blob: 03ec51366fdd24b17e13504bf78d0c4f4e81df30 [file] [log] [blame]
#include "jemalloc/internal/jemalloc_preamble.h"
#include "jemalloc/internal/jemalloc_internal_includes.h"
#include "jemalloc/internal/assert.h"
#include "jemalloc/internal/base.h"
#include "jemalloc/internal/mutex.h"
#include "jemalloc/internal/safety_check.h"
#include "jemalloc/internal/san.h"
#include "jemalloc/internal/sc.h"
/******************************************************************************/
/* Data. */
bool opt_tcache = true;
/* global_do_not_change_tcache_maxclass is set to 32KB by default. */
size_t opt_tcache_max = ((size_t)1) << 15;
/* Reasonable defaults for min and max values. */
unsigned opt_tcache_nslots_small_min = 20;
unsigned opt_tcache_nslots_small_max = 200;
unsigned opt_tcache_nslots_large = 20;
/*
* We attempt to make the number of slots in a tcache bin for a given size class
* equal to the number of objects in a slab times some multiplier. By default,
* the multiplier is 2 (i.e. we set the maximum number of objects in the tcache
* to twice the number of objects in a slab).
* This is bounded by some other constraints as well, like the fact that it
* must be even, must be less than opt_tcache_nslots_small_max, etc..
*/
ssize_t opt_lg_tcache_nslots_mul = 1;
/*
* Number of allocation bytes between tcache incremental GCs. Again, this
* default just seems to work well; more tuning is possible.
*/
size_t opt_tcache_gc_incr_bytes = 65536;
/*
* With default settings, we may end up flushing small bins frequently with
* small flush amounts. To limit this tendency, we can set a number of bytes to
* "delay" by. If we try to flush N M-byte items, we decrease that size-class's
* delay by N * M. So, if delay is 1024 and we're looking at the 64-byte size
* class, we won't do any flushing until we've been asked to flush 1024/64 == 16
* items. This can happen in any configuration (i.e. being asked to flush 16
* items once, or 4 items 4 times).
*
* Practically, this is stored as a count of items in a uint8_t, so the
* effective maximum value for a size class is 255 * sz.
*/
size_t opt_tcache_gc_delay_bytes = 0;
/*
* When a cache bin is flushed because it's full, how much of it do we flush?
* By default, we flush half the maximum number of items.
*/
unsigned opt_lg_tcache_flush_small_div = 1;
unsigned opt_lg_tcache_flush_large_div = 1;
/*
* Number of cache bins enabled, including both large and small. This value
* is only used to initialize tcache_nbins in the per-thread tcache.
* Directly modifying it will not affect threads already launched.
*/
unsigned global_do_not_change_tcache_nbins;
/*
* Max size class to be cached (can be small or large). This value is only used
* to initialize tcache_max in the per-thread tcache. Directly modifying it
* will not affect threads already launched.
*/
size_t global_do_not_change_tcache_maxclass;
/*
* Default bin info for each bin. Will be initialized in malloc_conf_init
* and tcache_boot and should not be modified after that.
*/
static cache_bin_info_t opt_tcache_ncached_max[TCACHE_NBINS_MAX] = {{0}};
/*
* Marks whether a bin's info is set already. This is used in
* tcache_bin_info_compute to avoid overwriting ncached_max specified by
* malloc_conf. It should be set only when parsing malloc_conf.
*/
static bool opt_tcache_ncached_max_set[TCACHE_NBINS_MAX] = {0};
tcaches_t *tcaches;
/* Index of first element within tcaches that has never been used. */
static unsigned tcaches_past;
/* Head of singly linked list tracking available tcaches elements. */
static tcaches_t *tcaches_avail;
/* Protects tcaches{,_past,_avail}. */
static malloc_mutex_t tcaches_mtx;
/******************************************************************************/
size_t
tcache_salloc(tsdn_t *tsdn, const void *ptr) {
return arena_salloc(tsdn, ptr);
}
uint64_t
tcache_gc_new_event_wait(tsd_t *tsd) {
return opt_tcache_gc_incr_bytes;
}
uint64_t
tcache_gc_postponed_event_wait(tsd_t *tsd) {
return TE_MIN_START_WAIT;
}
uint64_t
tcache_gc_dalloc_new_event_wait(tsd_t *tsd) {
return opt_tcache_gc_incr_bytes;
}
uint64_t
tcache_gc_dalloc_postponed_event_wait(tsd_t *tsd) {
return TE_MIN_START_WAIT;
}
static uint8_t
tcache_gc_item_delay_compute(szind_t szind) {
assert(szind < SC_NBINS);
size_t sz = sz_index2size(szind);
size_t item_delay = opt_tcache_gc_delay_bytes / sz;
size_t delay_max = ZU(1)
<< (sizeof(((tcache_slow_t *)NULL)->bin_flush_delay_items[0]) * 8);
if (item_delay >= delay_max) {
item_delay = delay_max - 1;
}
return (uint8_t)item_delay;
}
static void
tcache_gc_small(tsd_t *tsd, tcache_slow_t *tcache_slow, tcache_t *tcache,
szind_t szind) {
/* Aim to flush 3/4 of items below low-water. */
assert(szind < SC_NBINS);
cache_bin_t *cache_bin = &tcache->bins[szind];
assert(!tcache_bin_disabled(szind, cache_bin, tcache->tcache_slow));
cache_bin_sz_t ncached = cache_bin_ncached_get_local(cache_bin);
cache_bin_sz_t low_water = cache_bin_low_water_get(cache_bin);
assert(!tcache_slow->bin_refilled[szind]);
size_t nflush = low_water - (low_water >> 2);
if (nflush < tcache_slow->bin_flush_delay_items[szind]) {
/* Workaround for a conversion warning. */
uint8_t nflush_uint8 = (uint8_t)nflush;
assert(sizeof(tcache_slow->bin_flush_delay_items[0]) ==
sizeof(nflush_uint8));
tcache_slow->bin_flush_delay_items[szind] -= nflush_uint8;
return;
}
tcache_slow->bin_flush_delay_items[szind]
= tcache_gc_item_delay_compute(szind);
tcache_bin_flush_small(tsd, tcache, cache_bin, szind,
(unsigned)(ncached - nflush));
/*
* Reduce fill count by 2X. Limit lg_fill_div such that
* the fill count is always at least 1.
*/
if ((cache_bin_ncached_max_get(cache_bin) >>
(tcache_slow->lg_fill_div[szind] + 1)) >= 1) {
tcache_slow->lg_fill_div[szind]++;
}
}
static void
tcache_gc_large(tsd_t *tsd, tcache_slow_t *tcache_slow, tcache_t *tcache,
szind_t szind) {
/* Like the small GC; flush 3/4 of untouched items. */
assert(szind >= SC_NBINS);
cache_bin_t *cache_bin = &tcache->bins[szind];
assert(!tcache_bin_disabled(szind, cache_bin, tcache->tcache_slow));
cache_bin_sz_t ncached = cache_bin_ncached_get_local(cache_bin);
cache_bin_sz_t low_water = cache_bin_low_water_get(cache_bin);
tcache_bin_flush_large(tsd, tcache, cache_bin, szind,
(unsigned)(ncached - low_water + (low_water >> 2)));
}
static void
tcache_event(tsd_t *tsd) {
tcache_t *tcache = tcache_get(tsd);
if (tcache == NULL) {
return;
}
tcache_slow_t *tcache_slow = tsd_tcache_slowp_get(tsd);
szind_t szind = tcache_slow->next_gc_bin;
bool is_small = (szind < SC_NBINS);
cache_bin_t *cache_bin = &tcache->bins[szind];
if (tcache_bin_disabled(szind, cache_bin, tcache_slow)) {
goto label_done;
}
tcache_bin_flush_stashed(tsd, tcache, cache_bin, szind, is_small);
cache_bin_sz_t low_water = cache_bin_low_water_get(cache_bin);
if (low_water > 0) {
if (is_small) {
tcache_gc_small(tsd, tcache_slow, tcache, szind);
} else {
tcache_gc_large(tsd, tcache_slow, tcache, szind);
}
} else if (is_small && tcache_slow->bin_refilled[szind]) {
assert(low_water == 0);
/*
* Increase fill count by 2X for small bins. Make sure
* lg_fill_div stays greater than 0.
*/
if (tcache_slow->lg_fill_div[szind] > 1) {
tcache_slow->lg_fill_div[szind]--;
}
tcache_slow->bin_refilled[szind] = false;
}
cache_bin_low_water_set(cache_bin);
label_done:
tcache_slow->next_gc_bin++;
if (tcache_slow->next_gc_bin == tcache_nbins_get(tcache_slow)) {
tcache_slow->next_gc_bin = 0;
}
}
void
tcache_gc_event_handler(tsd_t *tsd, uint64_t elapsed) {
assert(elapsed == TE_INVALID_ELAPSED);
tcache_event(tsd);
}
void
tcache_gc_dalloc_event_handler(tsd_t *tsd, uint64_t elapsed) {
assert(elapsed == TE_INVALID_ELAPSED);
tcache_event(tsd);
}
void *
tcache_alloc_small_hard(tsdn_t *tsdn, arena_t *arena,
tcache_t *tcache, cache_bin_t *cache_bin, szind_t binind,
bool *tcache_success) {
tcache_slow_t *tcache_slow = tcache->tcache_slow;
void *ret;
assert(tcache_slow->arena != NULL);
assert(!tcache_bin_disabled(binind, cache_bin, tcache_slow));
cache_bin_sz_t nfill = cache_bin_ncached_max_get(cache_bin)
>> tcache_slow->lg_fill_div[binind];
if (nfill == 0) {
nfill = 1;
}
arena_cache_bin_fill_small(tsdn, arena, cache_bin, binind, nfill);
tcache_slow->bin_refilled[binind] = true;
ret = cache_bin_alloc(cache_bin, tcache_success);
return ret;
}
static const void *
tcache_bin_flush_ptr_getter(void *arr_ctx, size_t ind) {
cache_bin_ptr_array_t *arr = (cache_bin_ptr_array_t *)arr_ctx;
return arr->ptr[ind];
}
static void
tcache_bin_flush_metadata_visitor(void *szind_sum_ctx,
emap_full_alloc_ctx_t *alloc_ctx) {
size_t *szind_sum = (size_t *)szind_sum_ctx;
*szind_sum -= alloc_ctx->szind;
util_prefetch_write_range(alloc_ctx->edata, sizeof(edata_t));
}
JEMALLOC_NOINLINE static void
tcache_bin_flush_size_check_fail(cache_bin_ptr_array_t *arr, szind_t szind,
size_t nptrs, emap_batch_lookup_result_t *edatas) {
bool found_mismatch = false;
for (size_t i = 0; i < nptrs; i++) {
szind_t true_szind = edata_szind_get(edatas[i].edata);
if (true_szind != szind) {
found_mismatch = true;
safety_check_fail_sized_dealloc(
/* current_dealloc */ false,
/* ptr */ tcache_bin_flush_ptr_getter(arr, i),
/* true_size */ sz_index2size(true_szind),
/* input_size */ sz_index2size(szind));
}
}
assert(found_mismatch);
}
static void
tcache_bin_flush_edatas_lookup(tsd_t *tsd, cache_bin_ptr_array_t *arr,
szind_t binind, size_t nflush, emap_batch_lookup_result_t *edatas) {
/*
* This gets compiled away when config_opt_safety_checks is false.
* Checks for sized deallocation bugs, failing early rather than
* corrupting metadata.
*/
size_t szind_sum = binind * nflush;
emap_edata_lookup_batch(tsd, &arena_emap_global, nflush,
&tcache_bin_flush_ptr_getter, (void *)arr,
&tcache_bin_flush_metadata_visitor, (void *)&szind_sum,
edatas);
if (config_opt_safety_checks && unlikely(szind_sum != 0)) {
tcache_bin_flush_size_check_fail(arr, binind, nflush, edatas);
}
}
JEMALLOC_ALWAYS_INLINE void
tcache_bin_flush_impl_small(tsd_t *tsd, tcache_t *tcache, cache_bin_t *cache_bin,
szind_t binind, cache_bin_ptr_array_t *ptrs, unsigned nflush) {
tcache_slow_t *tcache_slow = tcache->tcache_slow;
/*
* A couple lookup calls take tsdn; declare it once for convenience
* instead of calling tsd_tsdn(tsd) all the time.
*/
tsdn_t *tsdn = tsd_tsdn(tsd);
assert(binind < SC_NBINS);
arena_t *tcache_arena = tcache_slow->arena;
assert(tcache_arena != NULL);
unsigned tcache_binshard = tsd_binshardsp_get(tsdn_tsd(tsdn))->binshard[binind];
/*
* Variable length array must have > 0 length; the last element is never
* touched (it's just included to satisfy the no-zero-length rule).
*/
VARIABLE_ARRAY(emap_batch_lookup_result_t, item_edata, nflush + 1);
tcache_bin_flush_edatas_lookup(tsd, ptrs, binind, nflush, item_edata);
/*
* The slabs where we freed the last remaining object in the slab (and
* so need to free the slab itself).
* Used only if small == true.
*/
unsigned dalloc_count = 0;
VARIABLE_ARRAY(edata_t *, dalloc_slabs, nflush + 1);
/*
* There's an edge case where we need to deallocate more slabs than we
* have elements of dalloc_slabs. This can if we end up deallocating
* items batched by another thread in addition to ones flushed from the
* cache. Since this is not very likely (most small object
* deallocations don't free up a whole slab), we don't want to burn the
* stack space to keep those excess slabs in an array. Instead we'll
* maintain an overflow list.
*/
edata_list_active_t dalloc_slabs_extra;
edata_list_active_init(&dalloc_slabs_extra);
/*
* We're about to grab a bunch of locks. If one of them happens to be
* the one guarding the arena-level stats counters we flush our
* thread-local ones to, we do so under one critical section.
*/
bool merged_stats = false;
/*
* We maintain the invariant that all edatas yet to be flushed are
* contained in the half-open range [flush_start, flush_end). We'll
* repeatedly partition the array so that the unflushed items are at the
* end.
*/
unsigned flush_start = 0;
while (flush_start < nflush) {
/*
* After our partitioning step, all objects to flush will be in
* the half-open range [prev_flush_start, flush_start), and
* flush_start will be updated to correspond to the next loop
* iteration.
*/
unsigned prev_flush_start = flush_start;
edata_t *cur_edata = item_edata[flush_start].edata;
unsigned cur_arena_ind = edata_arena_ind_get(cur_edata);
arena_t *cur_arena = arena_get(tsdn, cur_arena_ind, false);
unsigned cur_binshard = edata_binshard_get(cur_edata);
bin_t *cur_bin = arena_get_bin(cur_arena, binind,
cur_binshard);
assert(cur_binshard < bin_infos[binind].n_shards);
/*
* Start off the partition; item_edata[i] always matches itself
* of course.
*/
flush_start++;
for (unsigned i = flush_start; i < nflush; i++) {
void *ptr = ptrs->ptr[i];
edata_t *edata = item_edata[i].edata;
assert(ptr != NULL && edata != NULL);
assert((uintptr_t)ptr >= (uintptr_t)edata_addr_get(edata));
assert((uintptr_t)ptr < (uintptr_t)edata_past_get(edata));
if (edata_arena_ind_get(edata) == cur_arena_ind
&& edata_binshard_get(edata) == cur_binshard) {
/* Swap the edatas. */
emap_batch_lookup_result_t temp_edata
= item_edata[flush_start];
item_edata[flush_start] = item_edata[i];
item_edata[i] = temp_edata;
/* Swap the pointers */
void *temp_ptr = ptrs->ptr[flush_start];
ptrs->ptr[flush_start] = ptrs->ptr[i];
ptrs->ptr[i] = temp_ptr;
flush_start++;
}
}
/* Make sure we implemented partitioning correctly. */
if (config_debug) {
for (unsigned i = prev_flush_start; i < flush_start;
i++) {
edata_t *edata = item_edata[i].edata;
unsigned arena_ind = edata_arena_ind_get(edata);
assert(arena_ind == cur_arena_ind);
unsigned binshard = edata_binshard_get(edata);
assert(binshard == cur_binshard);
}
for (unsigned i = flush_start; i < nflush; i++) {
edata_t *edata = item_edata[i].edata;
assert(edata_arena_ind_get(edata)
!= cur_arena_ind
|| edata_binshard_get(edata)
!= cur_binshard);
}
}
/*
* We never batch when flushing to our home-base bin shard,
* since it's likely that we'll have to acquire that lock anyway
* when flushing stats.
*
* A plausible check we could add to can_batch is
* '&& arena_is_auto(cur_arena)'. The motivation would be that
* we have a higher tolerance for dubious user assumptions
* around non-auto arenas (e.g. "if I deallocate every object I
* allocated, and then call tcache.flush, then the arena stats
* must reflect zero live allocations").
*
* This is dubious for a couple reasons:
* - We already don't provide perfect fidelity for stats
* counting (e.g. for profiled allocations, whose size can
* inflate in stats).
* - Hanging load-bearing guarantees around stats impedes
* scalability in general.
*
* There are some "complete" strategies we could do instead:
* - Add a arena.<i>.quiesce call to pop all bins for users who
* do want those stats accounted for.
* - Make batchability a user-controllable per-arena option.
* - Do a batch pop after every mutex acquisition for which we
* want to provide accurate stats. This gives perfectly
* accurate stats, but can cause weird performance effects
* (because doing stats collection can now result in slabs
* becoming empty, and therefore purging, large mutex
* acquisition, etc.).
* - Propagate the "why" behind a flush down to the level of the
* batcher, and include a batch pop attempt down full tcache
* flushing pathways. This is just a lot of plumbing and
* internal complexity.
*
* We don't do any of these right now, but the decision calculus
* and tradeoffs are subtle enough that the reasoning was worth
* leaving in this comment.
*/
bool bin_is_batched = arena_bin_has_batch(binind);
bool home_binshard = (cur_arena == tcache_arena
&& cur_binshard == tcache_binshard);
bool can_batch = (flush_start - prev_flush_start
<= opt_bin_info_remote_free_max_batch)
&& !home_binshard && bin_is_batched;
/*
* We try to avoid the batching pathway if we can, so we always
* at least *try* to lock.
*/
bool locked = false;
bool batched = false;
bool batch_failed = false;
if (can_batch) {
locked = !malloc_mutex_trylock(tsdn, &cur_bin->lock);
}
if (can_batch && !locked) {
bin_with_batch_t *batched_bin =
(bin_with_batch_t *)cur_bin;
size_t push_idx = batcher_push_begin(tsdn,
&batched_bin->remote_frees,
flush_start - prev_flush_start);
bin_batching_test_after_push(push_idx);
if (push_idx != BATCHER_NO_IDX) {
batched = true;
unsigned nbatched
= flush_start - prev_flush_start;
for (unsigned i = 0; i < nbatched; i++) {
unsigned src_ind = prev_flush_start + i;
batched_bin->remote_free_data[
push_idx + i].ptr
= ptrs->ptr[src_ind];
batched_bin->remote_free_data[
push_idx + i].slab
= item_edata[src_ind].edata;
}
batcher_push_end(tsdn,
&batched_bin->remote_frees);
} else {
batch_failed = true;
}
}
if (!batched) {
if (!locked) {
malloc_mutex_lock(tsdn, &cur_bin->lock);
}
/*
* Unlike other stats (which only ever get flushed into
* a tcache's associated arena), batch_failed counts get
* accumulated into the bin where the push attempt
* failed.
*/
if (config_stats && batch_failed) {
cur_bin->stats.batch_failed_pushes++;
}
/*
* Flush stats first, if that was the right lock. Note
* that we don't actually have to flush stats into the
* current thread's binshard. Flushing into any binshard
* in the same arena is enough; we don't expose stats on
* per-binshard basis (just per-bin).
*/
if (config_stats && tcache_arena == cur_arena
&& !merged_stats) {
merged_stats = true;
cur_bin->stats.nflushes++;
cur_bin->stats.nrequests +=
cache_bin->tstats.nrequests;
cache_bin->tstats.nrequests = 0;
}
unsigned preallocated_slabs = nflush;
unsigned ndalloc_slabs = arena_bin_batch_get_ndalloc_slabs(
preallocated_slabs);
/* Next flush objects our own objects. */
/* Init only to avoid used-uninitialized warning. */
arena_dalloc_bin_locked_info_t dalloc_bin_info = {0};
arena_dalloc_bin_locked_begin(&dalloc_bin_info, binind);
for (unsigned i = prev_flush_start; i < flush_start;
i++) {
void *ptr = ptrs->ptr[i];
edata_t *edata = item_edata[i].edata;
arena_dalloc_bin_locked_step(tsdn, cur_arena,
cur_bin, &dalloc_bin_info, binind, edata,
ptr, dalloc_slabs, ndalloc_slabs,
&dalloc_count, &dalloc_slabs_extra);
}
/*
* Lastly, flush any batched objects (from other
* threads).
*/
if (bin_is_batched) {
arena_bin_flush_batch_impl(tsdn, cur_arena,
cur_bin, &dalloc_bin_info, binind,
dalloc_slabs, ndalloc_slabs,
&dalloc_count, &dalloc_slabs_extra);
}
arena_dalloc_bin_locked_finish(tsdn, cur_arena, cur_bin,
&dalloc_bin_info);
malloc_mutex_unlock(tsdn, &cur_bin->lock);
}
arena_decay_ticks(tsdn, cur_arena,
flush_start - prev_flush_start);
}
/* Handle all deferred slab dalloc. */
for (unsigned i = 0; i < dalloc_count; i++) {
edata_t *slab = dalloc_slabs[i];
arena_slab_dalloc(tsdn, arena_get_from_edata(slab), slab);
}
while (!edata_list_active_empty(&dalloc_slabs_extra)) {
edata_t *slab = edata_list_active_first(&dalloc_slabs_extra);
edata_list_active_remove(&dalloc_slabs_extra, slab);
arena_slab_dalloc(tsdn, arena_get_from_edata(slab), slab);
}
if (config_stats && !merged_stats) {
/*
* The flush loop didn't happen to flush to this
* thread's arena, so the stats didn't get merged.
* Manually do so now.
*/
bin_t *bin = arena_bin_choose(tsdn, tcache_arena,
binind, NULL);
malloc_mutex_lock(tsdn, &bin->lock);
bin->stats.nflushes++;
bin->stats.nrequests += cache_bin->tstats.nrequests;
cache_bin->tstats.nrequests = 0;
malloc_mutex_unlock(tsdn, &bin->lock);
}
}
JEMALLOC_ALWAYS_INLINE void
tcache_bin_flush_impl_large(tsd_t *tsd, tcache_t *tcache, cache_bin_t *cache_bin,
szind_t binind, cache_bin_ptr_array_t *ptrs, unsigned nflush) {
tcache_slow_t *tcache_slow = tcache->tcache_slow;
/*
* A couple lookup calls take tsdn; declare it once for convenience
* instead of calling tsd_tsdn(tsd) all the time.
*/
tsdn_t *tsdn = tsd_tsdn(tsd);
assert(binind < tcache_nbins_get(tcache_slow));
arena_t *tcache_arena = tcache_slow->arena;
assert(tcache_arena != NULL);
/*
* Variable length array must have > 0 length; the last element is never
* touched (it's just included to satisfy the no-zero-length rule).
*/
VARIABLE_ARRAY(emap_batch_lookup_result_t, item_edata, nflush + 1);
tcache_bin_flush_edatas_lookup(tsd, ptrs, binind, nflush, item_edata);
/*
* We're about to grab a bunch of locks. If one of them happens to be
* the one guarding the arena-level stats counters we flush our
* thread-local ones to, we do so under one critical section.
*/
bool merged_stats = false;
while (nflush > 0) {
/* Lock the arena, or bin, associated with the first object. */
edata_t *edata = item_edata[0].edata;
unsigned cur_arena_ind = edata_arena_ind_get(edata);
arena_t *cur_arena = arena_get(tsdn, cur_arena_ind, false);
if (!arena_is_auto(cur_arena)) {
malloc_mutex_lock(tsdn, &cur_arena->large_mtx);
}
/*
* If we acquired the right lock and have some stats to flush,
* flush them.
*/
if (config_stats && tcache_arena == cur_arena
&& !merged_stats) {
merged_stats = true;
arena_stats_large_flush_nrequests_add(tsdn,
&tcache_arena->stats, binind,
cache_bin->tstats.nrequests);
cache_bin->tstats.nrequests = 0;
}
/*
* Large allocations need special prep done. Afterwards, we can
* drop the large lock.
*/
for (unsigned i = 0; i < nflush; i++) {
void *ptr = ptrs->ptr[i];
edata = item_edata[i].edata;
assert(ptr != NULL && edata != NULL);
if (edata_arena_ind_get(edata) == cur_arena_ind) {
large_dalloc_prep_locked(tsdn,
edata);
}
}
if (!arena_is_auto(cur_arena)) {
malloc_mutex_unlock(tsdn, &cur_arena->large_mtx);
}
/* Deallocate whatever we can. */
unsigned ndeferred = 0;
for (unsigned i = 0; i < nflush; i++) {
void *ptr = ptrs->ptr[i];
edata = item_edata[i].edata;
assert(ptr != NULL && edata != NULL);
if (edata_arena_ind_get(edata) != cur_arena_ind) {
/*
* The object was allocated either via a
* different arena, or a different bin in this
* arena. Either way, stash the object so that
* it can be handled in a future pass.
*/
ptrs->ptr[ndeferred] = ptr;
item_edata[ndeferred].edata = edata;
ndeferred++;
continue;
}
if (large_dalloc_safety_checks(edata, ptr, binind)) {
/* See the comment in isfree. */
continue;
}
large_dalloc_finish(tsdn, edata);
}
arena_decay_ticks(tsdn, cur_arena, nflush - ndeferred);
nflush = ndeferred;
}
if (config_stats && !merged_stats) {
arena_stats_large_flush_nrequests_add(tsdn,
&tcache_arena->stats, binind,
cache_bin->tstats.nrequests);
cache_bin->tstats.nrequests = 0;
}
}
JEMALLOC_ALWAYS_INLINE void
tcache_bin_flush_impl(tsd_t *tsd, tcache_t *tcache, cache_bin_t *cache_bin,
szind_t binind, cache_bin_ptr_array_t *ptrs, unsigned nflush, bool small) {
/*
* The small/large flush logic is very similar; you might conclude that
* it's a good opportunity to share code. We've tried this, and by and
* large found this to obscure more than it helps; there are so many
* fiddly bits around things like stats handling, precisely when and
* which mutexes are acquired, etc., that almost all code ends up being
* gated behind 'if (small) { ... } else { ... }'. Even though the
* '...' is morally equivalent, the code itself needs slight tweaks.
*/
if (small) {
tcache_bin_flush_impl_small(tsd, tcache, cache_bin, binind,
ptrs, nflush);
} else {
tcache_bin_flush_impl_large(tsd, tcache, cache_bin, binind,
ptrs, nflush);
}
}
JEMALLOC_ALWAYS_INLINE void
tcache_bin_flush_bottom(tsd_t *tsd, tcache_t *tcache, cache_bin_t *cache_bin,
szind_t binind, unsigned rem, bool small) {
assert(rem <= cache_bin_ncached_max_get(cache_bin));
assert(!tcache_bin_disabled(binind, cache_bin, tcache->tcache_slow));
cache_bin_sz_t orig_nstashed = cache_bin_nstashed_get_local(cache_bin);
tcache_bin_flush_stashed(tsd, tcache, cache_bin, binind, small);
cache_bin_sz_t ncached = cache_bin_ncached_get_local(cache_bin);
assert((cache_bin_sz_t)rem <= ncached + orig_nstashed);
if ((cache_bin_sz_t)rem > ncached) {
/*
* The flush_stashed above could have done enough flushing, if
* there were many items stashed. Validate that: 1) non zero
* stashed, and 2) bin stack has available space now.
*/
assert(orig_nstashed > 0);
assert(ncached + cache_bin_nstashed_get_local(cache_bin)
< cache_bin_ncached_max_get(cache_bin));
/* Still go through the flush logic for stats purpose only. */
rem = ncached;
}
cache_bin_sz_t nflush = ncached - (cache_bin_sz_t)rem;
CACHE_BIN_PTR_ARRAY_DECLARE(ptrs, nflush);
cache_bin_init_ptr_array_for_flush(cache_bin, &ptrs, nflush);
tcache_bin_flush_impl(tsd, tcache, cache_bin, binind, &ptrs, nflush,
small);
cache_bin_finish_flush(cache_bin, &ptrs, nflush);
}
void
tcache_bin_flush_small(tsd_t *tsd, tcache_t *tcache, cache_bin_t *cache_bin,
szind_t binind, unsigned rem) {
tcache_bin_flush_bottom(tsd, tcache, cache_bin, binind, rem,
/* small */ true);
}
void
tcache_bin_flush_large(tsd_t *tsd, tcache_t *tcache, cache_bin_t *cache_bin,
szind_t binind, unsigned rem) {
tcache_bin_flush_bottom(tsd, tcache, cache_bin, binind, rem,
/* small */ false);
}
/*
* Flushing stashed happens when 1) tcache fill, 2) tcache flush, or 3) tcache
* GC event. This makes sure that the stashed items do not hold memory for too
* long, and new buffers can only be allocated when nothing is stashed.
*
* The downside is, the time between stash and flush may be relatively short,
* especially when the request rate is high. It lowers the chance of detecting
* write-after-free -- however that is a delayed detection anyway, and is less
* of a focus than the memory overhead.
*/
void
tcache_bin_flush_stashed(tsd_t *tsd, tcache_t *tcache, cache_bin_t *cache_bin,
szind_t binind, bool is_small) {
assert(!tcache_bin_disabled(binind, cache_bin, tcache->tcache_slow));
/*
* The two below are for assertion only. The content of original cached
* items remain unchanged -- the stashed items reside on the other end
* of the stack. Checking the stack head and ncached to verify.
*/
void *head_content = *cache_bin->stack_head;
cache_bin_sz_t orig_cached = cache_bin_ncached_get_local(cache_bin);
cache_bin_sz_t nstashed = cache_bin_nstashed_get_local(cache_bin);
assert(orig_cached + nstashed <= cache_bin_ncached_max_get(cache_bin));
if (nstashed == 0) {
return;
}
CACHE_BIN_PTR_ARRAY_DECLARE(ptrs, nstashed);
cache_bin_init_ptr_array_for_stashed(cache_bin, binind, &ptrs,
nstashed);
san_check_stashed_ptrs(ptrs.ptr, nstashed, sz_index2size(binind));
tcache_bin_flush_impl(tsd, tcache, cache_bin, binind, &ptrs, nstashed,
is_small);
cache_bin_finish_flush_stashed(cache_bin);
assert(cache_bin_nstashed_get_local(cache_bin) == 0);
assert(cache_bin_ncached_get_local(cache_bin) == orig_cached);
assert(head_content == *cache_bin->stack_head);
}
JET_EXTERN bool
tcache_get_default_ncached_max_set(szind_t ind) {
return opt_tcache_ncached_max_set[ind];
}
JET_EXTERN const cache_bin_info_t *
tcache_get_default_ncached_max(void) {
return opt_tcache_ncached_max;
}
bool
tcache_bin_ncached_max_read(tsd_t *tsd, size_t bin_size,
cache_bin_sz_t *ncached_max) {
if (bin_size > TCACHE_MAXCLASS_LIMIT) {
return true;
}
if (!tcache_available(tsd)) {
*ncached_max = 0;
return false;
}
tcache_t *tcache = tsd_tcachep_get(tsd);
assert(tcache != NULL);
szind_t bin_ind = sz_size2index(bin_size);
cache_bin_t *bin = &tcache->bins[bin_ind];
*ncached_max = tcache_bin_disabled(bin_ind, bin, tcache->tcache_slow) ?
0: cache_bin_ncached_max_get(bin);
return false;
}
void
tcache_arena_associate(tsdn_t *tsdn, tcache_slow_t *tcache_slow,
tcache_t *tcache, arena_t *arena) {
assert(tcache_slow->arena == NULL);
tcache_slow->arena = arena;
if (config_stats) {
/* Link into list of extant tcaches. */
malloc_mutex_lock(tsdn, &arena->tcache_ql_mtx);
ql_elm_new(tcache_slow, link);
ql_tail_insert(&arena->tcache_ql, tcache_slow, link);
cache_bin_array_descriptor_init(
&tcache_slow->cache_bin_array_descriptor, tcache->bins);
ql_tail_insert(&arena->cache_bin_array_descriptor_ql,
&tcache_slow->cache_bin_array_descriptor, link);
malloc_mutex_unlock(tsdn, &arena->tcache_ql_mtx);
}
}
static void
tcache_arena_dissociate(tsdn_t *tsdn, tcache_slow_t *tcache_slow,
tcache_t *tcache) {
arena_t *arena = tcache_slow->arena;
assert(arena != NULL);
if (config_stats) {
/* Unlink from list of extant tcaches. */
malloc_mutex_lock(tsdn, &arena->tcache_ql_mtx);
if (config_debug) {
bool in_ql = false;
tcache_slow_t *iter;
ql_foreach(iter, &arena->tcache_ql, link) {
if (iter == tcache_slow) {
in_ql = true;
break;
}
}
assert(in_ql);
}
ql_remove(&arena->tcache_ql, tcache_slow, link);
ql_remove(&arena->cache_bin_array_descriptor_ql,
&tcache_slow->cache_bin_array_descriptor, link);
tcache_stats_merge(tsdn, tcache_slow->tcache, arena);
malloc_mutex_unlock(tsdn, &arena->tcache_ql_mtx);
}
tcache_slow->arena = NULL;
}
void
tcache_arena_reassociate(tsdn_t *tsdn, tcache_slow_t *tcache_slow,
tcache_t *tcache, arena_t *arena) {
tcache_arena_dissociate(tsdn, tcache_slow, tcache);
tcache_arena_associate(tsdn, tcache_slow, tcache, arena);
}
static void
tcache_default_settings_init(tcache_slow_t *tcache_slow) {
assert(tcache_slow != NULL);
assert(global_do_not_change_tcache_maxclass != 0);
assert(global_do_not_change_tcache_nbins != 0);
tcache_slow->tcache_nbins = global_do_not_change_tcache_nbins;
}
static void
tcache_init(tsd_t *tsd, tcache_slow_t *tcache_slow, tcache_t *tcache,
void *mem, const cache_bin_info_t *tcache_bin_info) {
tcache->tcache_slow = tcache_slow;
tcache_slow->tcache = tcache;
memset(&tcache_slow->link, 0, sizeof(ql_elm(tcache_t)));
tcache_slow->next_gc_bin = 0;
tcache_slow->arena = NULL;
tcache_slow->dyn_alloc = mem;
/*
* We reserve cache bins for all small size classes, even if some may
* not get used (i.e. bins higher than tcache_nbins). This allows
* the fast and common paths to access cache bin metadata safely w/o
* worrying about which ones are disabled.
*/
unsigned tcache_nbins = tcache_nbins_get(tcache_slow);
size_t cur_offset = 0;
cache_bin_preincrement(tcache_bin_info, tcache_nbins, mem,
&cur_offset);
for (unsigned i = 0; i < tcache_nbins; i++) {
if (i < SC_NBINS) {
tcache_slow->lg_fill_div[i] = 1;
tcache_slow->bin_refilled[i] = false;
tcache_slow->bin_flush_delay_items[i]
= tcache_gc_item_delay_compute(i);
}
cache_bin_t *cache_bin = &tcache->bins[i];
if (tcache_bin_info[i].ncached_max > 0) {
cache_bin_init(cache_bin, &tcache_bin_info[i], mem,
&cur_offset);
} else {
cache_bin_init_disabled(cache_bin,
tcache_bin_info[i].ncached_max);
}
}
/*
* Initialize all disabled bins to a state that can safely and
* efficiently fail all fastpath alloc / free, so that no additional
* check around tcache_nbins is needed on fastpath. Yet we still
* store the ncached_max in the bin_info for future usage.
*/
for (unsigned i = tcache_nbins; i < TCACHE_NBINS_MAX; i++) {
cache_bin_t *cache_bin = &tcache->bins[i];
cache_bin_init_disabled(cache_bin,
tcache_bin_info[i].ncached_max);
assert(tcache_bin_disabled(i, cache_bin, tcache->tcache_slow));
}
cache_bin_postincrement(mem, &cur_offset);
if (config_debug) {
/* Sanity check that the whole stack is used. */
size_t size, alignment;
cache_bin_info_compute_alloc(tcache_bin_info, tcache_nbins,
&size, &alignment);
assert(cur_offset == size);
}
}
static inline unsigned
tcache_ncached_max_compute(szind_t szind) {
if (szind >= SC_NBINS) {
return opt_tcache_nslots_large;
}
unsigned slab_nregs = bin_infos[szind].nregs;
/* We may modify these values; start with the opt versions. */
unsigned nslots_small_min = opt_tcache_nslots_small_min;
unsigned nslots_small_max = opt_tcache_nslots_small_max;
/*
* Clamp values to meet our constraints -- even, nonzero, min < max, and
* suitable for a cache bin size.
*/
if (opt_tcache_nslots_small_max > CACHE_BIN_NCACHED_MAX) {
nslots_small_max = CACHE_BIN_NCACHED_MAX;
}
if (nslots_small_min % 2 != 0) {
nslots_small_min++;
}
if (nslots_small_max % 2 != 0) {
nslots_small_max--;
}
if (nslots_small_min < 2) {
nslots_small_min = 2;
}
if (nslots_small_max < 2) {
nslots_small_max = 2;
}
if (nslots_small_min > nslots_small_max) {
nslots_small_min = nslots_small_max;
}
unsigned candidate;
if (opt_lg_tcache_nslots_mul < 0) {
candidate = slab_nregs >> (-opt_lg_tcache_nslots_mul);
} else {
candidate = slab_nregs << opt_lg_tcache_nslots_mul;
}
if (candidate % 2 != 0) {
/*
* We need the candidate size to be even -- we assume that we
* can divide by two and get a positive number (e.g. when
* flushing).
*/
++candidate;
}
if (candidate <= nslots_small_min) {
return nslots_small_min;
} else if (candidate <= nslots_small_max) {
return candidate;
} else {
return nslots_small_max;
}
}
JET_EXTERN void
tcache_bin_info_compute(cache_bin_info_t tcache_bin_info[TCACHE_NBINS_MAX]) {
/*
* Compute the values for each bin, but for bins with indices larger
* than tcache_nbins, no items will be cached.
*/
for (szind_t i = 0; i < TCACHE_NBINS_MAX; i++) {
unsigned ncached_max = tcache_get_default_ncached_max_set(i) ?
(unsigned)tcache_get_default_ncached_max()[i].ncached_max:
tcache_ncached_max_compute(i);
assert(ncached_max <= CACHE_BIN_NCACHED_MAX);
cache_bin_info_init(&tcache_bin_info[i],
(cache_bin_sz_t)ncached_max);
}
}
static bool
tsd_tcache_data_init_impl(tsd_t *tsd, arena_t *arena,
const cache_bin_info_t *tcache_bin_info) {
tcache_slow_t *tcache_slow = tsd_tcache_slowp_get_unsafe(tsd);
tcache_t *tcache = tsd_tcachep_get_unsafe(tsd);
assert(cache_bin_still_zero_initialized(&tcache->bins[0]));
unsigned tcache_nbins = tcache_nbins_get(tcache_slow);
size_t size, alignment;
cache_bin_info_compute_alloc(tcache_bin_info, tcache_nbins,
&size, &alignment);
void *mem;
if (cache_bin_stack_use_thp()) {
/* Alignment is ignored since it comes from THP. */
assert(alignment == QUANTUM);
mem = b0_alloc_tcache_stack(tsd_tsdn(tsd), size);
} else {
size = sz_sa2u(size, alignment);
mem = ipallocztm(tsd_tsdn(tsd), size, alignment, true, NULL,
true, arena_get(TSDN_NULL, 0, true));
}
if (mem == NULL) {
return true;
}
tcache_init(tsd, tcache_slow, tcache, mem, tcache_bin_info);
/*
* Initialization is a bit tricky here. After malloc init is done, all
* threads can rely on arena_choose and associate tcache accordingly.
* However, the thread that does actual malloc bootstrapping relies on
* functional tsd, and it can only rely on a0. In that case, we
* associate its tcache to a0 temporarily, and later on
* arena_choose_hard() will re-associate properly.
*/
tcache_slow->arena = NULL;
if (!malloc_initialized()) {
/* If in initialization, assign to a0. */
arena = arena_get(tsd_tsdn(tsd), 0, false);
tcache_arena_associate(tsd_tsdn(tsd), tcache_slow, tcache,
arena);
} else {
if (arena == NULL) {
arena = arena_choose(tsd, NULL);
}
/* This may happen if thread.tcache.enabled is used. */
if (tcache_slow->arena == NULL) {
tcache_arena_associate(tsd_tsdn(tsd), tcache_slow,
tcache, arena);
}
}
assert(arena == tcache_slow->arena);
return false;
}
/* Initialize auto tcache (embedded in TSD). */
static bool
tsd_tcache_data_init(tsd_t *tsd, arena_t *arena,
const cache_bin_info_t tcache_bin_info[TCACHE_NBINS_MAX]) {
assert(tcache_bin_info != NULL);
return tsd_tcache_data_init_impl(tsd, arena, tcache_bin_info);
}
/* Created manual tcache for tcache.create mallctl. */
tcache_t *
tcache_create_explicit(tsd_t *tsd) {
/*
* We place the cache bin stacks, then the tcache_t, then a pointer to
* the beginning of the whole allocation (for freeing). The makes sure
* the cache bins have the requested alignment.
*/
unsigned tcache_nbins = global_do_not_change_tcache_nbins;
size_t tcache_size, alignment;
cache_bin_info_compute_alloc(tcache_get_default_ncached_max(),
tcache_nbins, &tcache_size, &alignment);
size_t size = tcache_size + sizeof(tcache_t)
+ sizeof(tcache_slow_t);
/* Naturally align the pointer stacks. */
size = PTR_CEILING(size);
size = sz_sa2u(size, alignment);
void *mem = ipallocztm(tsd_tsdn(tsd), size, alignment,
true, NULL, true, arena_get(TSDN_NULL, 0, true));
if (mem == NULL) {
return NULL;
}
tcache_t *tcache = (void *)((byte_t *)mem + tcache_size);
tcache_slow_t *tcache_slow =
(void *)((byte_t *)mem + tcache_size + sizeof(tcache_t));
tcache_default_settings_init(tcache_slow);
tcache_init(tsd, tcache_slow, tcache, mem,
tcache_get_default_ncached_max());
tcache_arena_associate(tsd_tsdn(tsd), tcache_slow, tcache,
arena_ichoose(tsd, NULL));
return tcache;
}
bool
tsd_tcache_enabled_data_init(tsd_t *tsd) {
/* Called upon tsd initialization. */
tsd_tcache_enabled_set(tsd, opt_tcache);
/*
* tcache is not available yet, but we need to set up its tcache_nbins
* in advance.
*/
tcache_default_settings_init(tsd_tcache_slowp_get(tsd));
tsd_slow_update(tsd);
if (opt_tcache) {
/* Trigger tcache init. */
tsd_tcache_data_init(tsd, NULL,
tcache_get_default_ncached_max());
}
return false;
}
void
tcache_enabled_set(tsd_t *tsd, bool enabled) {
bool was_enabled = tsd_tcache_enabled_get(tsd);
if (!was_enabled && enabled) {
tsd_tcache_data_init(tsd, NULL,
tcache_get_default_ncached_max());
} else if (was_enabled && !enabled) {
tcache_cleanup(tsd);
}
/* Commit the state last. Above calls check current state. */
tsd_tcache_enabled_set(tsd, enabled);
tsd_slow_update(tsd);
}
void
thread_tcache_max_set(tsd_t *tsd, size_t tcache_max) {
assert(tcache_max <= TCACHE_MAXCLASS_LIMIT);
assert(tcache_max == sz_s2u(tcache_max));
tcache_t *tcache = tsd_tcachep_get(tsd);
tcache_slow_t *tcache_slow = tcache->tcache_slow;
cache_bin_info_t tcache_bin_info[TCACHE_NBINS_MAX] = {{0}};
assert(tcache != NULL && tcache_slow != NULL);
bool enabled = tcache_available(tsd);
arena_t *assigned_arena;
if (enabled) {
assigned_arena = tcache_slow->arena;
/* Carry over the bin settings during the reboot. */
tcache_bin_settings_backup(tcache, tcache_bin_info);
/* Shutdown and reboot the tcache for a clean slate. */
tcache_cleanup(tsd);
}
/*
* Still set tcache_nbins of the tcache even if the tcache is not
* available yet because the values are stored in tsd_t and are
* always available for changing.
*/
tcache_max_set(tcache_slow, tcache_max);
if (enabled) {
tsd_tcache_data_init(tsd, assigned_arena, tcache_bin_info);
}
assert(tcache_nbins_get(tcache_slow) == sz_size2index(tcache_max) + 1);
}
static bool
tcache_bin_info_settings_parse(const char *bin_settings_segment_cur,
size_t len_left, cache_bin_info_t tcache_bin_info[TCACHE_NBINS_MAX],
bool bin_info_is_set[TCACHE_NBINS_MAX]) {
do {
size_t size_start, size_end;
size_t ncached_max;
bool err = multi_setting_parse_next(&bin_settings_segment_cur,
&len_left, &size_start, &size_end, &ncached_max);
if (err) {
return true;
}
if (size_end > TCACHE_MAXCLASS_LIMIT) {
size_end = TCACHE_MAXCLASS_LIMIT;
}
if (size_start > TCACHE_MAXCLASS_LIMIT ||
size_start > size_end) {
continue;
}
/* May get called before sz_init (during malloc_conf_init). */
szind_t bin_start = sz_size2index_compute(size_start);
szind_t bin_end = sz_size2index_compute(size_end);
if (ncached_max > CACHE_BIN_NCACHED_MAX) {
ncached_max = (size_t)CACHE_BIN_NCACHED_MAX;
}
for (szind_t i = bin_start; i <= bin_end; i++) {
cache_bin_info_init(&tcache_bin_info[i],
(cache_bin_sz_t)ncached_max);
if (bin_info_is_set != NULL) {
bin_info_is_set[i] = true;
}
}
} while (len_left > 0);
return false;
}
bool
tcache_bin_info_default_init(const char *bin_settings_segment_cur,
size_t len_left) {
return tcache_bin_info_settings_parse(bin_settings_segment_cur,
len_left, opt_tcache_ncached_max, opt_tcache_ncached_max_set);
}
bool
tcache_bins_ncached_max_write(tsd_t *tsd, char *settings, size_t len) {
assert(tcache_available(tsd));
assert(len != 0);
tcache_t *tcache = tsd_tcachep_get(tsd);
assert(tcache != NULL);
cache_bin_info_t tcache_bin_info[TCACHE_NBINS_MAX];
tcache_bin_settings_backup(tcache, tcache_bin_info);
if(tcache_bin_info_settings_parse(settings, len, tcache_bin_info,
NULL)) {
return true;
}
arena_t *assigned_arena = tcache->tcache_slow->arena;
tcache_cleanup(tsd);
tsd_tcache_data_init(tsd, assigned_arena,
tcache_bin_info);
return false;
}
static void
tcache_flush_cache(tsd_t *tsd, tcache_t *tcache) {
tcache_slow_t *tcache_slow = tcache->tcache_slow;
assert(tcache_slow->arena != NULL);
for (unsigned i = 0; i < tcache_nbins_get(tcache_slow); i++) {
cache_bin_t *cache_bin = &tcache->bins[i];
if (tcache_bin_disabled(i, cache_bin, tcache_slow)) {
continue;
}
if (i < SC_NBINS) {
tcache_bin_flush_small(tsd, tcache, cache_bin, i, 0);
} else {
tcache_bin_flush_large(tsd, tcache, cache_bin, i, 0);
}
if (config_stats) {
assert(cache_bin->tstats.nrequests == 0);
}
}
}
void
tcache_flush(tsd_t *tsd) {
assert(tcache_available(tsd));
tcache_flush_cache(tsd, tsd_tcachep_get(tsd));
}
static void
tcache_destroy(tsd_t *tsd, tcache_t *tcache, bool tsd_tcache) {
tcache_slow_t *tcache_slow = tcache->tcache_slow;
tcache_flush_cache(tsd, tcache);
arena_t *arena = tcache_slow->arena;
tcache_arena_dissociate(tsd_tsdn(tsd), tcache_slow, tcache);
if (tsd_tcache) {
cache_bin_t *cache_bin = &tcache->bins[0];
cache_bin_assert_empty(cache_bin);
}
if (tsd_tcache && cache_bin_stack_use_thp()) {
b0_dalloc_tcache_stack(tsd_tsdn(tsd), tcache_slow->dyn_alloc);
} else {
idalloctm(tsd_tsdn(tsd), tcache_slow->dyn_alloc, NULL, NULL,
true, true);
}
/*
* The deallocation and tcache flush above may not trigger decay since
* we are on the tcache shutdown path (potentially with non-nominal
* tsd). Manually trigger decay to avoid pathological cases. Also
* include arena 0 because the tcache array is allocated from it.
*/
arena_decay(tsd_tsdn(tsd), arena_get(tsd_tsdn(tsd), 0, false),
false, false);
if (arena_nthreads_get(arena, false) == 0 &&
!background_thread_enabled()) {
/* Force purging when no threads assigned to the arena anymore. */
arena_decay(tsd_tsdn(tsd), arena,
/* is_background_thread */ false, /* all */ true);
} else {
arena_decay(tsd_tsdn(tsd), arena,
/* is_background_thread */ false, /* all */ false);
}
}
/* For auto tcache (embedded in TSD) only. */
void
tcache_cleanup(tsd_t *tsd) {
tcache_t *tcache = tsd_tcachep_get(tsd);
if (!tcache_available(tsd)) {
assert(tsd_tcache_enabled_get(tsd) == false);
assert(cache_bin_still_zero_initialized(&tcache->bins[0]));
return;
}
assert(tsd_tcache_enabled_get(tsd));
assert(!cache_bin_still_zero_initialized(&tcache->bins[0]));
tcache_destroy(tsd, tcache, true);
/* Make sure all bins used are reinitialized to the clean state. */
memset(tcache->bins, 0, sizeof(cache_bin_t) * TCACHE_NBINS_MAX);
}
void
tcache_stats_merge(tsdn_t *tsdn, tcache_t *tcache, arena_t *arena) {
cassert(config_stats);
/* Merge and reset tcache stats. */
for (unsigned i = 0; i < tcache_nbins_get(tcache->tcache_slow); i++) {
cache_bin_t *cache_bin = &tcache->bins[i];
if (tcache_bin_disabled(i, cache_bin, tcache->tcache_slow)) {
continue;
}
if (i < SC_NBINS) {
bin_t *bin = arena_bin_choose(tsdn, arena, i, NULL);
malloc_mutex_lock(tsdn, &bin->lock);
bin->stats.nrequests += cache_bin->tstats.nrequests;
malloc_mutex_unlock(tsdn, &bin->lock);
} else {
arena_stats_large_flush_nrequests_add(tsdn,
&arena->stats, i, cache_bin->tstats.nrequests);
}
cache_bin->tstats.nrequests = 0;
}
}
static bool
tcaches_create_prep(tsd_t *tsd, base_t *base) {
bool err;
malloc_mutex_assert_owner(tsd_tsdn(tsd), &tcaches_mtx);
if (tcaches == NULL) {
tcaches = base_alloc(tsd_tsdn(tsd), base,
sizeof(tcache_t *) * (MALLOCX_TCACHE_MAX+1), CACHELINE);
if (tcaches == NULL) {
err = true;
goto label_return;
}
}
if (tcaches_avail == NULL && tcaches_past > MALLOCX_TCACHE_MAX) {
err = true;
goto label_return;
}
err = false;
label_return:
return err;
}
bool
tcaches_create(tsd_t *tsd, base_t *base, unsigned *r_ind) {
witness_assert_depth(tsdn_witness_tsdp_get(tsd_tsdn(tsd)), 0);
bool err;
malloc_mutex_lock(tsd_tsdn(tsd), &tcaches_mtx);
if (tcaches_create_prep(tsd, base)) {
err = true;
goto label_return;
}
tcache_t *tcache = tcache_create_explicit(tsd);
if (tcache == NULL) {
err = true;
goto label_return;
}
tcaches_t *elm;
if (tcaches_avail != NULL) {
elm = tcaches_avail;
tcaches_avail = tcaches_avail->next;
elm->tcache = tcache;
*r_ind = (unsigned)(elm - tcaches);
} else {
elm = &tcaches[tcaches_past];
elm->tcache = tcache;
*r_ind = tcaches_past;
tcaches_past++;
}
err = false;
label_return:
malloc_mutex_unlock(tsd_tsdn(tsd), &tcaches_mtx);
witness_assert_depth(tsdn_witness_tsdp_get(tsd_tsdn(tsd)), 0);
return err;
}
static tcache_t *
tcaches_elm_remove(tsd_t *tsd, tcaches_t *elm, bool allow_reinit) {
malloc_mutex_assert_owner(tsd_tsdn(tsd), &tcaches_mtx);
if (elm->tcache == NULL) {
return NULL;
}
tcache_t *tcache = elm->tcache;
if (allow_reinit) {
elm->tcache = TCACHES_ELM_NEED_REINIT;
} else {
elm->tcache = NULL;
}
if (tcache == TCACHES_ELM_NEED_REINIT) {
return NULL;
}
return tcache;
}
void
tcaches_flush(tsd_t *tsd, unsigned ind) {
malloc_mutex_lock(tsd_tsdn(tsd), &tcaches_mtx);
tcache_t *tcache = tcaches_elm_remove(tsd, &tcaches[ind], true);
malloc_mutex_unlock(tsd_tsdn(tsd), &tcaches_mtx);
if (tcache != NULL) {
/* Destroy the tcache; recreate in tcaches_get() if needed. */
tcache_destroy(tsd, tcache, false);
}
}
void
tcaches_destroy(tsd_t *tsd, unsigned ind) {
malloc_mutex_lock(tsd_tsdn(tsd), &tcaches_mtx);
tcaches_t *elm = &tcaches[ind];
tcache_t *tcache = tcaches_elm_remove(tsd, elm, false);
elm->next = tcaches_avail;
tcaches_avail = elm;
malloc_mutex_unlock(tsd_tsdn(tsd), &tcaches_mtx);
if (tcache != NULL) {
tcache_destroy(tsd, tcache, false);
}
}
bool
tcache_boot(tsdn_t *tsdn, base_t *base) {
global_do_not_change_tcache_maxclass = sz_s2u(opt_tcache_max);
assert(global_do_not_change_tcache_maxclass <= TCACHE_MAXCLASS_LIMIT);
global_do_not_change_tcache_nbins =
sz_size2index(global_do_not_change_tcache_maxclass) + 1;
/*
* Pre-compute default bin info and store the results in
* opt_tcache_ncached_max. After the changes here,
* opt_tcache_ncached_max should not be modified and should always be
* accessed using tcache_get_default_ncached_max.
*/
tcache_bin_info_compute(opt_tcache_ncached_max);
if (malloc_mutex_init(&tcaches_mtx, "tcaches", WITNESS_RANK_TCACHES,
malloc_mutex_rank_exclusive)) {
return true;
}
return false;
}
void
tcache_prefork(tsdn_t *tsdn) {
malloc_mutex_prefork(tsdn, &tcaches_mtx);
}
void
tcache_postfork_parent(tsdn_t *tsdn) {
malloc_mutex_postfork_parent(tsdn, &tcaches_mtx);
}
void
tcache_postfork_child(tsdn_t *tsdn) {
malloc_mutex_postfork_child(tsdn, &tcaches_mtx);
}
void tcache_assert_initialized(tcache_t *tcache) {
assert(!cache_bin_still_zero_initialized(&tcache->bins[0]));
}