | |
/* dfl is the first decFloat (lhs) */ | |
/* dfr is the second decFloat (rhs) */ | |
/* set is the context */ | |
/* returns result, which may be -1, 0, 1, or NaN (Unordered) */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatCompare(decFloat *result, | |
const decFloat *dfl, const decFloat *dfr, | |
decContext *set) { | |
Int comp; // work | |
// NaNs are handled as usual | |
if (DFISNAN(dfl) || DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set); | |
// numeric comparison needed | |
comp=decNumCompare(dfl, dfr, 0); | |
decFloatZero(result); | |
if (comp==0) return result; | |
DFBYTE(result, DECBYTES-1)=0x01; // LSD=1 | |
if (comp<0) DFBYTE(result, 0)|=0x80; // set sign bit | |
return result; | |
} // decFloatCompare | |
/* ------------------------------------------------------------------ */ | |
/* decFloatCompareSignal -- compare two decFloats; all NaNs signal */ | |
/* */ | |
/* result gets the result of comparing dfl and dfr */ | |
/* dfl is the first decFloat (lhs) */ | |
/* dfr is the second decFloat (rhs) */ | |
/* set is the context */ | |
/* returns result, which may be -1, 0, 1, or NaN (Unordered) */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatCompareSignal(decFloat *result, | |
const decFloat *dfl, const decFloat *dfr, | |
decContext *set) { | |
Int comp; // work | |
// NaNs are handled as usual, except that all NaNs signal | |
if (DFISNAN(dfl) || DFISNAN(dfr)) { | |
set->status|=DEC_Invalid_operation; | |
return decNaNs(result, dfl, dfr, set); | |
} | |
// numeric comparison needed | |
comp=decNumCompare(dfl, dfr, 0); | |
decFloatZero(result); | |
if (comp==0) return result; | |
DFBYTE(result, DECBYTES-1)=0x01; // LSD=1 | |
if (comp<0) DFBYTE(result, 0)|=0x80; // set sign bit | |
return result; | |
} // decFloatCompareSignal | |
/* ------------------------------------------------------------------ */ | |
/* decFloatCompareTotal -- compare two decFloats with total ordering */ | |
/* */ | |
/* result gets the result of comparing dfl and dfr */ | |
/* dfl is the first decFloat (lhs) */ | |
/* dfr is the second decFloat (rhs) */ | |
/* returns result, which may be -1, 0, or 1 */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatCompareTotal(decFloat *result, | |
const decFloat *dfl, const decFloat *dfr) { | |
Int comp; // work | |
uInt uiwork; // for macros | |
#if QUAD | |
uShort uswork; // .. | |
#endif | |
if (DFISNAN(dfl) || DFISNAN(dfr)) { | |
Int nanl, nanr; // work | |
// morph NaNs to +/- 1 or 2, leave numbers as 0 | |
nanl=DFISSNAN(dfl)+DFISQNAN(dfl)*2; // quiet > signalling | |
if (DFISSIGNED(dfl)) nanl=-nanl; | |
nanr=DFISSNAN(dfr)+DFISQNAN(dfr)*2; | |
if (DFISSIGNED(dfr)) nanr=-nanr; | |
if (nanl>nanr) comp=+1; | |
else if (nanl<nanr) comp=-1; | |
else { // NaNs are the same type and sign .. must compare payload | |
// buffers need +2 for QUAD | |
uByte bufl[DECPMAX+4]; // for LHS coefficient + foot | |
uByte bufr[DECPMAX+4]; // for RHS coefficient + foot | |
uByte *ub, *uc; // work | |
Int sigl; // signum of LHS | |
sigl=(DFISSIGNED(dfl) ? -1 : +1); | |
// decode the coefficients | |
// (shift both right two if Quad to make a multiple of four) | |
#if QUAD | |
UBFROMUS(bufl, 0); | |
UBFROMUS(bufr, 0); | |
#endif | |
GETCOEFF(dfl, bufl+QUAD*2); // decode from decFloat | |
GETCOEFF(dfr, bufr+QUAD*2); // .. | |
// all multiples of four, here | |
comp=0; // assume equal | |
for (ub=bufl, uc=bufr; ub<bufl+DECPMAX+QUAD*2; ub+=4, uc+=4) { | |
uInt ui=UBTOUI(ub); | |
if (ui==UBTOUI(uc)) continue; // so far so same | |
// about to find a winner; go by bytes in case little-endian | |
for (;; ub++, uc++) { | |
if (*ub==*uc) continue; | |
if (*ub>*uc) comp=sigl; // difference found | |
else comp=-sigl; // .. | |
break; | |
} | |
} | |
} // same NaN type and sign | |
} | |
else { | |
// numeric comparison needed | |
comp=decNumCompare(dfl, dfr, 1); // total ordering | |
} | |
decFloatZero(result); | |
if (comp==0) return result; | |
DFBYTE(result, DECBYTES-1)=0x01; // LSD=1 | |
if (comp<0) DFBYTE(result, 0)|=0x80; // set sign bit | |
return result; | |
} // decFloatCompareTotal | |
/* ------------------------------------------------------------------ */ | |
/* decFloatCompareTotalMag -- compare magnitudes with total ordering */ | |
/* */ | |
/* result gets the result of comparing abs(dfl) and abs(dfr) */ | |
/* dfl is the first decFloat (lhs) */ | |
/* dfr is the second decFloat (rhs) */ | |
/* returns result, which may be -1, 0, or 1 */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatCompareTotalMag(decFloat *result, | |
const decFloat *dfl, const decFloat *dfr) { | |
decFloat a, b; // for copy if needed | |
// copy and redirect signed operand(s) | |
if (DFISSIGNED(dfl)) { | |
decFloatCopyAbs(&a, dfl); | |
dfl=&a; | |
} | |
if (DFISSIGNED(dfr)) { | |
decFloatCopyAbs(&b, dfr); | |
dfr=&b; | |
} | |
return decFloatCompareTotal(result, dfl, dfr); | |
} // decFloatCompareTotalMag | |
/* ------------------------------------------------------------------ */ | |
/* decFloatCopy -- copy a decFloat as-is */ | |
/* */ | |
/* result gets the copy of dfl */ | |
/* dfl is the decFloat to copy */ | |
/* returns result */ | |
/* */ | |
/* This is a bitwise operation; no errors or exceptions are possible. */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatCopy(decFloat *result, const decFloat *dfl) { | |
if (dfl!=result) *result=*dfl; // copy needed | |
return result; | |
} // decFloatCopy | |
/* ------------------------------------------------------------------ */ | |
/* decFloatCopyAbs -- copy a decFloat as-is and set sign bit to 0 */ | |
/* */ | |
/* result gets the copy of dfl with sign bit 0 */ | |
/* dfl is the decFloat to copy */ | |
/* returns result */ | |
/* */ | |
/* This is a bitwise operation; no errors or exceptions are possible. */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatCopyAbs(decFloat *result, const decFloat *dfl) { | |
if (dfl!=result) *result=*dfl; // copy needed | |
DFBYTE(result, 0)&=~0x80; // zero sign bit | |
return result; | |
} // decFloatCopyAbs | |
/* ------------------------------------------------------------------ */ | |
/* decFloatCopyNegate -- copy a decFloat as-is with inverted sign bit */ | |
/* */ | |
/* result gets the copy of dfl with sign bit inverted */ | |
/* dfl is the decFloat to copy */ | |
/* returns result */ | |
/* */ | |
/* This is a bitwise operation; no errors or exceptions are possible. */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatCopyNegate(decFloat *result, const decFloat *dfl) { | |
if (dfl!=result) *result=*dfl; // copy needed | |
DFBYTE(result, 0)^=0x80; // invert sign bit | |
return result; | |
} // decFloatCopyNegate | |
/* ------------------------------------------------------------------ */ | |
/* decFloatCopySign -- copy a decFloat with the sign of another */ | |
/* */ | |
/* result gets the result of copying dfl with the sign of dfr */ | |
/* dfl is the first decFloat (lhs) */ | |
/* dfr is the second decFloat (rhs) */ | |
/* returns result */ | |
/* */ | |
/* This is a bitwise operation; no errors or exceptions are possible. */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatCopySign(decFloat *result, | |
const decFloat *dfl, const decFloat *dfr) { | |
uByte sign=(uByte)(DFBYTE(dfr, 0)&0x80); // save sign bit | |
if (dfl!=result) *result=*dfl; // copy needed | |
DFBYTE(result, 0)&=~0x80; // clear sign .. | |
DFBYTE(result, 0)=(uByte)(DFBYTE(result, 0)|sign); // .. and set saved | |
return result; | |
} // decFloatCopySign | |
/* ------------------------------------------------------------------ */ | |
/* decFloatDigits -- return the number of digits in a decFloat */ | |
/* */ | |
/* df is the decFloat to investigate */ | |
/* returns the number of significant digits in the decFloat; a */ | |
/* zero coefficient returns 1 as does an infinity (a NaN returns */ | |
/* the number of digits in the payload) */ | |
/* ------------------------------------------------------------------ */ | |
// private macro to extract a declet according to provided formula | |
// (form), and if it is non-zero then return the calculated digits | |
// depending on the declet number (n), where n=0 for the most | |
// significant declet; uses uInt dpd for work | |
#define dpdlenchk(n, form) dpd=(form)&0x3ff; \ | |
if (dpd) return (DECPMAX-1-3*(n))-(3-DPD2BCD8[dpd*4+3]) | |
// next one is used when it is known that the declet must be | |
// non-zero, or is the final zero declet | |
#define dpdlendun(n, form) dpd=(form)&0x3ff; \ | |
if (dpd==0) return 1; \ | |
return (DECPMAX-1-3*(n))-(3-DPD2BCD8[dpd*4+3]) | |
uInt decFloatDigits(const decFloat *df) { | |
uInt dpd; // work | |
uInt sourhi=DFWORD(df, 0); // top word from source decFloat | |
#if QUAD | |
uInt sourmh, sourml; | |
#endif | |
uInt sourlo; | |
if (DFISINF(df)) return 1; | |
// A NaN effectively has an MSD of 0; otherwise if non-zero MSD | |
// then the coefficient is full-length | |
if (!DFISNAN(df) && DECCOMBMSD[sourhi>>26]) return DECPMAX; | |
#if DOUBLE | |
if (sourhi&0x0003ffff) { // ends in first | |
dpdlenchk(0, sourhi>>8); | |
sourlo=DFWORD(df, 1); | |
dpdlendun(1, (sourhi<<2) | (sourlo>>30)); | |
} // [cannot drop through] | |
sourlo=DFWORD(df, 1); // sourhi not involved now | |
if (sourlo&0xfff00000) { // in one of first two | |
dpdlenchk(1, sourlo>>30); // very rare | |
dpdlendun(2, sourlo>>20); | |
} // [cannot drop through] | |
dpdlenchk(3, sourlo>>10); | |
dpdlendun(4, sourlo); | |
// [cannot drop through] | |
#elif QUAD | |
if (sourhi&0x00003fff) { // ends in first | |
dpdlenchk(0, sourhi>>4); | |
sourmh=DFWORD(df, 1); | |
dpdlendun(1, ((sourhi)<<6) | (sourmh>>26)); | |
} // [cannot drop through] | |
sourmh=DFWORD(df, 1); | |
if (sourmh) { | |
dpdlenchk(1, sourmh>>26); | |
dpdlenchk(2, sourmh>>16); | |
dpdlenchk(3, sourmh>>6); | |
sourml=DFWORD(df, 2); | |
dpdlendun(4, ((sourmh)<<4) | (sourml>>28)); | |
} // [cannot drop through] | |
sourml=DFWORD(df, 2); | |
if (sourml) { | |
dpdlenchk(4, sourml>>28); | |
dpdlenchk(5, sourml>>18); | |
dpdlenchk(6, sourml>>8); | |
sourlo=DFWORD(df, 3); | |
dpdlendun(7, ((sourml)<<2) | (sourlo>>30)); | |
} // [cannot drop through] | |
sourlo=DFWORD(df, 3); | |
if (sourlo&0xfff00000) { // in one of first two | |
dpdlenchk(7, sourlo>>30); // very rare | |
dpdlendun(8, sourlo>>20); | |
} // [cannot drop through] | |
dpdlenchk(9, sourlo>>10); | |
dpdlendun(10, sourlo); | |
// [cannot drop through] | |
#endif | |
} // decFloatDigits | |
/* ------------------------------------------------------------------ */ | |
/* decFloatDivide -- divide a decFloat by another */ | |
/* */ | |
/* result gets the result of dividing dfl by dfr: */ | |
/* dfl is the first decFloat (lhs) */ | |
/* dfr is the second decFloat (rhs) */ | |
/* set is the context */ | |
/* returns result */ | |
/* */ | |
/* ------------------------------------------------------------------ */ | |
// This is just a wrapper. | |
decFloat * decFloatDivide(decFloat *result, | |
const decFloat *dfl, const decFloat *dfr, | |
decContext *set) { | |
return decDivide(result, dfl, dfr, set, DIVIDE); | |
} // decFloatDivide | |
/* ------------------------------------------------------------------ */ | |
/* decFloatDivideInteger -- integer divide a decFloat by another */ | |
/* */ | |
/* result gets the result of dividing dfl by dfr: */ | |
/* dfl is the first decFloat (lhs) */ | |
/* dfr is the second decFloat (rhs) */ | |
/* set is the context */ | |
/* returns result */ | |
/* */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatDivideInteger(decFloat *result, | |
const decFloat *dfl, const decFloat *dfr, | |
decContext *set) { | |
return decDivide(result, dfl, dfr, set, DIVIDEINT); | |
} // decFloatDivideInteger | |
/* ------------------------------------------------------------------ */ | |
/* decFloatFMA -- multiply and add three decFloats, fused */ | |
/* */ | |
/* result gets the result of (dfl*dfr)+dff with a single rounding */ | |
/* dfl is the first decFloat (lhs) */ | |
/* dfr is the second decFloat (rhs) */ | |
/* dff is the final decFloat (fhs) */ | |
/* set is the context */ | |
/* returns result */ | |
/* */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatFMA(decFloat *result, const decFloat *dfl, | |
const decFloat *dfr, const decFloat *dff, | |
decContext *set) { | |
// The accumulator has the bytes needed for FiniteMultiply, plus | |
// one byte to the left in case of carry, plus DECPMAX+2 to the | |
// right for the final addition (up to full fhs + round & sticky) | |
#define FMALEN (ROUNDUP4(1+ (DECPMAX9*18+1) +DECPMAX+2)) | |
uByte acc[FMALEN]; // for multiplied coefficient in BCD | |
// .. and for final result | |
bcdnum mul; // for multiplication result | |
bcdnum fin; // for final operand, expanded | |
uByte coe[ROUNDUP4(DECPMAX)]; // dff coefficient in BCD | |
bcdnum *hi, *lo; // bcdnum with higher/lower exponent | |
uInt diffsign; // non-zero if signs differ | |
uInt hipad; // pad digit for hi if needed | |
Int padding; // excess exponent | |
uInt carry; // +1 for ten's complement and during add | |
uByte *ub, *uh, *ul; // work | |
uInt uiwork; // for macros | |
// handle all the special values [any special operand leads to a | |
// special result] | |
if (DFISSPECIAL(dfl) || DFISSPECIAL(dfr) || DFISSPECIAL(dff)) { | |
decFloat proxy; // multiplication result proxy | |
// NaNs are handled as usual, giving priority to sNaNs | |
if (DFISSNAN(dfl) || DFISSNAN(dfr)) return decNaNs(result, dfl, dfr, set); | |
if (DFISSNAN(dff)) return decNaNs(result, dff, NULL, set); | |
if (DFISNAN(dfl) || DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set); | |
if (DFISNAN(dff)) return decNaNs(result, dff, NULL, set); | |
// One or more of the three is infinite | |
// infinity times zero is bad | |
decFloatZero(&proxy); | |
if (DFISINF(dfl)) { | |
if (DFISZERO(dfr)) return decInvalid(result, set); | |
decInfinity(&proxy, &proxy); | |
} | |
else if (DFISINF(dfr)) { | |
if (DFISZERO(dfl)) return decInvalid(result, set); | |
decInfinity(&proxy, &proxy); | |
} | |
// compute sign of multiplication and place in proxy | |
DFWORD(&proxy, 0)|=(DFWORD(dfl, 0)^DFWORD(dfr, 0))&DECFLOAT_Sign; | |
if (!DFISINF(dff)) return decFloatCopy(result, &proxy); | |
// dff is Infinite | |
if (!DFISINF(&proxy)) return decInfinity(result, dff); | |
// both sides of addition are infinite; different sign is bad | |
if ((DFWORD(dff, 0)&DECFLOAT_Sign)!=(DFWORD(&proxy, 0)&DECFLOAT_Sign)) | |
return decInvalid(result, set); | |
return decFloatCopy(result, &proxy); | |
} | |
/* Here when all operands are finite */ | |
// First multiply dfl*dfr | |
decFiniteMultiply(&mul, acc+1, dfl, dfr); | |
// The multiply is complete, exact and unbounded, and described in | |
// mul with the coefficient held in acc[1...] | |
// now add in dff; the algorithm is essentially the same as | |
// decFloatAdd, but the code is different because the code there | |
// is highly optimized for adding two numbers of the same size | |
fin.exponent=GETEXPUN(dff); // get dff exponent and sign | |
fin.sign=DFWORD(dff, 0)&DECFLOAT_Sign; | |
diffsign=mul.sign^fin.sign; // note if signs differ | |
fin.msd=coe; | |
fin.lsd=coe+DECPMAX-1; | |
GETCOEFF(dff, coe); // extract the coefficient | |
// now set hi and lo so that hi points to whichever of mul and fin | |
// has the higher exponent and lo points to the other [don't care, | |
// if the same]. One coefficient will be in acc, the other in coe. | |
if (mul.exponent>=fin.exponent) { | |
hi=&mul; | |
lo=&fin; | |
} | |
else { | |
hi=&fin; | |
lo=&mul; | |
} | |
// remove leading zeros on both operands; this will save time later | |
// and make testing for zero trivial (tests are safe because acc | |
// and coe are rounded up to uInts) | |
for (; UBTOUI(hi->msd)==0 && hi->msd+3<hi->lsd;) hi->msd+=4; | |
for (; *hi->msd==0 && hi->msd<hi->lsd;) hi->msd++; | |
for (; UBTOUI(lo->msd)==0 && lo->msd+3<lo->lsd;) lo->msd+=4; | |
for (; *lo->msd==0 && lo->msd<lo->lsd;) lo->msd++; | |
// if hi is zero then result will be lo (which has the smaller | |
// exponent), which also may need to be tested for zero for the | |
// weird IEEE 754 sign rules | |
if (*hi->msd==0) { // hi is zero | |
// "When the sum of two operands with opposite signs is | |
// exactly zero, the sign of that sum shall be '+' in all | |
// rounding modes except round toward -Infinity, in which | |
// mode that sign shall be '-'." | |
if (diffsign) { | |
if (*lo->msd==0) { // lo is zero | |
lo->sign=0; | |
if (set->round==DEC_ROUND_FLOOR) lo->sign=DECFLOAT_Sign; | |
} // diffsign && lo=0 | |
} // diffsign | |
return decFinalize(result, lo, set); // may need clamping | |
} // numfl is zero | |
// [here, both are minimal length and hi is non-zero] | |
// (if lo is zero then padding with zeros may be needed, below) | |
// if signs differ, take the ten's complement of hi (zeros to the | |
// right do not matter because the complement of zero is zero); the | |
// +1 is done later, as part of the addition, inserted at the | |
// correct digit | |
hipad=0; | |
carry=0; | |
if (diffsign) { | |
hipad=9; | |
carry=1; | |
// exactly the correct number of digits must be inverted | |
for (uh=hi->msd; uh<hi->lsd-3; uh+=4) UBFROMUI(uh, 0x09090909-UBTOUI(uh)); | |
for (; uh<=hi->lsd; uh++) *uh=(uByte)(0x09-*uh); | |
} | |
// ready to add; note that hi has no leading zeros so gap | |
// calculation does not have to be as pessimistic as in decFloatAdd | |
// (this is much more like the arbitrary-precision algorithm in | |
// Rexx and decNumber) | |
// padding is the number of zeros that would need to be added to hi | |
// for its lsd to be aligned with the lsd of lo | |
padding=hi->exponent-lo->exponent; | |
// printf("FMA pad %ld\n", (LI)padding); | |
// the result of the addition will be built into the accumulator, | |
// starting from the far right; this could be either hi or lo, and | |
// will be aligned | |
ub=acc+FMALEN-1; // where lsd of result will go | |
ul=lo->lsd; // lsd of rhs | |
if (padding!=0) { // unaligned | |
// if the msd of lo is more than DECPMAX+2 digits to the right of | |
// the original msd of hi then it can be reduced to a single | |
// digit at the right place, as it stays clear of hi digits | |
// [it must be DECPMAX+2 because during a subtraction the msd | |
// could become 0 after a borrow from 1.000 to 0.9999...] | |
Int hilen=(Int)(hi->lsd-hi->msd+1); // length of hi | |
Int lolen=(Int)(lo->lsd-lo->msd+1); // and of lo | |
if (hilen+padding-lolen > DECPMAX+2) { // can reduce lo to single | |
// make sure it is virtually at least DECPMAX from hi->msd, at | |
// least to right of hi->lsd (in case of destructive subtract), | |
// and separated by at least two digits from either of those | |
// (the tricky DOUBLE case is when hi is a 1 that will become a | |
// 0.9999... by subtraction: | |
// hi: 1 E+16 | |
// lo: .................1000000000000000 E-16 | |
// which for the addition pads to: | |
// hi: 1000000000000000000 E-16 | |
// lo: .................1000000000000000 E-16 | |
Int newexp=MINI(hi->exponent, hi->exponent+hilen-DECPMAX)-3; | |
// printf("FMA reduce: %ld\n", (LI)reduce); | |
lo->lsd=lo->msd; // to single digit [maybe 0] | |
lo->exponent=newexp; // new lowest exponent | |
padding=hi->exponent-lo->exponent; // recalculate | |
ul=lo->lsd; // .. and repoint | |
} | |
// padding is still > 0, but will fit in acc (less leading carry slot) | |
#if DECCHECK | |
if (padding<=0) printf("FMA low padding: %ld\n", (LI)padding); | |
if (hilen+padding+1>FMALEN) | |
printf("FMA excess hilen+padding: %ld+%ld \n", (LI)hilen, (LI)padding); | |
// printf("FMA padding: %ld\n", (LI)padding); | |
#endif | |
// padding digits can now be set in the result; one or more of | |
// these will come from lo; others will be zeros in the gap | |
for (; ul-3>=lo->msd && padding>3; padding-=4, ul-=4, ub-=4) { | |
UBFROMUI(ub-3, UBTOUI(ul-3)); // [cannot overlap] | |
} | |
for (; ul>=lo->msd && padding>0; padding--, ul--, ub--) *ub=*ul; | |
for (;padding>0; padding--, ub--) *ub=0; // mind the gap | |
} | |
// addition now complete to the right of the rightmost digit of hi | |
uh=hi->lsd; | |
// dow do the add from hi->lsd to the left | |
// [bytewise, because either operand can run out at any time] | |
// carry was set up depending on ten's complement above | |
// first assume both operands have some digits | |
for (;; ub--) { | |
if (uh<hi->msd || ul<lo->msd) break; | |
*ub=(uByte)(carry+(*uh--)+(*ul--)); | |
carry=0; | |
if (*ub<10) continue; | |
*ub-=10; | |
carry=1; | |
} // both loop | |
if (ul<lo->msd) { // to left of lo | |
for (;; ub--) { | |
if (uh<hi->msd) break; | |
*ub=(uByte)(carry+(*uh--)); // [+0] | |
carry=0; | |
if (*ub<10) continue; | |
*ub-=10; | |
carry=1; | |
} // hi loop | |
} | |
else { // to left of hi | |
for (;; ub--) { | |
if (ul<lo->msd) break; | |
*ub=(uByte)(carry+hipad+(*ul--)); | |
carry=0; | |
if (*ub<10) continue; | |
*ub-=10; | |
carry=1; | |
} // lo loop | |
} | |
// addition complete -- now handle carry, borrow, etc. | |
// use lo to set up the num (its exponent is already correct, and | |
// sign usually is) | |
lo->msd=ub+1; | |
lo->lsd=acc+FMALEN-1; | |
// decShowNum(lo, "lo"); | |
if (!diffsign) { // same-sign addition | |
if (carry) { // carry out | |
*ub=1; // place the 1 .. | |
lo->msd--; // .. and update | |
} | |
} // same sign | |
else { // signs differed (subtraction) | |
if (!carry) { // no carry out means hi<lo | |
// borrowed -- take ten's complement of the right digits | |
lo->sign=hi->sign; // sign is lhs sign | |
for (ul=lo->msd; ul<lo->lsd-3; ul+=4) UBFROMUI(ul, 0x09090909-UBTOUI(ul)); | |
for (; ul<=lo->lsd; ul++) *ul=(uByte)(0x09-*ul); // [leaves ul at lsd+1] | |
// complete the ten's complement by adding 1 [cannot overrun] | |
for (ul--; *ul==9; ul--) *ul=0; | |
*ul+=1; | |
} // borrowed | |
else { // carry out means hi>=lo | |
// sign to use is lo->sign | |
// all done except for the special IEEE 754 exact-zero-result | |
// rule (see above); while testing for zero, strip leading | |
// zeros (which will save decFinalize doing it) | |
for (; UBTOUI(lo->msd)==0 && lo->msd+3<lo->lsd;) lo->msd+=4; | |
for (; *lo->msd==0 && lo->msd<lo->lsd;) lo->msd++; | |
if (*lo->msd==0) { // must be true zero (and diffsign) | |
lo->sign=0; // assume + | |
if (set->round==DEC_ROUND_FLOOR) lo->sign=DECFLOAT_Sign; | |
} | |
// [else was not zero, might still have leading zeros] | |
} // subtraction gave positive result | |
} // diffsign | |
#if DECCHECK | |
// assert no left underrun | |
if (lo->msd<acc) { | |
printf("FMA underrun by %ld \n", (LI)(acc-lo->msd)); | |
} | |
#endif | |
return decFinalize(result, lo, set); // round, check, and lay out | |
} // decFloatFMA | |
/* ------------------------------------------------------------------ */ | |
/* decFloatFromInt -- initialise a decFloat from an Int */ | |
/* */ | |
/* result gets the converted Int */ | |
/* n is the Int to convert */ | |
/* returns result */ | |
/* */ | |
/* The result is Exact; no errors or exceptions are possible. */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatFromInt32(decFloat *result, Int n) { | |
uInt u=(uInt)n; // copy as bits | |
uInt encode; // work | |
DFWORD(result, 0)=ZEROWORD; // always | |
#if QUAD | |
DFWORD(result, 1)=0; | |
DFWORD(result, 2)=0; | |
#endif | |
if (n<0) { // handle -n with care | |
// [This can be done without the test, but is then slightly slower] | |
u=(~u)+1; | |
DFWORD(result, 0)|=DECFLOAT_Sign; | |
} | |
// Since the maximum value of u now is 2**31, only the low word of | |
// result is affected | |
encode=BIN2DPD[u%1000]; | |
u/=1000; | |
encode|=BIN2DPD[u%1000]<<10; | |
u/=1000; | |
encode|=BIN2DPD[u%1000]<<20; | |
u/=1000; // now 0, 1, or 2 | |
encode|=u<<30; | |
DFWORD(result, DECWORDS-1)=encode; | |
return result; | |
} // decFloatFromInt32 | |
/* ------------------------------------------------------------------ */ | |
/* decFloatFromUInt -- initialise a decFloat from a uInt */ | |
/* */ | |
/* result gets the converted uInt */ | |
/* n is the uInt to convert */ | |
/* returns result */ | |
/* */ | |
/* The result is Exact; no errors or exceptions are possible. */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatFromUInt32(decFloat *result, uInt u) { | |
uInt encode; // work | |
DFWORD(result, 0)=ZEROWORD; // always | |
#if QUAD | |
DFWORD(result, 1)=0; | |
DFWORD(result, 2)=0; | |
#endif | |
encode=BIN2DPD[u%1000]; | |
u/=1000; | |
encode|=BIN2DPD[u%1000]<<10; | |
u/=1000; | |
encode|=BIN2DPD[u%1000]<<20; | |
u/=1000; // now 0 -> 4 | |
encode|=u<<30; | |
DFWORD(result, DECWORDS-1)=encode; | |
DFWORD(result, DECWORDS-2)|=u>>2; // rarely non-zero | |
return result; | |
} // decFloatFromUInt32 | |
/* ------------------------------------------------------------------ */ | |
/* decFloatInvert -- logical digitwise INVERT of a decFloat */ | |
/* */ | |
/* result gets the result of INVERTing df */ | |
/* df is the decFloat to invert */ | |
/* set is the context */ | |
/* returns result, which will be canonical with sign=0 */ | |
/* */ | |
/* The operand must be positive, finite with exponent q=0, and */ | |
/* comprise just zeros and ones; if not, Invalid operation results. */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatInvert(decFloat *result, const decFloat *df, | |
decContext *set) { | |
uInt sourhi=DFWORD(df, 0); // top word of dfs | |
if (!DFISUINT01(df) || !DFISCC01(df)) return decInvalid(result, set); | |
// the operand is a finite integer (q=0) | |
#if DOUBLE | |
DFWORD(result, 0)=ZEROWORD|((~sourhi)&0x04009124); | |
DFWORD(result, 1)=(~DFWORD(df, 1)) &0x49124491; | |
#elif QUAD | |
DFWORD(result, 0)=ZEROWORD|((~sourhi)&0x04000912); | |
DFWORD(result, 1)=(~DFWORD(df, 1)) &0x44912449; | |
DFWORD(result, 2)=(~DFWORD(df, 2)) &0x12449124; | |
DFWORD(result, 3)=(~DFWORD(df, 3)) &0x49124491; | |
#endif | |
return result; | |
} // decFloatInvert | |
/* ------------------------------------------------------------------ */ | |
/* decFloatIs -- decFloat tests (IsSigned, etc.) */ | |
/* */ | |
/* df is the decFloat to test */ | |
/* returns 0 or 1 in a uInt */ | |
/* */ | |
/* Many of these could be macros, but having them as real functions */ | |
/* is a little cleaner (and they can be referred to here by the */ | |
/* generic names) */ | |
/* ------------------------------------------------------------------ */ | |
uInt decFloatIsCanonical(const decFloat *df) { | |
if (DFISSPECIAL(df)) { | |
if (DFISINF(df)) { | |
if (DFWORD(df, 0)&ECONMASK) return 0; // exponent continuation | |
if (!DFISCCZERO(df)) return 0; // coefficient continuation | |
return 1; | |
} | |
// is a NaN | |
if (DFWORD(df, 0)&ECONNANMASK) return 0; // exponent continuation | |
if (DFISCCZERO(df)) return 1; // coefficient continuation | |
// drop through to check payload | |
} | |
{ // declare block | |
#if DOUBLE | |
uInt sourhi=DFWORD(df, 0); | |
uInt sourlo=DFWORD(df, 1); | |
if (CANONDPDOFF(sourhi, 8) | |
&& CANONDPDTWO(sourhi, sourlo, 30) | |
&& CANONDPDOFF(sourlo, 20) | |
&& CANONDPDOFF(sourlo, 10) | |
&& CANONDPDOFF(sourlo, 0)) return 1; | |
#elif QUAD | |
uInt sourhi=DFWORD(df, 0); | |
uInt sourmh=DFWORD(df, 1); | |
uInt sourml=DFWORD(df, 2); | |
uInt sourlo=DFWORD(df, 3); | |
if (CANONDPDOFF(sourhi, 4) | |
&& CANONDPDTWO(sourhi, sourmh, 26) | |
&& CANONDPDOFF(sourmh, 16) | |
&& CANONDPDOFF(sourmh, 6) | |
&& CANONDPDTWO(sourmh, sourml, 28) | |
&& CANONDPDOFF(sourml, 18) | |
&& CANONDPDOFF(sourml, 8) | |
&& CANONDPDTWO(sourml, sourlo, 30) | |
&& CANONDPDOFF(sourlo, 20) | |
&& CANONDPDOFF(sourlo, 10) | |
&& CANONDPDOFF(sourlo, 0)) return 1; | |
#endif | |
} // block | |
return 0; // a declet is non-canonical | |
} | |
uInt decFloatIsFinite(const decFloat *df) { | |
return !DFISSPECIAL(df); | |
} | |
uInt decFloatIsInfinite(const decFloat *df) { | |
return DFISINF(df); | |
} | |
uInt decFloatIsInteger(const decFloat *df) { | |
return DFISINT(df); | |
} | |
uInt decFloatIsLogical(const decFloat *df) { | |
return DFISUINT01(df) & DFISCC01(df); | |
} | |
uInt decFloatIsNaN(const decFloat *df) { | |
return DFISNAN(df); | |
} | |
uInt decFloatIsNegative(const decFloat *df) { | |
return DFISSIGNED(df) && !DFISZERO(df) && !DFISNAN(df); | |
} | |
uInt decFloatIsNormal(const decFloat *df) { | |
Int exp; // exponent | |
if (DFISSPECIAL(df)) return 0; | |
if (DFISZERO(df)) return 0; | |
// is finite and non-zero | |
exp=GETEXPUN(df) // get unbiased exponent .. | |
+decFloatDigits(df)-1; // .. and make adjusted exponent | |
return (exp>=DECEMIN); // < DECEMIN is subnormal | |
} | |
uInt decFloatIsPositive(const decFloat *df) { | |
return !DFISSIGNED(df) && !DFISZERO(df) && !DFISNAN(df); | |
} | |
uInt decFloatIsSignaling(const decFloat *df) { | |
return DFISSNAN(df); | |
} | |
uInt decFloatIsSignalling(const decFloat *df) { | |
return DFISSNAN(df); | |
} | |
uInt decFloatIsSigned(const decFloat *df) { | |
return DFISSIGNED(df); | |
} | |
uInt decFloatIsSubnormal(const decFloat *df) { | |
if (DFISSPECIAL(df)) return 0; | |
// is finite | |
if (decFloatIsNormal(df)) return 0; | |
// it is <Nmin, but could be zero | |
if (DFISZERO(df)) return 0; | |
return 1; // is subnormal | |
} | |
uInt decFloatIsZero(const decFloat *df) { | |
return DFISZERO(df); | |
} // decFloatIs... | |
/* ------------------------------------------------------------------ */ | |
/* decFloatLogB -- return adjusted exponent, by 754 rules */ | |
/* */ | |
/* result gets the adjusted exponent as an integer, or a NaN etc. */ | |
/* df is the decFloat to be examined */ | |
/* set is the context */ | |
/* returns result */ | |
/* */ | |
/* Notable cases: */ | |
/* A<0 -> Use |A| */ | |
/* A=0 -> -Infinity (Division by zero) */ | |
/* A=Infinite -> +Infinity (Exact) */ | |
/* A=1 exactly -> 0 (Exact) */ | |
/* NaNs are propagated as usual */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatLogB(decFloat *result, const decFloat *df, | |
decContext *set) { | |
Int ae; // adjusted exponent | |
if (DFISNAN(df)) return decNaNs(result, df, NULL, set); | |
if (DFISINF(df)) { | |
DFWORD(result, 0)=0; // need +ve | |
return decInfinity(result, result); // canonical +Infinity | |
} | |
if (DFISZERO(df)) { | |
set->status|=DEC_Division_by_zero; // as per 754 | |
DFWORD(result, 0)=DECFLOAT_Sign; // make negative | |
return decInfinity(result, result); // canonical -Infinity | |
} | |
ae=GETEXPUN(df) // get unbiased exponent .. | |
+decFloatDigits(df)-1; // .. and make adjusted exponent | |
// ae has limited range (3 digits for DOUBLE and 4 for QUAD), so | |
// it is worth using a special case of decFloatFromInt32 | |
DFWORD(result, 0)=ZEROWORD; // always | |
if (ae<0) { | |
DFWORD(result, 0)|=DECFLOAT_Sign; // -0 so far | |
ae=-ae; | |
} | |
#if DOUBLE | |
DFWORD(result, 1)=BIN2DPD[ae]; // a single declet | |
#elif QUAD | |
DFWORD(result, 1)=0; | |
DFWORD(result, 2)=0; | |
DFWORD(result, 3)=(ae/1000)<<10; // is <10, so need no DPD encode | |
DFWORD(result, 3)|=BIN2DPD[ae%1000]; | |
#endif | |
return result; | |
} // decFloatLogB | |
/* ------------------------------------------------------------------ */ | |
/* decFloatMax -- return maxnum of two operands */ | |
/* */ | |
/* result gets the chosen decFloat */ | |
/* dfl is the first decFloat (lhs) */ | |
/* dfr is the second decFloat (rhs) */ | |
/* set is the context */ | |
/* returns result */ | |
/* */ | |
/* If just one operand is a quiet NaN it is ignored. */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatMax(decFloat *result, | |
const decFloat *dfl, const decFloat *dfr, | |
decContext *set) { | |
Int comp; | |
if (DFISNAN(dfl)) { | |
// sNaN or both NaNs leads to normal NaN processing | |
if (DFISNAN(dfr) || DFISSNAN(dfl)) return decNaNs(result, dfl, dfr, set); | |
return decCanonical(result, dfr); // RHS is numeric | |
} | |
if (DFISNAN(dfr)) { | |
// sNaN leads to normal NaN processing (both NaN handled above) | |
if (DFISSNAN(dfr)) return decNaNs(result, dfl, dfr, set); | |
return decCanonical(result, dfl); // LHS is numeric | |
} | |
// Both operands are numeric; numeric comparison needed -- use | |
// total order for a well-defined choice (and +0 > -0) | |
comp=decNumCompare(dfl, dfr, 1); | |
if (comp>=0) return decCanonical(result, dfl); | |
return decCanonical(result, dfr); | |
} // decFloatMax | |
/* ------------------------------------------------------------------ */ | |
/* decFloatMaxMag -- return maxnummag of two operands */ | |
/* */ | |
/* result gets the chosen decFloat */ | |
/* dfl is the first decFloat (lhs) */ | |
/* dfr is the second decFloat (rhs) */ | |
/* set is the context */ | |
/* returns result */ | |
/* */ | |
/* Returns according to the magnitude comparisons if both numeric and */ | |
/* unequal, otherwise returns maxnum */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatMaxMag(decFloat *result, | |
const decFloat *dfl, const decFloat *dfr, | |
decContext *set) { | |
Int comp; | |
decFloat absl, absr; | |
if (DFISNAN(dfl) || DFISNAN(dfr)) return decFloatMax(result, dfl, dfr, set); | |
decFloatCopyAbs(&absl, dfl); | |
decFloatCopyAbs(&absr, dfr); | |
comp=decNumCompare(&absl, &absr, 0); | |
if (comp>0) return decCanonical(result, dfl); | |
if (comp<0) return decCanonical(result, dfr); | |
return decFloatMax(result, dfl, dfr, set); | |
} // decFloatMaxMag | |
/* ------------------------------------------------------------------ */ | |
/* decFloatMin -- return minnum of two operands */ | |
/* */ | |
/* result gets the chosen decFloat */ | |
/* dfl is the first decFloat (lhs) */ | |
/* dfr is the second decFloat (rhs) */ | |
/* set is the context */ | |
/* returns result */ | |
/* */ | |
/* If just one operand is a quiet NaN it is ignored. */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatMin(decFloat *result, | |
const decFloat *dfl, const decFloat *dfr, | |
decContext *set) { | |
Int comp; | |
if (DFISNAN(dfl)) { | |
// sNaN or both NaNs leads to normal NaN processing | |
if (DFISNAN(dfr) || DFISSNAN(dfl)) return decNaNs(result, dfl, dfr, set); | |
return decCanonical(result, dfr); // RHS is numeric | |
} | |
if (DFISNAN(dfr)) { | |
// sNaN leads to normal NaN processing (both NaN handled above) | |
if (DFISSNAN(dfr)) return decNaNs(result, dfl, dfr, set); | |
return decCanonical(result, dfl); // LHS is numeric | |
} | |
// Both operands are numeric; numeric comparison needed -- use | |
// total order for a well-defined choice (and +0 > -0) | |
comp=decNumCompare(dfl, dfr, 1); | |
if (comp<=0) return decCanonical(result, dfl); | |
return decCanonical(result, dfr); | |
} // decFloatMin | |
/* ------------------------------------------------------------------ */ | |
/* decFloatMinMag -- return minnummag of two operands */ | |
/* */ | |
/* result gets the chosen decFloat */ | |
/* dfl is the first decFloat (lhs) */ | |
/* dfr is the second decFloat (rhs) */ | |
/* set is the context */ | |
/* returns result */ | |
/* */ | |
/* Returns according to the magnitude comparisons if both numeric and */ | |
/* unequal, otherwise returns minnum */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatMinMag(decFloat *result, | |
const decFloat *dfl, const decFloat *dfr, | |
decContext *set) { | |
Int comp; | |
decFloat absl, absr; | |
if (DFISNAN(dfl) || DFISNAN(dfr)) return decFloatMin(result, dfl, dfr, set); | |
decFloatCopyAbs(&absl, dfl); | |
decFloatCopyAbs(&absr, dfr); | |
comp=decNumCompare(&absl, &absr, 0); | |
if (comp<0) return decCanonical(result, dfl); | |
if (comp>0) return decCanonical(result, dfr); | |
return decFloatMin(result, dfl, dfr, set); | |
} // decFloatMinMag | |
/* ------------------------------------------------------------------ */ | |
/* decFloatMinus -- negate value, heeding NaNs, etc. */ | |
/* */ | |
/* result gets the canonicalized 0-df */ | |
/* df is the decFloat to minus */ | |
/* set is the context */ | |
/* returns result */ | |
/* */ | |
/* This has the same effect as 0-df where the exponent of the zero is */ | |
/* the same as that of df (if df is finite). */ | |
/* The effect is also the same as decFloatCopyNegate except that NaNs */ | |
/* are handled normally (the sign of a NaN is not affected, and an */ | |
/* sNaN will signal), the result is canonical, and zero gets sign 0. */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatMinus(decFloat *result, const decFloat *df, | |
decContext *set) { | |
if (DFISNAN(df)) return decNaNs(result, df, NULL, set); | |
decCanonical(result, df); // copy and check | |
if (DFISZERO(df)) DFBYTE(result, 0)&=~0x80; // turn off sign bit | |
else DFBYTE(result, 0)^=0x80; // flip sign bit | |
return result; | |
} // decFloatMinus | |
/* ------------------------------------------------------------------ */ | |
/* decFloatMultiply -- multiply two decFloats */ | |
/* */ | |
/* result gets the result of multiplying dfl and dfr: */ | |
/* dfl is the first decFloat (lhs) */ | |
/* dfr is the second decFloat (rhs) */ | |
/* set is the context */ | |
/* returns result */ | |
/* */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatMultiply(decFloat *result, | |
const decFloat *dfl, const decFloat *dfr, | |
decContext *set) { | |
bcdnum num; // for final conversion | |
uByte bcdacc[DECPMAX9*18+1]; // for coefficent in BCD | |
if (DFISSPECIAL(dfl) || DFISSPECIAL(dfr)) { // either is special? | |
// NaNs are handled as usual | |
if (DFISNAN(dfl) || DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set); | |
// infinity times zero is bad | |
if (DFISINF(dfl) && DFISZERO(dfr)) return decInvalid(result, set); | |
if (DFISINF(dfr) && DFISZERO(dfl)) return decInvalid(result, set); | |
// both infinite; return canonical infinity with computed sign | |
DFWORD(result, 0)=DFWORD(dfl, 0)^DFWORD(dfr, 0); // compute sign | |
return decInfinity(result, result); | |
} | |
/* Here when both operands are finite */ | |
decFiniteMultiply(&num, bcdacc, dfl, dfr); | |
return decFinalize(result, &num, set); // round, check, and lay out | |
} // decFloatMultiply | |
/* ------------------------------------------------------------------ */ | |
/* decFloatNextMinus -- next towards -Infinity */ | |
/* */ | |
/* result gets the next lesser decFloat */ | |
/* dfl is the decFloat to start with */ | |
/* set is the context */ | |
/* returns result */ | |
/* */ | |
/* This is 754 nextdown; Invalid is the only status possible (from */ | |
/* an sNaN). */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatNextMinus(decFloat *result, const decFloat *dfl, | |
decContext *set) { | |
decFloat delta; // tiny increment | |
uInt savestat; // saves status | |
enum rounding saveround; // .. and mode | |
// +Infinity is the special case | |
if (DFISINF(dfl) && !DFISSIGNED(dfl)) { | |
DFSETNMAX(result); | |
return result; // [no status to set] | |
} | |
// other cases are effected by sutracting a tiny delta -- this | |
// should be done in a wider format as the delta is unrepresentable | |
// here (but can be done with normal add if the sign of zero is | |
// treated carefully, because no Inexactitude is interesting); | |
// rounding to -Infinity then pushes the result to next below | |
decFloatZero(&delta); // set up tiny delta | |
DFWORD(&delta, DECWORDS-1)=1; // coefficient=1 | |
DFWORD(&delta, 0)=DECFLOAT_Sign; // Sign=1 + biased exponent=0 | |
// set up for the directional round | |
saveround=set->round; // save mode | |
set->round=DEC_ROUND_FLOOR; // .. round towards -Infinity | |
savestat=set->status; // save status | |
decFloatAdd(result, dfl, &delta, set); | |
// Add rules mess up the sign when going from +Ntiny to 0 | |
if (DFISZERO(result)) DFWORD(result, 0)^=DECFLOAT_Sign; // correct | |
set->status&=DEC_Invalid_operation; // preserve only sNaN status | |
set->status|=savestat; // restore pending flags | |
set->round=saveround; // .. and mode | |
return result; | |
} // decFloatNextMinus | |
/* ------------------------------------------------------------------ */ | |
/* decFloatNextPlus -- next towards +Infinity */ | |
/* */ | |
/* result gets the next larger decFloat */ | |
/* dfl is the decFloat to start with */ | |
/* set is the context */ | |
/* returns result */ | |
/* */ | |
/* This is 754 nextup; Invalid is the only status possible (from */ | |
/* an sNaN). */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatNextPlus(decFloat *result, const decFloat *dfl, | |
decContext *set) { | |
uInt savestat; // saves status | |
enum rounding saveround; // .. and mode | |
decFloat delta; // tiny increment | |
// -Infinity is the special case | |
if (DFISINF(dfl) && DFISSIGNED(dfl)) { | |
DFSETNMAX(result); | |
DFWORD(result, 0)|=DECFLOAT_Sign; // make negative | |
return result; // [no status to set] | |
} | |
// other cases are effected by sutracting a tiny delta -- this | |
// should be done in a wider format as the delta is unrepresentable | |
// here (but can be done with normal add if the sign of zero is | |
// treated carefully, because no Inexactitude is interesting); | |
// rounding to +Infinity then pushes the result to next above | |
decFloatZero(&delta); // set up tiny delta | |
DFWORD(&delta, DECWORDS-1)=1; // coefficient=1 | |
DFWORD(&delta, 0)=0; // Sign=0 + biased exponent=0 | |
// set up for the directional round | |
saveround=set->round; // save mode | |
set->round=DEC_ROUND_CEILING; // .. round towards +Infinity | |
savestat=set->status; // save status | |
decFloatAdd(result, dfl, &delta, set); | |
// Add rules mess up the sign when going from -Ntiny to -0 | |
if (DFISZERO(result)) DFWORD(result, 0)^=DECFLOAT_Sign; // correct | |
set->status&=DEC_Invalid_operation; // preserve only sNaN status | |
set->status|=savestat; // restore pending flags | |
set->round=saveround; // .. and mode | |
return result; | |
} // decFloatNextPlus | |
/* ------------------------------------------------------------------ */ | |
/* decFloatNextToward -- next towards a decFloat */ | |
/* */ | |
/* result gets the next decFloat */ | |
/* dfl is the decFloat to start with */ | |
/* dfr is the decFloat to move toward */ | |
/* set is the context */ | |
/* returns result */ | |
/* */ | |
/* This is 754-1985 nextafter, as modified during revision (dropped */ | |
/* from 754-2008); status may be set unless the result is a normal */ | |
/* number. */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatNextToward(decFloat *result, | |
const decFloat *dfl, const decFloat *dfr, | |
decContext *set) { | |
decFloat delta; // tiny increment or decrement | |
decFloat pointone; // 1e-1 | |
uInt savestat; // saves status | |
enum rounding saveround; // .. and mode | |
uInt deltatop; // top word for delta | |
Int comp; // work | |
if (DFISNAN(dfl) || DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set); | |
// Both are numeric, so Invalid no longer a possibility | |
comp=decNumCompare(dfl, dfr, 0); | |
if (comp==0) return decFloatCopySign(result, dfl, dfr); // equal | |
// unequal; do NextPlus or NextMinus but with different status rules | |
if (comp<0) { // lhs<rhs, do NextPlus, see above for commentary | |
if (DFISINF(dfl) && DFISSIGNED(dfl)) { // -Infinity special case | |
DFSETNMAX(result); | |
DFWORD(result, 0)|=DECFLOAT_Sign; | |
return result; | |
} | |
saveround=set->round; // save mode | |
set->round=DEC_ROUND_CEILING; // .. round towards +Infinity | |
deltatop=0; // positive delta | |
} | |
else { // lhs>rhs, do NextMinus, see above for commentary | |
if (DFISINF(dfl) && !DFISSIGNED(dfl)) { // +Infinity special case | |
DFSETNMAX(result); | |
return result; | |
} | |
saveround=set->round; // save mode | |
set->round=DEC_ROUND_FLOOR; // .. round towards -Infinity | |
deltatop=DECFLOAT_Sign; // negative delta | |
} | |
savestat=set->status; // save status | |
// Here, Inexact is needed where appropriate (and hence Underflow, | |
// etc.). Therefore the tiny delta which is otherwise | |
// unrepresentable (see NextPlus and NextMinus) is constructed | |
// using the multiplication of FMA. | |
decFloatZero(&delta); // set up tiny delta | |
DFWORD(&delta, DECWORDS-1)=1; // coefficient=1 | |
DFWORD(&delta, 0)=deltatop; // Sign + biased exponent=0 | |
decFloatFromString(&pointone, "1E-1", set); // set up multiplier | |
decFloatFMA(result, &delta, &pointone, dfl, set); | |
// [Delta is truly tiny, so no need to correct sign of zero] | |
// use new status unless the result is normal | |
if (decFloatIsNormal(result)) set->status=savestat; // else goes forward | |
set->round=saveround; // restore mode | |
return result; | |
} // decFloatNextToward | |
/* ------------------------------------------------------------------ */ | |
/* decFloatOr -- logical digitwise OR of two decFloats */ | |
/* */ | |
/* result gets the result of ORing dfl and dfr */ | |
/* dfl is the first decFloat (lhs) */ | |
/* dfr is the second decFloat (rhs) */ | |
/* set is the context */ | |
/* returns result, which will be canonical with sign=0 */ | |
/* */ | |
/* The operands must be positive, finite with exponent q=0, and */ | |
/* comprise just zeros and ones; if not, Invalid operation results. */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatOr(decFloat *result, | |
const decFloat *dfl, const decFloat *dfr, | |
decContext *set) { | |
if (!DFISUINT01(dfl) || !DFISUINT01(dfr) | |
|| !DFISCC01(dfl) || !DFISCC01(dfr)) return decInvalid(result, set); | |
// the operands are positive finite integers (q=0) with just 0s and 1s | |
#if DOUBLE | |
DFWORD(result, 0)=ZEROWORD | |
|((DFWORD(dfl, 0) | DFWORD(dfr, 0))&0x04009124); | |
DFWORD(result, 1)=(DFWORD(dfl, 1) | DFWORD(dfr, 1))&0x49124491; | |
#elif QUAD | |
DFWORD(result, 0)=ZEROWORD | |
|((DFWORD(dfl, 0) | DFWORD(dfr, 0))&0x04000912); | |
DFWORD(result, 1)=(DFWORD(dfl, 1) | DFWORD(dfr, 1))&0x44912449; | |
DFWORD(result, 2)=(DFWORD(dfl, 2) | DFWORD(dfr, 2))&0x12449124; | |
DFWORD(result, 3)=(DFWORD(dfl, 3) | DFWORD(dfr, 3))&0x49124491; | |
#endif | |
return result; | |
} // decFloatOr | |
/* ------------------------------------------------------------------ */ | |
/* decFloatPlus -- add value to 0, heeding NaNs, etc. */ | |
/* */ | |
/* result gets the canonicalized 0+df */ | |
/* df is the decFloat to plus */ | |
/* set is the context */ | |
/* returns result */ | |
/* */ | |
/* This has the same effect as 0+df where the exponent of the zero is */ | |
/* the same as that of df (if df is finite). */ | |
/* The effect is also the same as decFloatCopy except that NaNs */ | |
/* are handled normally (the sign of a NaN is not affected, and an */ | |
/* sNaN will signal), the result is canonical, and zero gets sign 0. */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatPlus(decFloat *result, const decFloat *df, | |
decContext *set) { | |
if (DFISNAN(df)) return decNaNs(result, df, NULL, set); | |
decCanonical(result, df); // copy and check | |
if (DFISZERO(df)) DFBYTE(result, 0)&=~0x80; // turn off sign bit | |
return result; | |
} // decFloatPlus | |
/* ------------------------------------------------------------------ */ | |
/* decFloatQuantize -- quantize a decFloat */ | |
/* */ | |
/* result gets the result of quantizing dfl to match dfr */ | |
/* dfl is the first decFloat (lhs) */ | |
/* dfr is the second decFloat (rhs), which sets the exponent */ | |
/* set is the context */ | |
/* returns result */ | |
/* */ | |
/* Unless there is an error or the result is infinite, the exponent */ | |
/* of result is guaranteed to be the same as that of dfr. */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatQuantize(decFloat *result, | |
const decFloat *dfl, const decFloat *dfr, | |
decContext *set) { | |
Int explb, exprb; // left and right biased exponents | |
uByte *ulsd; // local LSD pointer | |
uByte *ub, *uc; // work | |
Int drop; // .. | |
uInt dpd; // .. | |
uInt encode; // encoding accumulator | |
uInt sourhil, sourhir; // top words from source decFloats | |
uInt uiwork; // for macros | |
#if QUAD | |
uShort uswork; // .. | |
#endif | |
// the following buffer holds the coefficient for manipulation | |
uByte buf[4+DECPMAX*3+2*QUAD]; // + space for zeros to left or right | |
#if DECTRACE | |
bcdnum num; // for trace displays | |
#endif | |
/* Start decoding the arguments */ | |
sourhil=DFWORD(dfl, 0); // LHS top word | |
explb=DECCOMBEXP[sourhil>>26]; // get exponent high bits (in place) | |
sourhir=DFWORD(dfr, 0); // RHS top word | |
exprb=DECCOMBEXP[sourhir>>26]; | |
if (EXPISSPECIAL(explb | exprb)) { // either is special? | |
// NaNs are handled as usual | |
if (DFISNAN(dfl) || DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set); | |
// one infinity but not both is bad | |
if (DFISINF(dfl)!=DFISINF(dfr)) return decInvalid(result, set); | |
// both infinite; return canonical infinity with sign of LHS | |
return decInfinity(result, dfl); | |
} | |
/* Here when both arguments are finite */ | |
// complete extraction of the exponents [no need to unbias] | |
explb+=GETECON(dfl); // + continuation | |
exprb+=GETECON(dfr); // .. | |
// calculate the number of digits to drop from the coefficient | |
drop=exprb-explb; // 0 if nothing to do | |
if (drop==0) return decCanonical(result, dfl); // return canonical | |
// the coefficient is needed; lay it out into buf, offset so zeros | |
// can be added before or after as needed -- an extra heading is | |
// added so can safely pad Quad DECPMAX-1 zeros to the left by | |
// fours | |
#define BUFOFF (buf+4+DECPMAX) | |
GETCOEFF(dfl, BUFOFF); // decode from decFloat | |
// [now the msd is at BUFOFF and the lsd is at BUFOFF+DECPMAX-1] | |
#if DECTRACE | |
num.msd=BUFOFF; | |
num.lsd=BUFOFF+DECPMAX-1; | |
num.exponent=explb-DECBIAS; | |
num.sign=sourhil & DECFLOAT_Sign; | |
decShowNum(&num, "dfl"); | |
#endif | |
if (drop>0) { // [most common case] | |
// (this code is very similar to that in decFloatFinalize, but | |
// has many differences so is duplicated here -- so any changes | |
// may need to be made there, too) | |
uByte *roundat; // -> re-round digit | |
uByte reround; // reround value | |
// printf("Rounding; drop=%ld\n", (LI)drop); | |
// there is at least one zero needed to the left, in all but one | |
// exceptional (all-nines) case, so place four zeros now; this is | |
// needed almost always and makes rounding all-nines by fours safe | |
UBFROMUI(BUFOFF-4, 0); | |
// Three cases here: | |
// 1. new LSD is in coefficient (almost always) | |
// 2. new LSD is digit to left of coefficient (so MSD is | |
// round-for-reround digit) | |
// 3. new LSD is to left of case 2 (whole coefficient is sticky) | |
// Note that leading zeros can safely be treated as useful digits | |
// [duplicate check-stickies code to save a test] | |
// [by-digit check for stickies as runs of zeros are rare] | |
if (drop<DECPMAX) { // NB lengths not addresses | |
roundat=BUFOFF+DECPMAX-drop; | |
reround=*roundat; | |
for (ub=roundat+1; ub<BUFOFF+DECPMAX; ub++) { | |
if (*ub!=0) { // non-zero to be discarded | |
reround=DECSTICKYTAB[reround]; // apply sticky bit | |
break; // [remainder don't-care] | |
} | |
} // check stickies | |
ulsd=roundat-1; // set LSD | |
} | |
else { // edge case | |
if (drop==DECPMAX) { | |
roundat=BUFOFF; | |
reround=*roundat; | |
} | |
else { | |
roundat=BUFOFF-1; | |
reround=0; | |
} | |
for (ub=roundat+1; ub<BUFOFF+DECPMAX; ub++) { | |
if (*ub!=0) { // non-zero to be discarded | |
reround=DECSTICKYTAB[reround]; // apply sticky bit | |
break; // [remainder don't-care] | |
} | |
} // check stickies | |
*BUFOFF=0; // make a coefficient of 0 | |
ulsd=BUFOFF; // .. at the MSD place | |
} | |
if (reround!=0) { // discarding non-zero | |
uInt bump=0; | |
set->status|=DEC_Inexact; | |
// next decide whether to increment the coefficient | |
if (set->round==DEC_ROUND_HALF_EVEN) { // fastpath slowest case | |
if (reround>5) bump=1; // >0.5 goes up | |
else if (reround==5) // exactly 0.5000 .. | |
bump=*ulsd & 0x01; // .. up iff [new] lsd is odd | |
} // r-h-e | |
else switch (set->round) { | |
case DEC_ROUND_DOWN: { | |
// no change | |
break;} // r-d | |
case DEC_ROUND_HALF_DOWN: { | |
if (reround>5) bump=1; | |
break;} // r-h-d | |
case DEC_ROUND_HALF_UP: { | |
if (reround>=5) bump=1; | |
break;} // r-h-u | |
case DEC_ROUND_UP: { | |
if (reround>0) bump=1; | |
break;} // r-u | |
case DEC_ROUND_CEILING: { | |
// same as _UP for positive numbers, and as _DOWN for negatives | |
if (!(sourhil&DECFLOAT_Sign) && reround>0) bump=1; | |
break;} // r-c | |
case DEC_ROUND_FLOOR: { | |
// same as _UP for negative numbers, and as _DOWN for positive | |
// [negative reround cannot occur on 0] | |
if (sourhil&DECFLOAT_Sign && reround>0) bump=1; | |
break;} // r-f | |
case DEC_ROUND_05UP: { | |
if (reround>0) { // anything out there is 'sticky' | |
// bump iff lsd=0 or 5; this cannot carry so it could be | |
// effected immediately with no bump -- but the code | |
// is clearer if this is done the same way as the others | |
if (*ulsd==0 || *ulsd==5) bump=1; | |
} | |
break;} // r-r | |
default: { // e.g., DEC_ROUND_MAX | |
set->status|=DEC_Invalid_context; | |
#if DECCHECK | |
printf("Unknown rounding mode: %ld\n", (LI)set->round); | |
#endif | |
break;} | |
} // switch (not r-h-e) | |
// printf("ReRound: %ld bump: %ld\n", (LI)reround, (LI)bump); | |
if (bump!=0) { // need increment | |
// increment the coefficient; this could give 1000... (after | |
// the all nines case) | |
ub=ulsd; | |
for (; UBTOUI(ub-3)==0x09090909; ub-=4) UBFROMUI(ub-3, 0); | |
// now at most 3 digits left to non-9 (usually just the one) | |
for (; *ub==9; ub--) *ub=0; | |
*ub+=1; | |
// [the all-nines case will have carried one digit to the | |
// left of the original MSD -- just where it is needed] | |
} // bump needed | |
} // inexact rounding | |
// now clear zeros to the left so exactly DECPMAX digits will be | |
// available in the coefficent -- the first word to the left was | |
// cleared earlier for safe carry; now add any more needed | |
if (drop>4) { | |
UBFROMUI(BUFOFF-8, 0); // must be at least 5 | |
for (uc=BUFOFF-12; uc>ulsd-DECPMAX-3; uc-=4) UBFROMUI(uc, 0); | |
} | |
} // need round (drop>0) | |
else { // drop<0; padding with -drop digits is needed | |
// This is the case where an error can occur if the padded | |
// coefficient will not fit; checking for this can be done in the | |
// same loop as padding for zeros if the no-hope and zero cases | |
// are checked first | |
if (-drop>DECPMAX-1) { // cannot fit unless 0 | |
if (!ISCOEFFZERO(BUFOFF)) return decInvalid(result, set); | |
// a zero can have any exponent; just drop through and use it | |
ulsd=BUFOFF+DECPMAX-1; | |
} | |
else { // padding will fit (but may still be too long) | |
// final-word mask depends on endianess | |
#if DECLITEND | |
static const uInt dmask[]={0, 0x000000ff, 0x0000ffff, 0x00ffffff}; | |
#else | |
static const uInt dmask[]={0, 0xff000000, 0xffff0000, 0xffffff00}; | |
#endif | |
// note that here zeros to the right are added by fours, so in | |
// the Quad case this could write 36 zeros if the coefficient has | |
// fewer than three significant digits (hence the +2*QUAD for buf) | |
for (uc=BUFOFF+DECPMAX;; uc+=4) { | |
UBFROMUI(uc, 0); | |
if (UBTOUI(uc-DECPMAX)!=0) { // could be bad | |
// if all four digits should be zero, definitely bad | |
if (uc<=BUFOFF+DECPMAX+(-drop)-4) | |
return decInvalid(result, set); | |
// must be a 1- to 3-digit sequence; check more carefully | |
if ((UBTOUI(uc-DECPMAX)&dmask[(-drop)%4])!=0) | |
return decInvalid(result, set); | |
break; // no need for loop end test | |
} | |
if (uc>=BUFOFF+DECPMAX+(-drop)-4) break; // done | |
} | |
ulsd=BUFOFF+DECPMAX+(-drop)-1; | |
} // pad and check leading zeros | |
} // drop<0 | |
#if DECTRACE | |
num.msd=ulsd-DECPMAX+1; | |
num.lsd=ulsd; | |
num.exponent=explb-DECBIAS; | |
num.sign=sourhil & DECFLOAT_Sign; | |
decShowNum(&num, "res"); | |
#endif | |
/*------------------------------------------------------------------*/ | |
/* At this point the result is DECPMAX digits, ending at ulsd, so */ | |
/* fits the encoding exactly; there is no possibility of error */ | |
/*------------------------------------------------------------------*/ | |
encode=((exprb>>DECECONL)<<4) + *(ulsd-DECPMAX+1); // make index | |
encode=DECCOMBFROM[encode]; // indexed by (0-2)*16+msd | |
// the exponent continuation can be extracted from the original RHS | |
encode|=sourhir & ECONMASK; | |
encode|=sourhil&DECFLOAT_Sign; // add the sign from LHS | |
// finally encode the coefficient | |
// private macro to encode a declet; this version can be used | |
// because all coefficient digits exist | |
#define getDPD3q(dpd, n) ub=ulsd-(3*(n))-2; \ | |
dpd=BCD2DPD[(*ub*256)+(*(ub+1)*16)+*(ub+2)]; | |
#if DOUBLE | |
getDPD3q(dpd, 4); encode|=dpd<<8; | |
getDPD3q(dpd, 3); encode|=dpd>>2; | |
DFWORD(result, 0)=encode; | |
encode=dpd<<30; | |
getDPD3q(dpd, 2); encode|=dpd<<20; | |
getDPD3q(dpd, 1); encode|=dpd<<10; | |
getDPD3q(dpd, 0); encode|=dpd; | |
DFWORD(result, 1)=encode; | |
#elif QUAD | |
getDPD3q(dpd,10); encode|=dpd<<4; | |
getDPD3q(dpd, 9); encode|=dpd>>6; | |
DFWORD(result, 0)=encode; | |
encode=dpd<<26; | |
getDPD3q(dpd, 8); encode|=dpd<<16; | |
getDPD3q(dpd, 7); encode|=dpd<<6; | |
getDPD3q(dpd, 6); encode|=dpd>>4; | |
DFWORD(result, 1)=encode; | |
encode=dpd<<28; | |
getDPD3q(dpd, 5); encode|=dpd<<18; | |
getDPD3q(dpd, 4); encode|=dpd<<8; | |
getDPD3q(dpd, 3); encode|=dpd>>2; | |
DFWORD(result, 2)=encode; | |
encode=dpd<<30; | |
getDPD3q(dpd, 2); encode|=dpd<<20; | |
getDPD3q(dpd, 1); encode|=dpd<<10; | |
getDPD3q(dpd, 0); encode|=dpd; | |
DFWORD(result, 3)=encode; | |
#endif | |
return result; | |
} // decFloatQuantize | |
/* ------------------------------------------------------------------ */ | |
/* decFloatReduce -- reduce finite coefficient to minimum length */ | |
/* */ | |
/* result gets the reduced decFloat */ | |
/* df is the source decFloat */ | |
/* set is the context */ | |
/* returns result, which will be canonical */ | |
/* */ | |
/* This removes all possible trailing zeros from the coefficient; */ | |
/* some may remain when the number is very close to Nmax. */ | |
/* Special values are unchanged and no status is set unless df=sNaN. */ | |
/* Reduced zero has an exponent q=0. */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatReduce(decFloat *result, const decFloat *df, | |
decContext *set) { | |
bcdnum num; // work | |
uByte buf[DECPMAX], *ub; // coefficient and pointer | |
if (df!=result) *result=*df; // copy, if needed | |
if (DFISNAN(df)) return decNaNs(result, df, NULL, set); // sNaN | |
// zeros and infinites propagate too | |
if (DFISINF(df)) return decInfinity(result, df); // canonical | |
if (DFISZERO(df)) { | |
uInt sign=DFWORD(df, 0)&DECFLOAT_Sign; | |
decFloatZero(result); | |
DFWORD(result, 0)|=sign; | |
return result; // exponent dropped, sign OK | |
} | |
// non-zero finite | |
GETCOEFF(df, buf); | |
ub=buf+DECPMAX-1; // -> lsd | |
if (*ub) return result; // no trailing zeros | |
for (ub--; *ub==0;) ub--; // terminates because non-zero | |
// *ub is the first non-zero from the right | |
num.sign=DFWORD(df, 0)&DECFLOAT_Sign; // set up number... | |
num.exponent=GETEXPUN(df)+(Int)(buf+DECPMAX-1-ub); // adjusted exponent | |
num.msd=buf; | |
num.lsd=ub; | |
return decFinalize(result, &num, set); | |
} // decFloatReduce | |
/* ------------------------------------------------------------------ */ | |
/* decFloatRemainder -- integer divide and return remainder */ | |
/* */ | |
/* result gets the remainder of dividing dfl by dfr: */ | |
/* dfl is the first decFloat (lhs) */ | |
/* dfr is the second decFloat (rhs) */ | |
/* set is the context */ | |
/* returns result */ | |
/* */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatRemainder(decFloat *result, | |
const decFloat *dfl, const decFloat *dfr, | |
decContext *set) { | |
return decDivide(result, dfl, dfr, set, REMAINDER); | |
} // decFloatRemainder | |
/* ------------------------------------------------------------------ */ | |
/* decFloatRemainderNear -- integer divide to nearest and remainder */ | |
/* */ | |
/* result gets the remainder of dividing dfl by dfr: */ | |
/* dfl is the first decFloat (lhs) */ | |
/* dfr is the second decFloat (rhs) */ | |
/* set is the context */ | |
/* returns result */ | |
/* */ | |
/* This is the IEEE remainder, where the nearest integer is used. */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatRemainderNear(decFloat *result, | |
const decFloat *dfl, const decFloat *dfr, | |
decContext *set) { | |
return decDivide(result, dfl, dfr, set, REMNEAR); | |
} // decFloatRemainderNear | |
/* ------------------------------------------------------------------ */ | |
/* decFloatRotate -- rotate the coefficient of a decFloat left/right */ | |
/* */ | |
/* result gets the result of rotating dfl */ | |
/* dfl is the source decFloat to rotate */ | |
/* dfr is the count of digits to rotate, an integer (with q=0) */ | |
/* set is the context */ | |
/* returns result */ | |
/* */ | |
/* The digits of the coefficient of dfl are rotated to the left (if */ | |
/* dfr is positive) or to the right (if dfr is negative) without */ | |
/* adjusting the exponent or the sign of dfl. */ | |
/* */ | |
/* dfr must be in the range -DECPMAX through +DECPMAX. */ | |
/* NaNs are propagated as usual. An infinite dfl is unaffected (but */ | |
/* dfr must be valid). No status is set unless dfr is invalid or an */ | |
/* operand is an sNaN. The result is canonical. */ | |
/* ------------------------------------------------------------------ */ | |
#define PHALF (ROUNDUP(DECPMAX/2, 4)) // half length, rounded up | |
decFloat * decFloatRotate(decFloat *result, | |
const decFloat *dfl, const decFloat *dfr, | |
decContext *set) { | |
Int rotate; // dfr as an Int | |
uByte buf[DECPMAX+PHALF]; // coefficient + half | |
uInt digits, savestat; // work | |
bcdnum num; // .. | |
uByte *ub; // .. | |
if (DFISNAN(dfl)||DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set); | |
if (!DFISINT(dfr)) return decInvalid(result, set); | |
digits=decFloatDigits(dfr); // calculate digits | |
if (digits>2) return decInvalid(result, set); // definitely out of range | |
rotate=DPD2BIN[DFWORD(dfr, DECWORDS-1)&0x3ff]; // is in bottom declet | |
if (rotate>DECPMAX) return decInvalid(result, set); // too big | |
// [from here on no error or status change is possible] | |
if (DFISINF(dfl)) return decInfinity(result, dfl); // canonical | |
// handle no-rotate cases | |
if (rotate==0 || rotate==DECPMAX) return decCanonical(result, dfl); | |
// a real rotate is needed: 0 < rotate < DECPMAX | |
// reduce the rotation to no more than half to reduce copying later | |
// (for QUAD in fact half + 2 digits) | |
if (DFISSIGNED(dfr)) rotate=-rotate; | |
if (abs(rotate)>PHALF) { | |
if (rotate<0) rotate=DECPMAX+rotate; | |
else rotate=rotate-DECPMAX; | |
} | |
// now lay out the coefficient, leaving room to the right or the | |
// left depending on the direction of rotation | |
ub=buf; | |
if (rotate<0) ub+=PHALF; // rotate right, so space to left | |
GETCOEFF(dfl, ub); | |
// copy half the digits to left or right, and set num.msd | |
if (rotate<0) { | |
memcpy(buf, buf+DECPMAX, PHALF); | |
num.msd=buf+PHALF+rotate; | |
} | |
else { | |
memcpy(buf+DECPMAX, buf, PHALF); | |
num.msd=buf+rotate; | |
} | |
// fill in rest of num | |
num.lsd=num.msd+DECPMAX-1; | |
num.sign=DFWORD(dfl, 0)&DECFLOAT_Sign; | |
num.exponent=GETEXPUN(dfl); | |
savestat=set->status; // record | |
decFinalize(result, &num, set); | |
set->status=savestat; // restore | |
return result; | |
} // decFloatRotate | |
/* ------------------------------------------------------------------ */ | |
/* decFloatSameQuantum -- test decFloats for same quantum */ | |
/* */ | |
/* dfl is the first decFloat (lhs) */ | |
/* dfr is the second decFloat (rhs) */ | |
/* returns 1 if the operands have the same quantum, 0 otherwise */ | |
/* */ | |
/* No error is possible and no status results. */ | |
/* ------------------------------------------------------------------ */ | |
uInt decFloatSameQuantum(const decFloat *dfl, const decFloat *dfr) { | |
if (DFISSPECIAL(dfl) || DFISSPECIAL(dfr)) { | |
if (DFISNAN(dfl) && DFISNAN(dfr)) return 1; | |
if (DFISINF(dfl) && DFISINF(dfr)) return 1; | |
return 0; // any other special mixture gives false | |
} | |
if (GETEXP(dfl)==GETEXP(dfr)) return 1; // biased exponents match | |
return 0; | |
} // decFloatSameQuantum | |
/* ------------------------------------------------------------------ */ | |
/* decFloatScaleB -- multiply by a power of 10, as per 754 */ | |
/* */ | |
/* result gets the result of the operation */ | |
/* dfl is the first decFloat (lhs) */ | |
/* dfr is the second decFloat (rhs), am integer (with q=0) */ | |
/* set is the context */ | |
/* returns result */ | |
/* */ | |
/* This computes result=dfl x 10**dfr where dfr is an integer in the */ | |
/* range +/-2*(emax+pmax), typically resulting from LogB. */ | |
/* Underflow and Overflow (with Inexact) may occur. NaNs propagate */ | |
/* as usual. */ | |
/* ------------------------------------------------------------------ */ | |
#define SCALEBMAX 2*(DECEMAX+DECPMAX) // D=800, Q=12356 | |
decFloat * decFloatScaleB(decFloat *result, | |
const decFloat *dfl, const decFloat *dfr, | |
decContext *set) { | |
uInt digits; // work | |
Int expr; // dfr as an Int | |
if (DFISNAN(dfl)||DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set); | |
if (!DFISINT(dfr)) return decInvalid(result, set); | |
digits=decFloatDigits(dfr); // calculate digits | |
#if DOUBLE | |
if (digits>3) return decInvalid(result, set); // definitely out of range | |
expr=DPD2BIN[DFWORD(dfr, 1)&0x3ff]; // must be in bottom declet | |
#elif QUAD | |
if (digits>5) return decInvalid(result, set); // definitely out of range | |
expr=DPD2BIN[DFWORD(dfr, 3)&0x3ff] // in bottom 2 declets .. | |
+DPD2BIN[(DFWORD(dfr, 3)>>10)&0x3ff]*1000; // .. | |
#endif | |
if (expr>SCALEBMAX) return decInvalid(result, set); // oops | |
// [from now on no error possible] | |
if (DFISINF(dfl)) return decInfinity(result, dfl); // canonical | |
if (DFISSIGNED(dfr)) expr=-expr; | |
// dfl is finite and expr is valid | |
*result=*dfl; // copy to target | |
return decFloatSetExponent(result, set, GETEXPUN(result)+expr); | |
} // decFloatScaleB | |
/* ------------------------------------------------------------------ */ | |
/* decFloatShift -- shift the coefficient of a decFloat left or right */ | |
/* */ | |
/* result gets the result of shifting dfl */ | |
/* dfl is the source decFloat to shift */ | |
/* dfr is the count of digits to shift, an integer (with q=0) */ | |
/* set is the context */ | |
/* returns result */ | |
/* */ | |
/* The digits of the coefficient of dfl are shifted to the left (if */ | |
/* dfr is positive) or to the right (if dfr is negative) without */ | |
/* adjusting the exponent or the sign of dfl. */ | |
/* */ | |
/* dfr must be in the range -DECPMAX through +DECPMAX. */ | |
/* NaNs are propagated as usual. An infinite dfl is unaffected (but */ | |
/* dfr must be valid). No status is set unless dfr is invalid or an */ | |
/* operand is an sNaN. The result is canonical. */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatShift(decFloat *result, | |
const decFloat *dfl, const decFloat *dfr, | |
decContext *set) { | |
Int shift; // dfr as an Int | |
uByte buf[DECPMAX*2]; // coefficient + padding | |
uInt digits, savestat; // work | |
bcdnum num; // .. | |
uInt uiwork; // for macros | |
if (DFISNAN(dfl)||DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set); | |
if (!DFISINT(dfr)) return decInvalid(result, set); | |
digits=decFloatDigits(dfr); // calculate digits | |
if (digits>2) return decInvalid(result, set); // definitely out of range | |
shift=DPD2BIN[DFWORD(dfr, DECWORDS-1)&0x3ff]; // is in bottom declet | |
if (shift>DECPMAX) return decInvalid(result, set); // too big | |
// [from here on no error or status change is possible] | |
if (DFISINF(dfl)) return decInfinity(result, dfl); // canonical | |
// handle no-shift and all-shift (clear to zero) cases | |
if (shift==0) return decCanonical(result, dfl); | |
if (shift==DECPMAX) { // zero with sign | |
uByte sign=(uByte)(DFBYTE(dfl, 0)&0x80); // save sign bit | |
decFloatZero(result); // make +0 | |
DFBYTE(result, 0)=(uByte)(DFBYTE(result, 0)|sign); // and set sign | |
// [cannot safely use CopySign] | |
return result; | |
} | |
// a real shift is needed: 0 < shift < DECPMAX | |
num.sign=DFWORD(dfl, 0)&DECFLOAT_Sign; | |
num.exponent=GETEXPUN(dfl); | |
num.msd=buf; | |
GETCOEFF(dfl, buf); | |
if (DFISSIGNED(dfr)) { // shift right | |
// edge cases are taken care of, so this is easy | |
num.lsd=buf+DECPMAX-shift-1; | |
} | |
else { // shift left -- zero padding needed to right | |
UBFROMUI(buf+DECPMAX, 0); // 8 will handle most cases | |
UBFROMUI(buf+DECPMAX+4, 0); // .. | |
if (shift>8) memset(buf+DECPMAX+8, 0, 8+QUAD*18); // all other cases | |
num.msd+=shift; | |
num.lsd=num.msd+DECPMAX-1; | |
} | |
savestat=set->status; // record | |
decFinalize(result, &num, set); | |
set->status=savestat; // restore | |
return result; | |
} // decFloatShift | |
/* ------------------------------------------------------------------ */ | |
/* decFloatSubtract -- subtract a decFloat from another */ | |
/* */ | |
/* result gets the result of subtracting dfr from dfl: */ | |
/* dfl is the first decFloat (lhs) */ | |
/* dfr is the second decFloat (rhs) */ | |
/* set is the context */ | |
/* returns result */ | |
/* */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatSubtract(decFloat *result, | |
const decFloat *dfl, const decFloat *dfr, | |
decContext *set) { | |
decFloat temp; | |
// NaNs must propagate without sign change | |
if (DFISNAN(dfr)) return decFloatAdd(result, dfl, dfr, set); | |
temp=*dfr; // make a copy | |
DFBYTE(&temp, 0)^=0x80; // flip sign | |
return decFloatAdd(result, dfl, &temp, set); // and add to the lhs | |
} // decFloatSubtract | |
/* ------------------------------------------------------------------ */ | |
/* decFloatToInt -- round to 32-bit binary integer (4 flavours) */ | |
/* */ | |
/* df is the decFloat to round */ | |
/* set is the context */ | |
/* round is the rounding mode to use */ | |
/* returns a uInt or an Int, rounded according to the name */ | |
/* */ | |
/* Invalid will always be signaled if df is a NaN, is Infinite, or is */ | |
/* outside the range of the target; Inexact will not be signaled for */ | |
/* simple rounding unless 'Exact' appears in the name. */ | |
/* ------------------------------------------------------------------ */ | |
uInt decFloatToUInt32(const decFloat *df, decContext *set, | |
enum rounding round) { | |
return decToInt32(df, set, round, 0, 1);} | |
uInt decFloatToUInt32Exact(const decFloat *df, decContext *set, | |
enum rounding round) { | |
return decToInt32(df, set, round, 1, 1);} | |
Int decFloatToInt32(const decFloat *df, decContext *set, | |
enum rounding round) { | |
return (Int)decToInt32(df, set, round, 0, 0);} | |
Int decFloatToInt32Exact(const decFloat *df, decContext *set, | |
enum rounding round) { | |
return (Int)decToInt32(df, set, round, 1, 0);} | |
/* ------------------------------------------------------------------ */ | |
/* decFloatToIntegral -- round to integral value (two flavours) */ | |
/* */ | |
/* result gets the result */ | |
/* df is the decFloat to round */ | |
/* set is the context */ | |
/* round is the rounding mode to use */ | |
/* returns result */ | |
/* */ | |
/* No exceptions, even Inexact, are raised except for sNaN input, or */ | |
/* if 'Exact' appears in the name. */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatToIntegralValue(decFloat *result, const decFloat *df, | |
decContext *set, enum rounding round) { | |
return decToIntegral(result, df, set, round, 0);} | |
decFloat * decFloatToIntegralExact(decFloat *result, const decFloat *df, | |
decContext *set) { | |
return decToIntegral(result, df, set, set->round, 1);} | |
/* ------------------------------------------------------------------ */ | |
/* decFloatXor -- logical digitwise XOR of two decFloats */ | |
/* */ | |
/* result gets the result of XORing dfl and dfr */ | |
/* dfl is the first decFloat (lhs) */ | |
/* dfr is the second decFloat (rhs) */ | |
/* set is the context */ | |
/* returns result, which will be canonical with sign=0 */ | |
/* */ | |
/* The operands must be positive, finite with exponent q=0, and */ | |
/* comprise just zeros and ones; if not, Invalid operation results. */ | |
/* ------------------------------------------------------------------ */ | |
decFloat * decFloatXor(decFloat *result, | |
const decFloat *dfl, const decFloat *dfr, | |
decContext *set) { | |
if (!DFISUINT01(dfl) || !DFISUINT01(dfr) | |
|| !DFISCC01(dfl) || !DFISCC01(dfr)) return decInvalid(result, set); | |
// the operands are positive finite integers (q=0) with just 0s and 1s | |
#if DOUBLE | |
DFWORD(result, 0)=ZEROWORD | |
|((DFWORD(dfl, 0) ^ DFWORD(dfr, 0))&0x04009124); | |
DFWORD(result, 1)=(DFWORD(dfl, 1) ^ DFWORD(dfr, 1))&0x49124491; | |
#elif QUAD | |
DFWORD(result, 0)=ZEROWORD | |
|((DFWORD(dfl, 0) ^ DFWORD(dfr, 0))&0x04000912); | |
DFWORD(result, 1)=(DFWORD(dfl, 1) ^ DFWORD(dfr, 1))&0x44912449; | |
DFWORD(result, 2)=(DFWORD(dfl, 2) ^ DFWORD(dfr, 2))&0x12449124; | |
DFWORD(result, 3)=(DFWORD(dfl, 3) ^ DFWORD(dfr, 3))&0x49124491; | |
#endif | |
return result; | |
} // decFloatXor | |
/* ------------------------------------------------------------------ */ | |
/* decInvalid -- set Invalid_operation result */ | |
/* */ | |
/* result gets a canonical NaN */ | |
/* set is the context */ | |
/* returns result */ | |
/* */ | |
/* status has Invalid_operation added */ | |
/* ------------------------------------------------------------------ */ | |
static decFloat *decInvalid(decFloat *result, decContext *set) { | |
decFloatZero(result); | |
DFWORD(result, 0)=DECFLOAT_qNaN; | |
set->status|=DEC_Invalid_operation; | |
return result; | |
} // decInvalid | |
/* ------------------------------------------------------------------ */ | |
/* decInfinity -- set canonical Infinity with sign from a decFloat */ | |
/* */ | |
/* result gets a canonical Infinity */ | |
/* df is source decFloat (only the sign is used) */ | |
/* returns result */ | |
/* */ | |
/* df may be the same as result */ | |
/* ------------------------------------------------------------------ */ | |
static decFloat *decInfinity(decFloat *result, const decFloat *df) { | |
uInt sign=DFWORD(df, 0); // save source signword | |
decFloatZero(result); // clear everything | |
DFWORD(result, 0)=DECFLOAT_Inf | (sign & DECFLOAT_Sign); | |
return result; | |
} // decInfinity | |
/* ------------------------------------------------------------------ */ | |
/* decNaNs -- handle NaN argument(s) */ | |
/* */ | |
/* result gets the result of handling dfl and dfr, one or both of */ | |
/* which is a NaN */ | |
/* dfl is the first decFloat (lhs) */ | |
/* dfr is the second decFloat (rhs) -- may be NULL for a single- */ | |
/* operand operation */ | |
/* set is the context */ | |
/* returns result */ | |
/* */ | |
/* Called when one or both operands is a NaN, and propagates the */ | |
/* appropriate result to res. When an sNaN is found, it is changed */ | |
/* to a qNaN and Invalid operation is set. */ | |
/* ------------------------------------------------------------------ */ | |
static decFloat *decNaNs(decFloat *result, | |
const decFloat *dfl, const decFloat *dfr, | |
decContext *set) { | |
// handle sNaNs first | |
if (dfr!=NULL && DFISSNAN(dfr) && !DFISSNAN(dfl)) dfl=dfr; // use RHS | |
if (DFISSNAN(dfl)) { | |
decCanonical(result, dfl); // propagate canonical sNaN | |
DFWORD(result, 0)&=~(DECFLOAT_qNaN ^ DECFLOAT_sNaN); // quiet | |
set->status|=DEC_Invalid_operation; | |
return result; | |
} | |
// one or both is a quiet NaN | |
if (!DFISNAN(dfl)) dfl=dfr; // RHS must be NaN, use it | |
return decCanonical(result, dfl); // propagate canonical qNaN | |
} // decNaNs | |
/* ------------------------------------------------------------------ */ | |
/* decNumCompare -- numeric comparison of two decFloats */ | |
/* */ | |
/* dfl is the left-hand decFloat, which is not a NaN */ | |
/* dfr is the right-hand decFloat, which is not a NaN */ | |
/* tot is 1 for total order compare, 0 for simple numeric */ | |
/* returns -1, 0, or +1 for dfl<dfr, dfl=dfr, dfl>dfr */ | |
/* */ | |
/* No error is possible; status and mode are unchanged. */ | |
/* ------------------------------------------------------------------ */ | |
static Int decNumCompare(const decFloat *dfl, const decFloat *dfr, Flag tot) { | |
Int sigl, sigr; // LHS and RHS non-0 signums | |
Int shift; // shift needed to align operands | |
uByte *ub, *uc; // work | |
uInt uiwork; // for macros | |
// buffers +2 if Quad (36 digits), need double plus 4 for safe padding | |
uByte bufl[DECPMAX*2+QUAD*2+4]; // for LHS coefficient + padding | |
uByte bufr[DECPMAX*2+QUAD*2+4]; // for RHS coefficient + padding | |
sigl=1; | |
if (DFISSIGNED(dfl)) { | |
if (!DFISSIGNED(dfr)) { // -LHS +RHS | |
if (DFISZERO(dfl) && DFISZERO(dfr) && !tot) return 0; | |
return -1; // RHS wins | |
} | |
sigl=-1; | |
} | |
if (DFISSIGNED(dfr)) { | |
if (!DFISSIGNED(dfl)) { // +LHS -RHS | |
if (DFISZERO(dfl) && DFISZERO(dfr) && !tot) return 0; | |
return +1; // LHS wins | |
} | |
} | |
// signs are the same; operand(s) could be zero | |
sigr=-sigl; // sign to return if abs(RHS) wins | |
if (DFISINF(dfl)) { | |
if (DFISINF(dfr)) return 0; // both infinite & same sign | |
return sigl; // inf > n | |
} | |
if (DFISINF(dfr)) return sigr; // n < inf [dfl is finite] | |
// here, both are same sign and finite; calculate their offset | |
shift=GETEXP(dfl)-GETEXP(dfr); // [0 means aligned] | |
// [bias can be ignored -- the absolute exponent is not relevant] | |
if (DFISZERO(dfl)) { | |
if (!DFISZERO(dfr)) return sigr; // LHS=0, RHS!=0 | |
// both are zero, return 0 if both same exponent or numeric compare | |
if (shift==0 || !tot) return 0; | |
if (shift>0) return sigl; | |
return sigr; // [shift<0] | |
} | |
else { // LHS!=0 | |
if (DFISZERO(dfr)) return sigl; // LHS!=0, RHS=0 | |
} | |
// both are known to be non-zero at this point | |
// if the exponents are so different that the coefficients do not | |
// overlap (by even one digit) then a full comparison is not needed | |
if (abs(shift)>=DECPMAX) { // no overlap | |
// coefficients are known to be non-zero | |
if (shift>0) return sigl; | |
return sigr; // [shift<0] | |
} | |
// decode the coefficients | |
// (shift both right two if Quad to make a multiple of four) | |
#if QUAD | |
UBFROMUI(bufl, 0); | |
UBFROMUI(bufr, 0); | |
#endif | |
GETCOEFF(dfl, bufl+QUAD*2); // decode from decFloat | |
GETCOEFF(dfr, bufr+QUAD*2); // .. | |
if (shift==0) { // aligned; common and easy | |
// all multiples of four, here | |
for (ub=bufl, uc=bufr; ub<bufl+DECPMAX+QUAD*2; ub+=4, uc+=4) { | |
uInt ui=UBTOUI(ub); | |
if (ui==UBTOUI(uc)) continue; // so far so same | |
// about to find a winner; go by bytes in case little-endian | |
for (;; ub++, uc++) { | |
if (*ub>*uc) return sigl; // difference found | |
if (*ub<*uc) return sigr; // .. | |
} | |
} | |
} // aligned | |
else if (shift>0) { // lhs to left | |
ub=bufl; // RHS pointer | |
// pad bufl so right-aligned; most shifts will fit in 8 | |
UBFROMUI(bufl+DECPMAX+QUAD*2, 0); // add eight zeros | |
UBFROMUI(bufl+DECPMAX+QUAD*2+4, 0); // .. | |
if (shift>8) { | |
// more than eight; fill the rest, and also worth doing the | |
// lead-in by fours | |
uByte *up; // work | |
uByte *upend=bufl+DECPMAX+QUAD*2+shift; | |
for (up=bufl+DECPMAX+QUAD*2+8; up<upend; up+=4) UBFROMUI(up, 0); | |
// [pads up to 36 in all for Quad] | |
for (;; ub+=4) { | |
if (UBTOUI(ub)!=0) return sigl; | |
if (ub+4>bufl+shift-4) break; | |
} | |
} | |
// check remaining leading digits | |
for (; ub<bufl+shift; ub++) if (*ub!=0) return sigl; | |
// now start the overlapped part; bufl has been padded, so the | |
// comparison can go for the full length of bufr, which is a | |
// multiple of 4 bytes | |
for (uc=bufr; ; uc+=4, ub+=4) { | |
uInt ui=UBTOUI(ub); | |
if (ui!=UBTOUI(uc)) { // mismatch found | |
for (;; uc++, ub++) { // check from left [little-endian?] | |
if (*ub>*uc) return sigl; // difference found | |
if (*ub<*uc) return sigr; // .. | |
} | |
} // mismatch | |
if (uc==bufr+QUAD*2+DECPMAX-4) break; // all checked | |
} | |
} // shift>0 | |
else { // shift<0) .. RHS is to left of LHS; mirror shift>0 | |
uc=bufr; // RHS pointer | |
// pad bufr so right-aligned; most shifts will fit in 8 | |
UBFROMUI(bufr+DECPMAX+QUAD*2, 0); // add eight zeros | |
UBFROMUI(bufr+DECPMAX+QUAD*2+4, 0); // .. | |
if (shift<-8) { | |
// more than eight; fill the rest, and also worth doing the | |
// lead-in by fours | |
uByte *up; // work | |
uByte *upend=bufr+DECPMAX+QUAD*2-shift; | |
for (up=bufr+DECPMAX+QUAD*2+8; up<upend; up+=4) UBFROMUI(up, 0); | |
// [pads up to 36 in all for Quad] | |
for (;; uc+=4) { | |
if (UBTOUI(uc)!=0) return sigr; | |
if (uc+4>bufr-shift-4) break; | |
} | |
} | |
// check remaining leading digits | |
for (; uc<bufr-shift; uc++) if (*uc!=0) return sigr; | |
// now start the overlapped part; bufr has been padded, so the | |
// comparison can go for the full length of bufl, which is a | |
// multiple of 4 bytes | |
for (ub=bufl; ; ub+=4, uc+=4) { | |
uInt ui=UBTOUI(ub); | |
if (ui!=UBTOUI(uc)) { // mismatch found | |
for (;; ub++, uc++) { // check from left [little-endian?] | |
if (*ub>*uc) return sigl; // difference found | |
if (*ub<*uc) return sigr; // .. | |
} | |
} // mismatch | |
if (ub==bufl+QUAD*2+DECPMAX-4) break; // all checked | |
} | |
} // shift<0 | |
// Here when compare equal | |
if (!tot) return 0; // numerically equal | |
// total ordering .. exponent matters | |
if (shift>0) return sigl; // total order by exponent | |
if (shift<0) return sigr; // .. | |
return 0; | |
} // decNumCompare | |
/* ------------------------------------------------------------------ */ | |
/* decToInt32 -- local routine to effect ToInteger conversions */ | |
/* */ | |
/* df is the decFloat to convert */ | |
/* set is the context */ | |
/* rmode is the rounding mode to use */ | |
/* exact is 1 if Inexact should be signalled */ | |
/* unsign is 1 if the result a uInt, 0 if an Int (cast to uInt) */ | |
/* returns 32-bit result as a uInt */ | |
/* */ | |
/* Invalid is set is df is a NaN, is infinite, or is out-of-range; in */ | |
/* these cases 0 is returned. */ | |
/* ------------------------------------------------------------------ */ | |
static uInt decToInt32(const decFloat *df, decContext *set, | |
enum rounding rmode, Flag exact, Flag unsign) { | |
Int exp; // exponent | |
uInt sourhi, sourpen, sourlo; // top word from source decFloat .. | |
uInt hi, lo; // .. penultimate, least, etc. | |
decFloat zero, result; // work | |
Int i; // .. | |
/* Start decoding the argument */ | |
sourhi=DFWORD(df, 0); // top word | |
exp=DECCOMBEXP[sourhi>>26]; // get exponent high bits (in place) | |
if (EXPISSPECIAL(exp)) { // is special? | |
set->status|=DEC_Invalid_operation; // signal | |
return 0; | |
} | |
/* Here when the argument is finite */ | |
if (GETEXPUN(df)==0) result=*df; // already a true integer | |
else { // need to round to integer | |
enum rounding saveround; // saver | |
uInt savestatus; // .. | |
saveround=set->round; // save rounding mode .. | |
savestatus=set->status; // .. and status | |
set->round=rmode; // set mode | |
decFloatZero(&zero); // make 0E+0 | |
set->status=0; // clear | |
decFloatQuantize(&result, df, &zero, set); // [this may fail] | |
set->round=saveround; // restore rounding mode .. | |
if (exact) set->status|=savestatus; // include Inexact | |
else set->status=savestatus; // .. or just original status | |
} | |
// only the last four declets of the coefficient can contain | |
// non-zero; check for others (and also NaN or Infinity from the | |
// Quantize) first (see DFISZERO for explanation): | |
// decFloatShow(&result, "sofar"); | |
#if DOUBLE | |
if ((DFWORD(&result, 0)&0x1c03ff00)!=0 | |
|| (DFWORD(&result, 0)&0x60000000)==0x60000000) { | |
#elif QUAD | |
if ((DFWORD(&result, 2)&0xffffff00)!=0 | |
|| DFWORD(&result, 1)!=0 | |
|| (DFWORD(&result, 0)&0x1c003fff)!=0 | |
|| (DFWORD(&result, 0)&0x60000000)==0x60000000) { | |
#endif | |
set->status|=DEC_Invalid_operation; // Invalid or out of range | |
return 0; | |
} | |
// get last twelve digits of the coefficent into hi & ho, base | |
// 10**9 (see GETCOEFFBILL): | |
sourlo=DFWORD(&result, DECWORDS-1); | |
lo=DPD2BIN0[sourlo&0x3ff] | |
+DPD2BINK[(sourlo>>10)&0x3ff] | |
+DPD2BINM[(sourlo>>20)&0x3ff]; | |
sourpen=DFWORD(&result, DECWORDS-2); | |
hi=DPD2BIN0[((sourpen<<2) | (sourlo>>30))&0x3ff]; | |
// according to request, check range carefully | |
if (unsign) { | |
if (hi>4 || (hi==4 && lo>294967295) || (hi+lo!=0 && DFISSIGNED(&result))) { | |
set->status|=DEC_Invalid_operation; // out of range | |
return 0; | |
} | |
return hi*BILLION+lo; | |
} | |
// signed | |
if (hi>2 || (hi==2 && lo>147483647)) { | |
// handle the usual edge case | |
if (lo==147483648 && hi==2 && DFISSIGNED(&result)) return 0x80000000; | |
set->status|=DEC_Invalid_operation; // truly out of range | |
return 0; | |
} | |
i=hi*BILLION+lo; | |
if (DFISSIGNED(&result)) i=-i; | |
return (uInt)i; | |
} // decToInt32 | |
/* ------------------------------------------------------------------ */ | |
/* decToIntegral -- local routine to effect ToIntegral value */ | |
/* */ | |
/* result gets the result */ | |
/* df is the decFloat to round */ | |
/* set is the context */ | |
/* rmode is the rounding mode to use */ | |
/* exact is 1 if Inexact should be signalled */ | |
/* returns result */ | |
/* ------------------------------------------------------------------ */ | |
static decFloat * decToIntegral(decFloat *result, const decFloat *df, | |
decContext *set, enum rounding rmode, | |
Flag exact) { | |
Int exp; // exponent | |
uInt sourhi; // top word from source decFloat | |
enum rounding saveround; // saver | |
uInt savestatus; // .. | |
decFloat zero; // work | |
/* Start decoding the argument */ | |
sourhi=DFWORD(df, 0); // top word | |
exp=DECCOMBEXP[sourhi>>26]; // get exponent high bits (in place) | |
if (EXPISSPECIAL(exp)) { // is special? | |
// NaNs are handled as usual | |
if (DFISNAN(df)) return decNaNs(result, df, NULL, set); | |
// must be infinite; return canonical infinity with sign of df | |
return decInfinity(result, df); | |
} | |
/* Here when the argument is finite */ | |
// complete extraction of the exponent | |
exp+=GETECON(df)-DECBIAS; // .. + continuation and unbias | |
if (exp>=0) return decCanonical(result, df); // already integral | |
saveround=set->round; // save rounding mode .. | |
savestatus=set->status; // .. and status | |
set->round=rmode; // set mode | |
decFloatZero(&zero); // make 0E+0 | |
decFloatQuantize(result, df, &zero, set); // 'integrate'; cannot fail | |
set->round=saveround; // restore rounding mode .. | |
if (!exact) set->status=savestatus; // .. and status, unless exact | |
return result; | |
} // decToIntegral |