blob: 39af0c90a5be4e495402e8806f52eaae2e34bb56 [file] [log] [blame]
#include "jemalloc/internal/jemalloc_preamble.h"
#include "jemalloc/internal/jemalloc_internal_includes.h"
#include "jemalloc/internal/assert.h"
#include "jemalloc/internal/ckh.h"
#include "jemalloc/internal/hash.h"
#include "jemalloc/internal/malloc_io.h"
#include "jemalloc/internal/prof_data.h"
/*
* This file defines and manages the core profiling data structures.
*
* Conceptually, profiling data can be imagined as a table with three columns:
* thread, stack trace, and current allocation size. (When prof_accum is on,
* there's one additional column which is the cumulative allocation size.)
*
* Implementation wise, each thread maintains a hash recording the stack trace
* to allocation size correspondences, which are basically the individual rows
* in the table. In addition, two global "indices" are built to make data
* aggregation efficient (for dumping): bt2gctx and tdatas, which are basically
* the "grouped by stack trace" and "grouped by thread" views of the same table,
* respectively. Note that the allocation size is only aggregated to the two
* indices at dumping time, so as to optimize for performance.
*/
/******************************************************************************/
malloc_mutex_t bt2gctx_mtx;
malloc_mutex_t tdatas_mtx;
malloc_mutex_t prof_dump_mtx;
/*
* Table of mutexes that are shared among gctx's. These are leaf locks, so
* there is no problem with using them for more than one gctx at the same time.
* The primary motivation for this sharing though is that gctx's are ephemeral,
* and destroying mutexes causes complications for systems that allocate when
* creating/destroying mutexes.
*/
malloc_mutex_t *gctx_locks;
static atomic_u_t cum_gctxs; /* Atomic counter. */
/*
* Table of mutexes that are shared among tdata's. No operations require
* holding multiple tdata locks, so there is no problem with using them for more
* than one tdata at the same time, even though a gctx lock may be acquired
* while holding a tdata lock.
*/
malloc_mutex_t *tdata_locks;
/*
* Global hash of (prof_bt_t *)-->(prof_gctx_t *). This is the master data
* structure that knows about all backtraces currently captured.
*/
static ckh_t bt2gctx;
/*
* Tree of all extant prof_tdata_t structures, regardless of state,
* {attached,detached,expired}.
*/
static prof_tdata_tree_t tdatas;
size_t prof_unbiased_sz[PROF_SC_NSIZES];
size_t prof_shifted_unbiased_cnt[PROF_SC_NSIZES];
/******************************************************************************/
/* Red-black trees. */
static int
prof_tctx_comp(const prof_tctx_t *a, const prof_tctx_t *b) {
uint64_t a_thr_uid = a->thr_uid;
uint64_t b_thr_uid = b->thr_uid;
int ret = (a_thr_uid > b_thr_uid) - (a_thr_uid < b_thr_uid);
if (ret == 0) {
uint64_t a_thr_discrim = a->thr_discrim;
uint64_t b_thr_discrim = b->thr_discrim;
ret = (a_thr_discrim > b_thr_discrim) - (a_thr_discrim <
b_thr_discrim);
if (ret == 0) {
uint64_t a_tctx_uid = a->tctx_uid;
uint64_t b_tctx_uid = b->tctx_uid;
ret = (a_tctx_uid > b_tctx_uid) - (a_tctx_uid <
b_tctx_uid);
}
}
return ret;
}
/* NOLINTBEGIN(performance-no-int-to-ptr) */
rb_gen(static UNUSED, tctx_tree_, prof_tctx_tree_t, prof_tctx_t,
tctx_link, prof_tctx_comp)
/* NOLINTEND(performance-no-int-to-ptr) */
static int
prof_gctx_comp(const prof_gctx_t *a, const prof_gctx_t *b) {
unsigned a_len = a->bt.len;
unsigned b_len = b->bt.len;
unsigned comp_len = (a_len < b_len) ? a_len : b_len;
int ret = memcmp(a->bt.vec, b->bt.vec, comp_len * sizeof(void *));
if (ret == 0) {
ret = (a_len > b_len) - (a_len < b_len);
}
return ret;
}
/* NOLINTBEGIN(performance-no-int-to-ptr) */
rb_gen(static UNUSED, gctx_tree_, prof_gctx_tree_t, prof_gctx_t, dump_link,
prof_gctx_comp)
/* NOLINTEND(performance-no-int-to-ptr) */
static int
prof_tdata_comp(const prof_tdata_t *a, const prof_tdata_t *b) {
int ret;
uint64_t a_uid = a->thr_uid;
uint64_t b_uid = b->thr_uid;
ret = ((a_uid > b_uid) - (a_uid < b_uid));
if (ret == 0) {
uint64_t a_discrim = a->thr_discrim;
uint64_t b_discrim = b->thr_discrim;
ret = ((a_discrim > b_discrim) - (a_discrim < b_discrim));
}
return ret;
}
/* NOLINTBEGIN(performance-no-int-to-ptr) */
rb_gen(static UNUSED, tdata_tree_, prof_tdata_tree_t, prof_tdata_t, tdata_link,
prof_tdata_comp)
/* NOLINTEND(performance-no-int-to-ptr) */
/******************************************************************************/
static malloc_mutex_t *
prof_gctx_mutex_choose(void) {
unsigned ngctxs = atomic_fetch_add_u(&cum_gctxs, 1, ATOMIC_RELAXED);
return &gctx_locks[(ngctxs - 1) % PROF_NCTX_LOCKS];
}
static malloc_mutex_t *
prof_tdata_mutex_choose(uint64_t thr_uid) {
return &tdata_locks[thr_uid % PROF_NTDATA_LOCKS];
}
bool
prof_data_init(tsd_t *tsd) {
tdata_tree_new(&tdatas);
return ckh_new(tsd, &bt2gctx, PROF_CKH_MINITEMS,
prof_bt_hash, prof_bt_keycomp);
}
static void
prof_enter(tsd_t *tsd, prof_tdata_t *tdata) {
cassert(config_prof);
assert(tdata == prof_tdata_get(tsd, false));
if (tdata != NULL) {
assert(!tdata->enq);
tdata->enq = true;
}
malloc_mutex_lock(tsd_tsdn(tsd), &bt2gctx_mtx);
}
static void
prof_leave(tsd_t *tsd, prof_tdata_t *tdata) {
cassert(config_prof);
assert(tdata == prof_tdata_get(tsd, false));
malloc_mutex_unlock(tsd_tsdn(tsd), &bt2gctx_mtx);
if (tdata != NULL) {
bool idump, gdump;
assert(tdata->enq);
tdata->enq = false;
idump = tdata->enq_idump;
tdata->enq_idump = false;
gdump = tdata->enq_gdump;
tdata->enq_gdump = false;
if (idump) {
prof_idump(tsd_tsdn(tsd));
}
if (gdump) {
prof_gdump(tsd_tsdn(tsd));
}
}
}
static prof_gctx_t *
prof_gctx_create(tsdn_t *tsdn, prof_bt_t *bt) {
/*
* Create a single allocation that has space for vec of length bt->len.
*/
size_t size = offsetof(prof_gctx_t, vec) + (bt->len * sizeof(void *));
prof_gctx_t *gctx = (prof_gctx_t *)iallocztm(tsdn, size,
sz_size2index(size), false, NULL, true, arena_get(TSDN_NULL, 0, true),
true);
if (gctx == NULL) {
return NULL;
}
gctx->lock = prof_gctx_mutex_choose();
/*
* Set nlimbo to 1, in order to avoid a race condition with
* prof_tctx_destroy()/prof_gctx_try_destroy().
*/
gctx->nlimbo = 1;
tctx_tree_new(&gctx->tctxs);
/* Duplicate bt. */
memcpy(gctx->vec, bt->vec, bt->len * sizeof(void *));
gctx->bt.vec = gctx->vec;
gctx->bt.len = bt->len;
return gctx;
}
static void
prof_gctx_try_destroy(tsd_t *tsd, prof_tdata_t *tdata_self,
prof_gctx_t *gctx) {
cassert(config_prof);
/*
* Check that gctx is still unused by any thread cache before destroying
* it. prof_lookup() increments gctx->nlimbo in order to avoid a race
* condition with this function, as does prof_tctx_destroy() in order to
* avoid a race between the main body of prof_tctx_destroy() and entry
* into this function.
*/
prof_enter(tsd, tdata_self);
malloc_mutex_lock(tsd_tsdn(tsd), gctx->lock);
assert(gctx->nlimbo != 0);
if (tctx_tree_empty(&gctx->tctxs) && gctx->nlimbo == 1) {
/* Remove gctx from bt2gctx. */
if (ckh_remove(tsd, &bt2gctx, &gctx->bt, NULL, NULL)) {
not_reached();
}
prof_leave(tsd, tdata_self);
/* Destroy gctx. */
malloc_mutex_unlock(tsd_tsdn(tsd), gctx->lock);
idalloctm(tsd_tsdn(tsd), gctx, NULL, NULL, true, true);
} else {
/*
* Compensate for increment in prof_tctx_destroy() or
* prof_lookup().
*/
gctx->nlimbo--;
malloc_mutex_unlock(tsd_tsdn(tsd), gctx->lock);
prof_leave(tsd, tdata_self);
}
}
static bool
prof_gctx_should_destroy(prof_gctx_t *gctx) {
if (opt_prof_accum) {
return false;
}
if (!tctx_tree_empty(&gctx->tctxs)) {
return false;
}
if (gctx->nlimbo != 0) {
return false;
}
return true;
}
static bool
prof_lookup_global(tsd_t *tsd, prof_bt_t *bt, prof_tdata_t *tdata,
void **p_btkey, prof_gctx_t **p_gctx, bool *p_new_gctx) {
union {
prof_gctx_t *p;
void *v;
} gctx, tgctx;
union {
prof_bt_t *p;
void *v;
} btkey;
bool new_gctx;
prof_enter(tsd, tdata);
if (ckh_search(&bt2gctx, bt, &btkey.v, &gctx.v)) {
/* bt has never been seen before. Insert it. */
prof_leave(tsd, tdata);
tgctx.p = prof_gctx_create(tsd_tsdn(tsd), bt);
if (tgctx.v == NULL) {
return true;
}
prof_enter(tsd, tdata);
if (ckh_search(&bt2gctx, bt, &btkey.v, &gctx.v)) {
gctx.p = tgctx.p;
btkey.p = &gctx.p->bt;
if (ckh_insert(tsd, &bt2gctx, btkey.v, gctx.v)) {
/* OOM. */
prof_leave(tsd, tdata);
idalloctm(tsd_tsdn(tsd), gctx.v, NULL, NULL,
true, true);
return true;
}
new_gctx = true;
} else {
new_gctx = false;
}
} else {
tgctx.v = NULL;
new_gctx = false;
}
if (!new_gctx) {
/*
* Increment nlimbo, in order to avoid a race condition with
* prof_tctx_destroy()/prof_gctx_try_destroy().
*/
malloc_mutex_lock(tsd_tsdn(tsd), gctx.p->lock);
gctx.p->nlimbo++;
malloc_mutex_unlock(tsd_tsdn(tsd), gctx.p->lock);
new_gctx = false;
if (tgctx.v != NULL) {
/* Lost race to insert. */
idalloctm(tsd_tsdn(tsd), tgctx.v, NULL, NULL, true,
true);
}
}
prof_leave(tsd, tdata);
*p_btkey = btkey.v;
*p_gctx = gctx.p;
*p_new_gctx = new_gctx;
return false;
}
prof_tctx_t *
prof_lookup(tsd_t *tsd, prof_bt_t *bt) {
union {
prof_tctx_t *p;
void *v;
} ret;
prof_tdata_t *tdata;
bool not_found;
cassert(config_prof);
tdata = prof_tdata_get(tsd, false);
assert(tdata != NULL);
malloc_mutex_lock(tsd_tsdn(tsd), tdata->lock);
not_found = ckh_search(&tdata->bt2tctx, bt, NULL, &ret.v);
if (!not_found) { /* Note double negative! */
ret.p->prepared = true;
}
malloc_mutex_unlock(tsd_tsdn(tsd), tdata->lock);
if (not_found) {
void *btkey;
prof_gctx_t *gctx;
bool new_gctx, error;
/*
* This thread's cache lacks bt. Look for it in the global
* cache.
*/
if (prof_lookup_global(tsd, bt, tdata, &btkey, &gctx,
&new_gctx)) {
return NULL;
}
/* Link a prof_tctx_t into gctx for this thread. */
ret.v = iallocztm(tsd_tsdn(tsd), sizeof(prof_tctx_t),
sz_size2index(sizeof(prof_tctx_t)), false, NULL, true,
arena_ichoose(tsd, NULL), true);
if (ret.p == NULL) {
if (new_gctx) {
prof_gctx_try_destroy(tsd, tdata, gctx);
}
return NULL;
}
ret.p->tdata = tdata;
ret.p->thr_uid = tdata->thr_uid;
ret.p->thr_discrim = tdata->thr_discrim;
ret.p->recent_count = 0;
memset(&ret.p->cnts, 0, sizeof(prof_cnt_t));
ret.p->gctx = gctx;
ret.p->tctx_uid = tdata->tctx_uid_next++;
ret.p->prepared = true;
ret.p->state = prof_tctx_state_initializing;
malloc_mutex_lock(tsd_tsdn(tsd), tdata->lock);
error = ckh_insert(tsd, &tdata->bt2tctx, btkey, ret.v);
malloc_mutex_unlock(tsd_tsdn(tsd), tdata->lock);
if (error) {
if (new_gctx) {
prof_gctx_try_destroy(tsd, tdata, gctx);
}
idalloctm(tsd_tsdn(tsd), ret.v, NULL, NULL, true, true);
return NULL;
}
malloc_mutex_lock(tsd_tsdn(tsd), gctx->lock);
ret.p->state = prof_tctx_state_nominal;
tctx_tree_insert(&gctx->tctxs, ret.p);
gctx->nlimbo--;
malloc_mutex_unlock(tsd_tsdn(tsd), gctx->lock);
}
return ret.p;
}
/* Used in unit tests. */
static prof_tdata_t *
prof_tdata_count_iter(prof_tdata_tree_t *tdatas_ptr, prof_tdata_t *tdata,
void *arg) {
size_t *tdata_count = (size_t *)arg;
(*tdata_count)++;
return NULL;
}
/* Used in unit tests. */
size_t
prof_tdata_count(void) {
size_t tdata_count = 0;
tsdn_t *tsdn;
tsdn = tsdn_fetch();
malloc_mutex_lock(tsdn, &tdatas_mtx);
tdata_tree_iter(&tdatas, NULL, prof_tdata_count_iter,
(void *)&tdata_count);
malloc_mutex_unlock(tsdn, &tdatas_mtx);
return tdata_count;
}
/* Used in unit tests. */
size_t
prof_bt_count(void) {
size_t bt_count;
tsd_t *tsd;
prof_tdata_t *tdata;
tsd = tsd_fetch();
tdata = prof_tdata_get(tsd, false);
if (tdata == NULL) {
return 0;
}
malloc_mutex_lock(tsd_tsdn(tsd), &bt2gctx_mtx);
bt_count = ckh_count(&bt2gctx);
malloc_mutex_unlock(tsd_tsdn(tsd), &bt2gctx_mtx);
return bt_count;
}
static void
prof_thread_name_write_tdata(prof_tdata_t *tdata, const char *thread_name) {
strncpy(tdata->thread_name, thread_name, PROF_THREAD_NAME_MAX_LEN);
tdata->thread_name[PROF_THREAD_NAME_MAX_LEN - 1] = '\0';
}
int
prof_thread_name_set_impl(tsd_t *tsd, const char *thread_name) {
assert(tsd_reentrancy_level_get(tsd) == 0);
assert(thread_name != NULL);
for (unsigned i = 0; thread_name[i] != '\0'; i++) {
char c = thread_name[i];
if (!isgraph(c) && !isblank(c)) {
return EINVAL;
}
}
prof_tdata_t *tdata = prof_tdata_get(tsd, true);
if (tdata == NULL) {
return ENOMEM;
}
prof_thread_name_write_tdata(tdata, thread_name);
return 0;
}
JEMALLOC_FORMAT_PRINTF(3, 4)
static void
prof_dump_printf(write_cb_t *prof_dump_write, void *cbopaque,
const char *format, ...) {
va_list ap;
char buf[PROF_PRINTF_BUFSIZE];
va_start(ap, format);
malloc_vsnprintf(buf, sizeof(buf), format, ap);
va_end(ap);
prof_dump_write(cbopaque, buf);
}
/*
* Casting a double to a uint64_t may not necessarily be in range; this can be
* UB. I don't think this is practically possible with the cur counters, but
* plausibly could be with the accum counters.
*/
#ifdef JEMALLOC_PROF
static uint64_t
prof_double_uint64_cast(double d) {
/*
* Note: UINT64_MAX + 1 is exactly representable as a double on all
* reasonable platforms (certainly those we'll support). Writing this
* as !(a < b) instead of (a >= b) means that we're NaN-safe.
*/
double rounded = round(d);
if (!(rounded < (double)UINT64_MAX)) {
return UINT64_MAX;
}
return (uint64_t)rounded;
}
#endif
void prof_unbias_map_init(void) {
/* See the comment in prof_sample_new_event_wait */
#ifdef JEMALLOC_PROF
for (szind_t i = 0; i < SC_NSIZES; i++) {
double sz = (double)sz_index2size(i);
double rate = (double)(ZU(1) << lg_prof_sample);
double div_val = 1.0 - exp(-sz / rate);
double unbiased_sz = sz / div_val;
/*
* The "true" right value for the unbiased count is
* 1.0/(1 - exp(-sz/rate)). The problem is, we keep the counts
* as integers (for a variety of reasons -- rounding errors
* could trigger asserts, and not all libcs can properly handle
* floating point arithmetic during malloc calls inside libc).
* Rounding to an integer, though, can lead to rounding errors
* of over 30% for sizes close to the sampling rate. So
* instead, we multiply by a constant, dividing the maximum
* possible roundoff error by that constant. To avoid overflow
* in summing up size_t values, the largest safe constant we can
* pick is the size of the smallest allocation.
*/
double cnt_shift = (double)(ZU(1) << SC_LG_TINY_MIN);
double shifted_unbiased_cnt = cnt_shift / div_val;
prof_unbiased_sz[i] = (size_t)round(unbiased_sz);
prof_shifted_unbiased_cnt[i] = (size_t)round(
shifted_unbiased_cnt);
}
#else
unreachable();
#endif
}
/*
* The unbiasing story is long. The jeprof unbiasing logic was copied from
* pprof. Both shared an issue: they unbiased using the average size of the
* allocations at a particular stack trace. This can work out OK if allocations
* are mostly of the same size given some stack, but not otherwise. We now
* internally track what the unbiased results ought to be. We can't just report
* them as they are though; they'll still go through the jeprof unbiasing
* process. Instead, we figure out what values we can feed *into* jeprof's
* unbiasing mechanism that will lead to getting the right values out.
*
* It'll unbias count and aggregate size as:
*
* c_out = c_in * 1/(1-exp(-s_in/c_in/R)
* s_out = s_in * 1/(1-exp(-s_in/c_in/R)
*
* We want to solve for the values of c_in and s_in that will
* give the c_out and s_out that we've computed internally.
*
* Let's do a change of variables (both to make the math easier and to make it
* easier to write):
* x = s_in / c_in
* y = s_in
* k = 1/R.
*
* Then
* c_out = y/x * 1/(1-exp(-k*x))
* s_out = y * 1/(1-exp(-k*x))
*
* The first equation gives:
* y = x * c_out * (1-exp(-k*x))
* The second gives:
* y = s_out * (1-exp(-k*x))
* So we have
* x = s_out / c_out.
* And all the other values fall out from that.
*
* This is all a fair bit of work. The thing we get out of it is that we don't
* break backwards compatibility with jeprof (and the various tools that have
* copied its unbiasing logic). Eventually, we anticipate a v3 heap profile
* dump format based on JSON, at which point I think much of this logic can get
* cleaned up (since we'll be taking a compatibility break there anyways).
*/
static void
prof_do_unbias(uint64_t c_out_shifted_i, uint64_t s_out_i, uint64_t *r_c_in,
uint64_t *r_s_in) {
#ifdef JEMALLOC_PROF
if (c_out_shifted_i == 0 || s_out_i == 0) {
*r_c_in = 0;
*r_s_in = 0;
return;
}
/*
* See the note in prof_unbias_map_init() to see why we take c_out in a
* shifted form.
*/
double c_out = (double)c_out_shifted_i
/ (double)(ZU(1) << SC_LG_TINY_MIN);
double s_out = (double)s_out_i;
double R = (double)(ZU(1) << lg_prof_sample);
double x = s_out / c_out;
double y = s_out * (1.0 - exp(-x / R));
double c_in = y / x;
double s_in = y;
*r_c_in = prof_double_uint64_cast(c_in);
*r_s_in = prof_double_uint64_cast(s_in);
#else
unreachable();
#endif
}
static void
prof_dump_print_cnts(write_cb_t *prof_dump_write, void *cbopaque,
const prof_cnt_t *cnts) {
uint64_t curobjs;
uint64_t curbytes;
uint64_t accumobjs;
uint64_t accumbytes;
if (opt_prof_unbias) {
prof_do_unbias(cnts->curobjs_shifted_unbiased,
cnts->curbytes_unbiased, &curobjs, &curbytes);
prof_do_unbias(cnts->accumobjs_shifted_unbiased,
cnts->accumbytes_unbiased, &accumobjs, &accumbytes);
} else {
curobjs = cnts->curobjs;
curbytes = cnts->curbytes;
accumobjs = cnts->accumobjs;
accumbytes = cnts->accumbytes;
}
prof_dump_printf(prof_dump_write, cbopaque,
"%"FMTu64": %"FMTu64" [%"FMTu64": %"FMTu64"]",
curobjs, curbytes, accumobjs, accumbytes);
}
static void
prof_tctx_merge_tdata(tsdn_t *tsdn, prof_tctx_t *tctx, prof_tdata_t *tdata) {
malloc_mutex_assert_owner(tsdn, tctx->tdata->lock);
malloc_mutex_lock(tsdn, tctx->gctx->lock);
switch (tctx->state) {
case prof_tctx_state_initializing:
malloc_mutex_unlock(tsdn, tctx->gctx->lock);
return;
case prof_tctx_state_nominal:
tctx->state = prof_tctx_state_dumping;
malloc_mutex_unlock(tsdn, tctx->gctx->lock);
memcpy(&tctx->dump_cnts, &tctx->cnts, sizeof(prof_cnt_t));
tdata->cnt_summed.curobjs += tctx->dump_cnts.curobjs;
tdata->cnt_summed.curobjs_shifted_unbiased
+= tctx->dump_cnts.curobjs_shifted_unbiased;
tdata->cnt_summed.curbytes += tctx->dump_cnts.curbytes;
tdata->cnt_summed.curbytes_unbiased
+= tctx->dump_cnts.curbytes_unbiased;
if (opt_prof_accum) {
tdata->cnt_summed.accumobjs +=
tctx->dump_cnts.accumobjs;
tdata->cnt_summed.accumobjs_shifted_unbiased +=
tctx->dump_cnts.accumobjs_shifted_unbiased;
tdata->cnt_summed.accumbytes +=
tctx->dump_cnts.accumbytes;
tdata->cnt_summed.accumbytes_unbiased +=
tctx->dump_cnts.accumbytes_unbiased;
}
break;
case prof_tctx_state_dumping:
case prof_tctx_state_purgatory:
not_reached();
}
}
static void
prof_tctx_merge_gctx(tsdn_t *tsdn, prof_tctx_t *tctx, prof_gctx_t *gctx) {
malloc_mutex_assert_owner(tsdn, gctx->lock);
gctx->cnt_summed.curobjs += tctx->dump_cnts.curobjs;
gctx->cnt_summed.curobjs_shifted_unbiased
+= tctx->dump_cnts.curobjs_shifted_unbiased;
gctx->cnt_summed.curbytes += tctx->dump_cnts.curbytes;
gctx->cnt_summed.curbytes_unbiased += tctx->dump_cnts.curbytes_unbiased;
if (opt_prof_accum) {
gctx->cnt_summed.accumobjs += tctx->dump_cnts.accumobjs;
gctx->cnt_summed.accumobjs_shifted_unbiased
+= tctx->dump_cnts.accumobjs_shifted_unbiased;
gctx->cnt_summed.accumbytes += tctx->dump_cnts.accumbytes;
gctx->cnt_summed.accumbytes_unbiased
+= tctx->dump_cnts.accumbytes_unbiased;
}
}
static prof_tctx_t *
prof_tctx_merge_iter(prof_tctx_tree_t *tctxs, prof_tctx_t *tctx, void *arg) {
tsdn_t *tsdn = (tsdn_t *)arg;
malloc_mutex_assert_owner(tsdn, tctx->gctx->lock);
switch (tctx->state) {
case prof_tctx_state_nominal:
/* New since dumping started; ignore. */
break;
case prof_tctx_state_dumping:
case prof_tctx_state_purgatory:
prof_tctx_merge_gctx(tsdn, tctx, tctx->gctx);
break;
case prof_tctx_state_initializing:
default:
not_reached();
}
return NULL;
}
typedef struct prof_dump_iter_arg_s prof_dump_iter_arg_t;
struct prof_dump_iter_arg_s {
tsdn_t *tsdn;
write_cb_t *prof_dump_write;
void *cbopaque;
};
static prof_tctx_t *
prof_tctx_dump_iter(prof_tctx_tree_t *tctxs, prof_tctx_t *tctx, void *opaque) {
prof_dump_iter_arg_t *arg = (prof_dump_iter_arg_t *)opaque;
malloc_mutex_assert_owner(arg->tsdn, tctx->gctx->lock);
switch (tctx->state) {
case prof_tctx_state_initializing:
case prof_tctx_state_nominal:
/* Not captured by this dump. */
break;
case prof_tctx_state_dumping:
case prof_tctx_state_purgatory:
prof_dump_printf(arg->prof_dump_write, arg->cbopaque,
" t%"FMTu64": ", tctx->thr_uid);
prof_dump_print_cnts(arg->prof_dump_write, arg->cbopaque,
&tctx->dump_cnts);
arg->prof_dump_write(arg->cbopaque, "\n");
break;
default:
not_reached();
}
return NULL;
}
static prof_tctx_t *
prof_tctx_finish_iter(prof_tctx_tree_t *tctxs, prof_tctx_t *tctx, void *arg) {
tsdn_t *tsdn = (tsdn_t *)arg;
prof_tctx_t *ret;
malloc_mutex_assert_owner(tsdn, tctx->gctx->lock);
switch (tctx->state) {
case prof_tctx_state_nominal:
/* New since dumping started; ignore. */
break;
case prof_tctx_state_dumping:
tctx->state = prof_tctx_state_nominal;
break;
case prof_tctx_state_purgatory:
ret = tctx;
goto label_return;
case prof_tctx_state_initializing:
default:
not_reached();
}
ret = NULL;
label_return:
return ret;
}
static void
prof_dump_gctx_prep(tsdn_t *tsdn, prof_gctx_t *gctx, prof_gctx_tree_t *gctxs) {
cassert(config_prof);
malloc_mutex_lock(tsdn, gctx->lock);
/*
* Increment nlimbo so that gctx won't go away before dump.
* Additionally, link gctx into the dump list so that it is included in
* prof_dump()'s second pass.
*/
gctx->nlimbo++;
gctx_tree_insert(gctxs, gctx);
memset(&gctx->cnt_summed, 0, sizeof(prof_cnt_t));
malloc_mutex_unlock(tsdn, gctx->lock);
}
typedef struct prof_gctx_merge_iter_arg_s prof_gctx_merge_iter_arg_t;
struct prof_gctx_merge_iter_arg_s {
tsdn_t *tsdn;
size_t *leak_ngctx;
};
static prof_gctx_t *
prof_gctx_merge_iter(prof_gctx_tree_t *gctxs, prof_gctx_t *gctx, void *opaque) {
prof_gctx_merge_iter_arg_t *arg = (prof_gctx_merge_iter_arg_t *)opaque;
malloc_mutex_lock(arg->tsdn, gctx->lock);
tctx_tree_iter(&gctx->tctxs, NULL, prof_tctx_merge_iter,
(void *)arg->tsdn);
if (gctx->cnt_summed.curobjs != 0) {
(*arg->leak_ngctx)++;
}
malloc_mutex_unlock(arg->tsdn, gctx->lock);
return NULL;
}
static void
prof_gctx_finish(tsd_t *tsd, prof_gctx_tree_t *gctxs) {
prof_tdata_t *tdata = prof_tdata_get(tsd, false);
prof_gctx_t *gctx;
/*
* Standard tree iteration won't work here, because as soon as we
* decrement gctx->nlimbo and unlock gctx, another thread can
* concurrently destroy it, which will corrupt the tree. Therefore,
* tear down the tree one node at a time during iteration.
*/
while ((gctx = gctx_tree_first(gctxs)) != NULL) {
gctx_tree_remove(gctxs, gctx);
malloc_mutex_lock(tsd_tsdn(tsd), gctx->lock);
{
prof_tctx_t *next;
next = NULL;
do {
prof_tctx_t *to_destroy =
tctx_tree_iter(&gctx->tctxs, next,
prof_tctx_finish_iter,
(void *)tsd_tsdn(tsd));
if (to_destroy != NULL) {
next = tctx_tree_next(&gctx->tctxs,
to_destroy);
tctx_tree_remove(&gctx->tctxs,
to_destroy);
idalloctm(tsd_tsdn(tsd), to_destroy,
NULL, NULL, true, true);
} else {
next = NULL;
}
} while (next != NULL);
}
gctx->nlimbo--;
if (prof_gctx_should_destroy(gctx)) {
gctx->nlimbo++;
malloc_mutex_unlock(tsd_tsdn(tsd), gctx->lock);
prof_gctx_try_destroy(tsd, tdata, gctx);
} else {
malloc_mutex_unlock(tsd_tsdn(tsd), gctx->lock);
}
}
}
typedef struct prof_tdata_merge_iter_arg_s prof_tdata_merge_iter_arg_t;
struct prof_tdata_merge_iter_arg_s {
tsdn_t *tsdn;
prof_cnt_t *cnt_all;
};
static prof_tdata_t *
prof_tdata_merge_iter(prof_tdata_tree_t *tdatas_ptr, prof_tdata_t *tdata,
void *opaque) {
prof_tdata_merge_iter_arg_t *arg =
(prof_tdata_merge_iter_arg_t *)opaque;
malloc_mutex_lock(arg->tsdn, tdata->lock);
if (!tdata->expired) {
size_t tabind;
union {
prof_tctx_t *p;
void *v;
} tctx;
tdata->dumping = true;
memset(&tdata->cnt_summed, 0, sizeof(prof_cnt_t));
for (tabind = 0; !ckh_iter(&tdata->bt2tctx, &tabind, NULL,
&tctx.v);) {
prof_tctx_merge_tdata(arg->tsdn, tctx.p, tdata);
}
arg->cnt_all->curobjs += tdata->cnt_summed.curobjs;
arg->cnt_all->curobjs_shifted_unbiased
+= tdata->cnt_summed.curobjs_shifted_unbiased;
arg->cnt_all->curbytes += tdata->cnt_summed.curbytes;
arg->cnt_all->curbytes_unbiased
+= tdata->cnt_summed.curbytes_unbiased;
if (opt_prof_accum) {
arg->cnt_all->accumobjs += tdata->cnt_summed.accumobjs;
arg->cnt_all->accumobjs_shifted_unbiased
+= tdata->cnt_summed.accumobjs_shifted_unbiased;
arg->cnt_all->accumbytes +=
tdata->cnt_summed.accumbytes;
arg->cnt_all->accumbytes_unbiased +=
tdata->cnt_summed.accumbytes_unbiased;
}
} else {
tdata->dumping = false;
}
malloc_mutex_unlock(arg->tsdn, tdata->lock);
return NULL;
}
static prof_tdata_t *
prof_tdata_dump_iter(prof_tdata_tree_t *tdatas_ptr, prof_tdata_t *tdata,
void *opaque) {
if (!tdata->dumping) {
return NULL;
}
prof_dump_iter_arg_t *arg = (prof_dump_iter_arg_t *)opaque;
prof_dump_printf(arg->prof_dump_write, arg->cbopaque, " t%"FMTu64": ",
tdata->thr_uid);
prof_dump_print_cnts(arg->prof_dump_write, arg->cbopaque,
&tdata->cnt_summed);
if (!prof_thread_name_empty(tdata)) {
arg->prof_dump_write(arg->cbopaque, " ");
arg->prof_dump_write(arg->cbopaque, tdata->thread_name);
}
arg->prof_dump_write(arg->cbopaque, "\n");
return NULL;
}
static void
prof_dump_header(prof_dump_iter_arg_t *arg, const prof_cnt_t *cnt_all) {
prof_dump_printf(arg->prof_dump_write, arg->cbopaque,
"heap_v2/%"FMTu64"\n t*: ", ((uint64_t)1U << lg_prof_sample));
prof_dump_print_cnts(arg->prof_dump_write, arg->cbopaque, cnt_all);
arg->prof_dump_write(arg->cbopaque, "\n");
malloc_mutex_lock(arg->tsdn, &tdatas_mtx);
tdata_tree_iter(&tdatas, NULL, prof_tdata_dump_iter, arg);
malloc_mutex_unlock(arg->tsdn, &tdatas_mtx);
}
static void
prof_dump_gctx(prof_dump_iter_arg_t *arg, prof_gctx_t *gctx,
const prof_bt_t *bt, prof_gctx_tree_t *gctxs) {
cassert(config_prof);
malloc_mutex_assert_owner(arg->tsdn, gctx->lock);
/* Avoid dumping such gctx's that have no useful data. */
if ((!opt_prof_accum && gctx->cnt_summed.curobjs == 0) ||
(opt_prof_accum && gctx->cnt_summed.accumobjs == 0)) {
assert(gctx->cnt_summed.curobjs == 0);
assert(gctx->cnt_summed.curbytes == 0);
/*
* These asserts would not be correct -- see the comment on races
* in prof.c
* assert(gctx->cnt_summed.curobjs_unbiased == 0);
* assert(gctx->cnt_summed.curbytes_unbiased == 0);
*/
assert(gctx->cnt_summed.accumobjs == 0);
assert(gctx->cnt_summed.accumobjs_shifted_unbiased == 0);
assert(gctx->cnt_summed.accumbytes == 0);
assert(gctx->cnt_summed.accumbytes_unbiased == 0);
return;
}
arg->prof_dump_write(arg->cbopaque, "@");
for (unsigned i = 0; i < bt->len; i++) {
prof_dump_printf(arg->prof_dump_write, arg->cbopaque,
" %#"FMTxPTR, (uintptr_t)bt->vec[i]);
}
arg->prof_dump_write(arg->cbopaque, "\n t*: ");
prof_dump_print_cnts(arg->prof_dump_write, arg->cbopaque,
&gctx->cnt_summed);
arg->prof_dump_write(arg->cbopaque, "\n");
tctx_tree_iter(&gctx->tctxs, NULL, prof_tctx_dump_iter, arg);
}
/*
* See prof_sample_new_event_wait() comment for why the body of this function
* is conditionally compiled.
*/
static void
prof_leakcheck(const prof_cnt_t *cnt_all, size_t leak_ngctx) {
#ifdef JEMALLOC_PROF
/*
* Scaling is equivalent AdjustSamples() in jeprof, but the result may
* differ slightly from what jeprof reports, because here we scale the
* summary values, whereas jeprof scales each context individually and
* reports the sums of the scaled values.
*/
if (cnt_all->curbytes != 0) {
double sample_period = (double)((uint64_t)1 << lg_prof_sample);
double ratio = (((double)cnt_all->curbytes) /
(double)cnt_all->curobjs) / sample_period;
double scale_factor = 1.0 / (1.0 - exp(-ratio));
uint64_t curbytes = (uint64_t)round(((double)cnt_all->curbytes)
* scale_factor);
uint64_t curobjs = (uint64_t)round(((double)cnt_all->curobjs) *
scale_factor);
malloc_printf("<jemalloc>: Leak approximation summary: ~%"FMTu64
" byte%s, ~%"FMTu64" object%s, >= %zu context%s\n",
curbytes, (curbytes != 1) ? "s" : "", curobjs, (curobjs !=
1) ? "s" : "", leak_ngctx, (leak_ngctx != 1) ? "s" : "");
malloc_printf(
"<jemalloc>: Run jeprof on dump output for leak detail\n");
if (opt_prof_leak_error) {
malloc_printf(
"<jemalloc>: Exiting with error code because memory"
" leaks were detected\n");
/*
* Use _exit() with underscore to avoid calling atexit()
* and entering endless cycle.
*/
_exit(1);
}
}
#endif
}
static prof_gctx_t *
prof_gctx_dump_iter(prof_gctx_tree_t *gctxs, prof_gctx_t *gctx, void *opaque) {
prof_dump_iter_arg_t *arg = (prof_dump_iter_arg_t *)opaque;
malloc_mutex_lock(arg->tsdn, gctx->lock);
prof_dump_gctx(arg, gctx, &gctx->bt, gctxs);
malloc_mutex_unlock(arg->tsdn, gctx->lock);
return NULL;
}
static void
prof_dump_prep(tsd_t *tsd, prof_tdata_t *tdata, prof_cnt_t *cnt_all,
size_t *leak_ngctx, prof_gctx_tree_t *gctxs) {
size_t tabind;
union {
prof_gctx_t *p;
void *v;
} gctx;
prof_enter(tsd, tdata);
/*
* Put gctx's in limbo and clear their counters in preparation for
* summing.
*/
gctx_tree_new(gctxs);
for (tabind = 0; !ckh_iter(&bt2gctx, &tabind, NULL, &gctx.v);) {
prof_dump_gctx_prep(tsd_tsdn(tsd), gctx.p, gctxs);
}
/*
* Iterate over tdatas, and for the non-expired ones snapshot their tctx
* stats and merge them into the associated gctx's.
*/
memset(cnt_all, 0, sizeof(prof_cnt_t));
prof_tdata_merge_iter_arg_t prof_tdata_merge_iter_arg = {tsd_tsdn(tsd),
cnt_all};
malloc_mutex_lock(tsd_tsdn(tsd), &tdatas_mtx);
tdata_tree_iter(&tdatas, NULL, prof_tdata_merge_iter,
&prof_tdata_merge_iter_arg);
malloc_mutex_unlock(tsd_tsdn(tsd), &tdatas_mtx);
/* Merge tctx stats into gctx's. */
*leak_ngctx = 0;
prof_gctx_merge_iter_arg_t prof_gctx_merge_iter_arg = {tsd_tsdn(tsd),
leak_ngctx};
gctx_tree_iter(gctxs, NULL, prof_gctx_merge_iter,
&prof_gctx_merge_iter_arg);
prof_leave(tsd, tdata);
}
void
prof_dump_impl(tsd_t *tsd, write_cb_t *prof_dump_write, void *cbopaque,
prof_tdata_t *tdata, bool leakcheck) {
malloc_mutex_assert_owner(tsd_tsdn(tsd), &prof_dump_mtx);
prof_cnt_t cnt_all;
size_t leak_ngctx;
prof_gctx_tree_t gctxs;
prof_dump_prep(tsd, tdata, &cnt_all, &leak_ngctx, &gctxs);
prof_dump_iter_arg_t prof_dump_iter_arg = {tsd_tsdn(tsd),
prof_dump_write, cbopaque};
prof_dump_header(&prof_dump_iter_arg, &cnt_all);
gctx_tree_iter(&gctxs, NULL, prof_gctx_dump_iter, &prof_dump_iter_arg);
prof_gctx_finish(tsd, &gctxs);
if (leakcheck) {
prof_leakcheck(&cnt_all, leak_ngctx);
}
}
/* Used in unit tests. */
void
prof_cnt_all(prof_cnt_t *cnt_all) {
tsd_t *tsd = tsd_fetch();
prof_tdata_t *tdata = prof_tdata_get(tsd, false);
if (tdata == NULL) {
memset(cnt_all, 0, sizeof(prof_cnt_t));
} else {
size_t leak_ngctx;
prof_gctx_tree_t gctxs;
prof_dump_prep(tsd, tdata, cnt_all, &leak_ngctx, &gctxs);
prof_gctx_finish(tsd, &gctxs);
}
}
void
prof_bt_hash(const void *key, size_t r_hash[2]) {
prof_bt_t *bt = (prof_bt_t *)key;
cassert(config_prof);
hash(bt->vec, bt->len * sizeof(void *), 0x94122f33U, r_hash);
}
bool
prof_bt_keycomp(const void *k1, const void *k2) {
const prof_bt_t *bt1 = (prof_bt_t *)k1;
const prof_bt_t *bt2 = (prof_bt_t *)k2;
cassert(config_prof);
if (bt1->len != bt2->len) {
return false;
}
return (memcmp(bt1->vec, bt2->vec, bt1->len * sizeof(void *)) == 0);
}
prof_tdata_t *
prof_tdata_init_impl(tsd_t *tsd, uint64_t thr_uid, uint64_t thr_discrim,
char *thread_name, bool active) {
assert(tsd_reentrancy_level_get(tsd) == 0);
prof_tdata_t *tdata;
cassert(config_prof);
/* Initialize an empty cache for this thread. */
size_t tdata_sz = ALIGNMENT_CEILING(sizeof(prof_tdata_t), QUANTUM);
size_t total_sz = tdata_sz + sizeof(void *) * opt_prof_bt_max;
tdata = (prof_tdata_t *)iallocztm(tsd_tsdn(tsd),
total_sz, sz_size2index(total_sz), false, NULL, true,
arena_get(TSDN_NULL, 0, true), true);
if (tdata == NULL) {
return NULL;
}
tdata->vec = (void **)((byte_t *)tdata + tdata_sz);
tdata->lock = prof_tdata_mutex_choose(thr_uid);
tdata->thr_uid = thr_uid;
tdata->thr_discrim = thr_discrim;
tdata->attached = true;
tdata->expired = false;
tdata->tctx_uid_next = 0;
if (thread_name == NULL) {
prof_thread_name_clear(tdata);
} else {
prof_thread_name_write_tdata(tdata, thread_name);
}
prof_thread_name_assert(tdata);
if (ckh_new(tsd, &tdata->bt2tctx, PROF_CKH_MINITEMS, prof_bt_hash,
prof_bt_keycomp)) {
idalloctm(tsd_tsdn(tsd), tdata, NULL, NULL, true, true);
return NULL;
}
tdata->enq = false;
tdata->enq_idump = false;
tdata->enq_gdump = false;
tdata->dumping = false;
tdata->active = active;
malloc_mutex_lock(tsd_tsdn(tsd), &tdatas_mtx);
tdata_tree_insert(&tdatas, tdata);
malloc_mutex_unlock(tsd_tsdn(tsd), &tdatas_mtx);
return tdata;
}
static bool
prof_tdata_should_destroy_unlocked(prof_tdata_t *tdata, bool even_if_attached) {
if (tdata->attached && !even_if_attached) {
return false;
}
if (ckh_count(&tdata->bt2tctx) != 0) {
return false;
}
return true;
}
static bool
prof_tdata_should_destroy(tsdn_t *tsdn, prof_tdata_t *tdata,
bool even_if_attached) {
malloc_mutex_assert_owner(tsdn, tdata->lock);
return prof_tdata_should_destroy_unlocked(tdata, even_if_attached);
}
static void
prof_tdata_destroy_locked(tsd_t *tsd, prof_tdata_t *tdata,
bool even_if_attached) {
malloc_mutex_assert_owner(tsd_tsdn(tsd), &tdatas_mtx);
malloc_mutex_assert_not_owner(tsd_tsdn(tsd), tdata->lock);
tdata_tree_remove(&tdatas, tdata);
assert(prof_tdata_should_destroy_unlocked(tdata, even_if_attached));
ckh_delete(tsd, &tdata->bt2tctx);
idalloctm(tsd_tsdn(tsd), tdata, NULL, NULL, true, true);
}
static void
prof_tdata_destroy(tsd_t *tsd, prof_tdata_t *tdata, bool even_if_attached) {
malloc_mutex_lock(tsd_tsdn(tsd), &tdatas_mtx);
prof_tdata_destroy_locked(tsd, tdata, even_if_attached);
malloc_mutex_unlock(tsd_tsdn(tsd), &tdatas_mtx);
}
void
prof_tdata_detach(tsd_t *tsd, prof_tdata_t *tdata) {
bool destroy_tdata;
malloc_mutex_lock(tsd_tsdn(tsd), tdata->lock);
if (tdata->attached) {
destroy_tdata = prof_tdata_should_destroy(tsd_tsdn(tsd), tdata,
true);
/*
* Only detach if !destroy_tdata, because detaching would allow
* another thread to win the race to destroy tdata.
*/
if (!destroy_tdata) {
tdata->attached = false;
}
tsd_prof_tdata_set(tsd, NULL);
} else {
destroy_tdata = false;
}
malloc_mutex_unlock(tsd_tsdn(tsd), tdata->lock);
if (destroy_tdata) {
prof_tdata_destroy(tsd, tdata, true);
}
}
static bool
prof_tdata_expire(tsdn_t *tsdn, prof_tdata_t *tdata) {
bool destroy_tdata;
malloc_mutex_lock(tsdn, tdata->lock);
if (!tdata->expired) {
tdata->expired = true;
destroy_tdata = prof_tdata_should_destroy(tsdn, tdata, false);
} else {
destroy_tdata = false;
}
malloc_mutex_unlock(tsdn, tdata->lock);
return destroy_tdata;
}
static prof_tdata_t *
prof_tdata_reset_iter(prof_tdata_tree_t *tdatas_ptr, prof_tdata_t *tdata,
void *arg) {
tsdn_t *tsdn = (tsdn_t *)arg;
return (prof_tdata_expire(tsdn, tdata) ? tdata : NULL);
}
void
prof_reset(tsd_t *tsd, size_t lg_sample) {
prof_tdata_t *next;
assert(lg_sample < (sizeof(uint64_t) << 3));
malloc_mutex_lock(tsd_tsdn(tsd), &prof_dump_mtx);
malloc_mutex_lock(tsd_tsdn(tsd), &tdatas_mtx);
lg_prof_sample = lg_sample;
prof_unbias_map_init();
next = NULL;
do {
prof_tdata_t *to_destroy = tdata_tree_iter(&tdatas, next,
prof_tdata_reset_iter, (void *)tsd);
if (to_destroy != NULL) {
next = tdata_tree_next(&tdatas, to_destroy);
prof_tdata_destroy_locked(tsd, to_destroy, false);
} else {
next = NULL;
}
} while (next != NULL);
malloc_mutex_unlock(tsd_tsdn(tsd), &tdatas_mtx);
malloc_mutex_unlock(tsd_tsdn(tsd), &prof_dump_mtx);
}
static bool
prof_tctx_should_destroy(tsd_t *tsd, prof_tctx_t *tctx) {
malloc_mutex_assert_owner(tsd_tsdn(tsd), tctx->tdata->lock);
if (opt_prof_accum) {
return false;
}
if (tctx->cnts.curobjs != 0) {
return false;
}
if (tctx->prepared) {
return false;
}
if (tctx->recent_count != 0) {
return false;
}
return true;
}
static void
prof_tctx_destroy(tsd_t *tsd, prof_tctx_t *tctx) {
malloc_mutex_assert_owner(tsd_tsdn(tsd), tctx->tdata->lock);
assert(tctx->cnts.curobjs == 0);
assert(tctx->cnts.curbytes == 0);
/*
* These asserts are not correct -- see the comment about races in
* prof.c
*
* assert(tctx->cnts.curobjs_shifted_unbiased == 0);
* assert(tctx->cnts.curbytes_unbiased == 0);
*/
assert(!opt_prof_accum);
assert(tctx->cnts.accumobjs == 0);
assert(tctx->cnts.accumbytes == 0);
/*
* These ones are, since accumbyte counts never go down. Either
* prof_accum is off (in which case these should never have changed from
* their initial value of zero), or it's on (in which case we shouldn't
* be destroying this tctx).
*/
assert(tctx->cnts.accumobjs_shifted_unbiased == 0);
assert(tctx->cnts.accumbytes_unbiased == 0);
prof_gctx_t *gctx = tctx->gctx;
{
prof_tdata_t *tdata = tctx->tdata;
tctx->tdata = NULL;
ckh_remove(tsd, &tdata->bt2tctx, &gctx->bt, NULL, NULL);
bool destroy_tdata = prof_tdata_should_destroy(tsd_tsdn(tsd),
tdata, false);
malloc_mutex_unlock(tsd_tsdn(tsd), tdata->lock);
if (destroy_tdata) {
prof_tdata_destroy(tsd, tdata, false);
}
}
bool destroy_tctx, destroy_gctx;
malloc_mutex_lock(tsd_tsdn(tsd), gctx->lock);
switch (tctx->state) {
case prof_tctx_state_nominal:
tctx_tree_remove(&gctx->tctxs, tctx);
destroy_tctx = true;
if (prof_gctx_should_destroy(gctx)) {
/*
* Increment gctx->nlimbo in order to keep another
* thread from winning the race to destroy gctx while
* this one has gctx->lock dropped. Without this, it
* would be possible for another thread to:
*
* 1) Sample an allocation associated with gctx.
* 2) Deallocate the sampled object.
* 3) Successfully prof_gctx_try_destroy(gctx).
*
* The result would be that gctx no longer exists by the
* time this thread accesses it in
* prof_gctx_try_destroy().
*/
gctx->nlimbo++;
destroy_gctx = true;
} else {
destroy_gctx = false;
}
break;
case prof_tctx_state_dumping:
/*
* A dumping thread needs tctx to remain valid until dumping
* has finished. Change state such that the dumping thread will
* complete destruction during a late dump iteration phase.
*/
tctx->state = prof_tctx_state_purgatory;
destroy_tctx = false;
destroy_gctx = false;
break;
case prof_tctx_state_initializing:
case prof_tctx_state_purgatory:
default:
not_reached();
destroy_tctx = false;
destroy_gctx = false;
}
malloc_mutex_unlock(tsd_tsdn(tsd), gctx->lock);
if (destroy_gctx) {
prof_gctx_try_destroy(tsd, prof_tdata_get(tsd, false), gctx);
}
if (destroy_tctx) {
idalloctm(tsd_tsdn(tsd), tctx, NULL, NULL, true, true);
}
}
void
prof_tctx_try_destroy(tsd_t *tsd, prof_tctx_t *tctx) {
malloc_mutex_assert_owner(tsd_tsdn(tsd), tctx->tdata->lock);
if (prof_tctx_should_destroy(tsd, tctx)) {
/* tctx->tdata->lock will be released in prof_tctx_destroy(). */
prof_tctx_destroy(tsd, tctx);
} else {
malloc_mutex_unlock(tsd_tsdn(tsd), tctx->tdata->lock);
}
}
/******************************************************************************/