blob: 7a6d5d569a484a7fb0ee1e3f1b9f87853c71fe86 [file] [log] [blame]
#include "jemalloc/internal/jemalloc_preamble.h"
#include "jemalloc/internal/jemalloc_internal_includes.h"
#include "jemalloc/internal/ctl.h"
#include "jemalloc/internal/assert.h"
#include "jemalloc/internal/mutex.h"
#include "jemalloc/internal/counter.h"
#include "jemalloc/internal/prof_data.h"
#include "jemalloc/internal/prof_log.h"
#include "jemalloc/internal/prof_recent.h"
#include "jemalloc/internal/prof_stats.h"
#include "jemalloc/internal/prof_sys.h"
#include "jemalloc/internal/prof_hook.h"
#include "jemalloc/internal/thread_event.h"
/*
* This file implements the profiling "APIs" needed by other parts of jemalloc,
* and also manages the relevant "operational" data, mainly options and mutexes;
* the core profiling data structures are encapsulated in prof_data.c.
*/
/******************************************************************************/
/* Data. */
bool opt_prof = false;
bool opt_prof_active = true;
bool opt_prof_thread_active_init = true;
size_t opt_lg_prof_sample = LG_PROF_SAMPLE_DEFAULT;
ssize_t opt_lg_prof_interval = LG_PROF_INTERVAL_DEFAULT;
bool opt_prof_gdump = false;
bool opt_prof_final = false;
bool opt_prof_leak = false;
bool opt_prof_leak_error = false;
bool opt_prof_accum = false;
char opt_prof_prefix[PROF_DUMP_FILENAME_LEN];
bool opt_prof_sys_thread_name = false;
bool opt_prof_unbias = true;
/* Accessed via prof_sample_event_handler(). */
static counter_accum_t prof_idump_accumulated;
/*
* Initialized as opt_prof_active, and accessed via
* prof_active_[gs]et{_unlocked,}().
*/
bool prof_active_state;
static malloc_mutex_t prof_active_mtx;
/*
* Initialized as opt_prof_thread_active_init, and accessed via
* prof_thread_active_init_[gs]et().
*/
static bool prof_thread_active_init;
static malloc_mutex_t prof_thread_active_init_mtx;
/*
* Initialized as opt_prof_gdump, and accessed via
* prof_gdump_[gs]et{_unlocked,}().
*/
bool prof_gdump_val;
static malloc_mutex_t prof_gdump_mtx;
uint64_t prof_interval = 0;
size_t lg_prof_sample;
static uint64_t next_thr_uid;
static malloc_mutex_t next_thr_uid_mtx;
/* Do not dump any profiles until bootstrapping is complete. */
bool prof_booted = false;
/* Logically a prof_backtrace_hook_t. */
atomic_p_t prof_backtrace_hook;
/* Logically a prof_dump_hook_t. */
atomic_p_t prof_dump_hook;
/******************************************************************************/
void
prof_alloc_rollback(tsd_t *tsd, prof_tctx_t *tctx) {
cassert(config_prof);
if (tsd_reentrancy_level_get(tsd) > 0) {
assert((uintptr_t)tctx == (uintptr_t)1U);
return;
}
if ((uintptr_t)tctx > (uintptr_t)1U) {
malloc_mutex_lock(tsd_tsdn(tsd), tctx->tdata->lock);
tctx->prepared = false;
prof_tctx_try_destroy(tsd, tctx);
}
}
void
prof_malloc_sample_object(tsd_t *tsd, const void *ptr, size_t size,
size_t usize, prof_tctx_t *tctx) {
cassert(config_prof);
if (opt_prof_sys_thread_name) {
prof_sys_thread_name_fetch(tsd);
}
edata_t *edata = emap_edata_lookup(tsd_tsdn(tsd), &arena_emap_global,
ptr);
prof_info_set(tsd, edata, tctx, size);
szind_t szind = sz_size2index(usize);
malloc_mutex_lock(tsd_tsdn(tsd), tctx->tdata->lock);
/*
* We need to do these map lookups while holding the lock, to avoid the
* possibility of races with prof_reset calls, which update the map and
* then acquire the lock. This actually still leaves a data race on the
* contents of the unbias map, but we have not yet gone through and
* atomic-ified the prof module, and compilers are not yet causing us
* issues. The key thing is to make sure that, if we read garbage data,
* the prof_reset call is about to mark our tctx as expired before any
* dumping of our corrupted output is attempted.
*/
size_t shifted_unbiased_cnt = prof_shifted_unbiased_cnt[szind];
size_t unbiased_bytes = prof_unbiased_sz[szind];
tctx->cnts.curobjs++;
tctx->cnts.curobjs_shifted_unbiased += shifted_unbiased_cnt;
tctx->cnts.curbytes += usize;
tctx->cnts.curbytes_unbiased += unbiased_bytes;
if (opt_prof_accum) {
tctx->cnts.accumobjs++;
tctx->cnts.accumobjs_shifted_unbiased += shifted_unbiased_cnt;
tctx->cnts.accumbytes += usize;
tctx->cnts.accumbytes_unbiased += unbiased_bytes;
}
bool record_recent = prof_recent_alloc_prepare(tsd, tctx);
tctx->prepared = false;
malloc_mutex_unlock(tsd_tsdn(tsd), tctx->tdata->lock);
if (record_recent) {
assert(tctx == edata_prof_tctx_get(edata));
prof_recent_alloc(tsd, edata, size, usize);
}
if (opt_prof_stats) {
prof_stats_inc(tsd, szind, size);
}
}
void
prof_free_sampled_object(tsd_t *tsd, size_t usize, prof_info_t *prof_info) {
cassert(config_prof);
assert(prof_info != NULL);
prof_tctx_t *tctx = prof_info->alloc_tctx;
assert((uintptr_t)tctx > (uintptr_t)1U);
szind_t szind = sz_size2index(usize);
malloc_mutex_lock(tsd_tsdn(tsd), tctx->tdata->lock);
assert(tctx->cnts.curobjs > 0);
assert(tctx->cnts.curbytes >= usize);
/*
* It's not correct to do equivalent asserts for unbiased bytes, because
* of the potential for races with prof.reset calls. The map contents
* should really be atomic, but we have not atomic-ified the prof module
* yet.
*/
tctx->cnts.curobjs--;
tctx->cnts.curobjs_shifted_unbiased -= prof_shifted_unbiased_cnt[szind];
tctx->cnts.curbytes -= usize;
tctx->cnts.curbytes_unbiased -= prof_unbiased_sz[szind];
prof_try_log(tsd, usize, prof_info);
prof_tctx_try_destroy(tsd, tctx);
if (opt_prof_stats) {
prof_stats_dec(tsd, szind, prof_info->alloc_size);
}
}
prof_tctx_t *
prof_tctx_create(tsd_t *tsd) {
if (!tsd_nominal(tsd) || tsd_reentrancy_level_get(tsd) > 0) {
return NULL;
}
prof_tdata_t *tdata = prof_tdata_get(tsd, true);
if (tdata == NULL) {
return NULL;
}
prof_bt_t bt;
bt_init(&bt, tdata->vec);
prof_backtrace(tsd, &bt);
return prof_lookup(tsd, &bt);
}
/*
* The bodies of this function and prof_leakcheck() are compiled out unless heap
* profiling is enabled, so that it is possible to compile jemalloc with
* floating point support completely disabled. Avoiding floating point code is
* important on memory-constrained systems, but it also enables a workaround for
* versions of glibc that don't properly save/restore floating point registers
* during dynamic lazy symbol loading (which internally calls into whatever
* malloc implementation happens to be integrated into the application). Note
* that some compilers (e.g. gcc 4.8) may use floating point registers for fast
* memory moves, so jemalloc must be compiled with such optimizations disabled
* (e.g.
* -mno-sse) in order for the workaround to be complete.
*/
uint64_t
prof_sample_new_event_wait(tsd_t *tsd) {
#ifdef JEMALLOC_PROF
if (lg_prof_sample == 0) {
return TE_MIN_START_WAIT;
}
/*
* Compute sample interval as a geometrically distributed random
* variable with mean (2^lg_prof_sample).
*
* __ __
* | log(u) | 1
* bytes_until_sample = | -------- |, where p = ---------------
* | log(1-p) | lg_prof_sample
* 2
*
* For more information on the math, see:
*
* Non-Uniform Random Variate Generation
* Luc Devroye
* Springer-Verlag, New York, 1986
* pp 500
* (http://luc.devroye.org/rnbookindex.html)
*
* In the actual computation, there's a non-zero probability that our
* pseudo random number generator generates an exact 0, and to avoid
* log(0), we set u to 1.0 in case r is 0. Therefore u effectively is
* uniformly distributed in (0, 1] instead of [0, 1). Further, rather
* than taking the ceiling, we take the floor and then add 1, since
* otherwise bytes_until_sample would be 0 if u is exactly 1.0.
*/
uint64_t r = prng_lg_range_u64(tsd_prng_statep_get(tsd), 53);
double u = (r == 0U) ? 1.0 : (double)r * (1.0/9007199254740992.0L);
return (uint64_t)(log(u) /
log(1.0 - (1.0 / (double)((uint64_t)1U << lg_prof_sample))))
+ (uint64_t)1U;
#else
not_reached();
return TE_MAX_START_WAIT;
#endif
}
uint64_t
prof_sample_postponed_event_wait(tsd_t *tsd) {
/*
* The postponed wait time for prof sample event is computed as if we
* want a new wait time (i.e. as if the event were triggered). If we
* instead postpone to the immediate next allocation, like how we're
* handling the other events, then we can have sampling bias, if e.g.
* the allocation immediately following a reentrancy always comes from
* the same stack trace.
*/
return prof_sample_new_event_wait(tsd);
}
void
prof_sample_event_handler(tsd_t *tsd, uint64_t elapsed) {
cassert(config_prof);
assert(elapsed > 0 && elapsed != TE_INVALID_ELAPSED);
if (prof_interval == 0 || !prof_active_get_unlocked()) {
return;
}
if (counter_accum(tsd_tsdn(tsd), &prof_idump_accumulated, elapsed)) {
prof_idump(tsd_tsdn(tsd));
}
}
static void
prof_fdump(void) {
tsd_t *tsd;
cassert(config_prof);
assert(opt_prof_final);
if (!prof_booted) {
return;
}
tsd = tsd_fetch();
assert(tsd_reentrancy_level_get(tsd) == 0);
prof_fdump_impl(tsd);
}
static bool
prof_idump_accum_init(void) {
cassert(config_prof);
return counter_accum_init(&prof_idump_accumulated, prof_interval);
}
void
prof_idump(tsdn_t *tsdn) {
tsd_t *tsd;
prof_tdata_t *tdata;
cassert(config_prof);
if (!prof_booted || tsdn_null(tsdn) || !prof_active_get_unlocked()) {
return;
}
tsd = tsdn_tsd(tsdn);
if (tsd_reentrancy_level_get(tsd) > 0) {
return;
}
tdata = prof_tdata_get(tsd, true);
if (tdata == NULL) {
return;
}
if (tdata->enq) {
tdata->enq_idump = true;
return;
}
prof_idump_impl(tsd);
}
bool
prof_mdump(tsd_t *tsd, const char *filename) {
cassert(config_prof);
assert(tsd_reentrancy_level_get(tsd) == 0);
if (!opt_prof || !prof_booted) {
return true;
}
return prof_mdump_impl(tsd, filename);
}
void
prof_gdump(tsdn_t *tsdn) {
tsd_t *tsd;
prof_tdata_t *tdata;
cassert(config_prof);
if (!prof_booted || tsdn_null(tsdn) || !prof_active_get_unlocked()) {
return;
}
tsd = tsdn_tsd(tsdn);
if (tsd_reentrancy_level_get(tsd) > 0) {
return;
}
tdata = prof_tdata_get(tsd, false);
if (tdata == NULL) {
return;
}
if (tdata->enq) {
tdata->enq_gdump = true;
return;
}
prof_gdump_impl(tsd);
}
static uint64_t
prof_thr_uid_alloc(tsdn_t *tsdn) {
uint64_t thr_uid;
malloc_mutex_lock(tsdn, &next_thr_uid_mtx);
thr_uid = next_thr_uid;
next_thr_uid++;
malloc_mutex_unlock(tsdn, &next_thr_uid_mtx);
return thr_uid;
}
prof_tdata_t *
prof_tdata_init(tsd_t *tsd) {
return prof_tdata_init_impl(tsd, prof_thr_uid_alloc(tsd_tsdn(tsd)), 0,
NULL, prof_thread_active_init_get(tsd_tsdn(tsd)));
}
prof_tdata_t *
prof_tdata_reinit(tsd_t *tsd, prof_tdata_t *tdata) {
uint64_t thr_uid = tdata->thr_uid;
uint64_t thr_discrim = tdata->thr_discrim + 1;
char *thread_name = (tdata->thread_name != NULL) ?
prof_thread_name_alloc(tsd, tdata->thread_name) : NULL;
bool active = tdata->active;
prof_tdata_detach(tsd, tdata);
return prof_tdata_init_impl(tsd, thr_uid, thr_discrim, thread_name,
active);
}
void
prof_tdata_cleanup(tsd_t *tsd) {
prof_tdata_t *tdata;
if (!config_prof) {
return;
}
tdata = tsd_prof_tdata_get(tsd);
if (tdata != NULL) {
prof_tdata_detach(tsd, tdata);
}
}
bool
prof_active_get(tsdn_t *tsdn) {
bool prof_active_current;
prof_active_assert();
malloc_mutex_lock(tsdn, &prof_active_mtx);
prof_active_current = prof_active_state;
malloc_mutex_unlock(tsdn, &prof_active_mtx);
return prof_active_current;
}
bool
prof_active_set(tsdn_t *tsdn, bool active) {
bool prof_active_old;
prof_active_assert();
malloc_mutex_lock(tsdn, &prof_active_mtx);
prof_active_old = prof_active_state;
prof_active_state = active;
malloc_mutex_unlock(tsdn, &prof_active_mtx);
prof_active_assert();
return prof_active_old;
}
const char *
prof_thread_name_get(tsd_t *tsd) {
assert(tsd_reentrancy_level_get(tsd) == 0);
prof_tdata_t *tdata;
tdata = prof_tdata_get(tsd, true);
if (tdata == NULL) {
return "";
}
return (tdata->thread_name != NULL ? tdata->thread_name : "");
}
int
prof_thread_name_set(tsd_t *tsd, const char *thread_name) {
if (opt_prof_sys_thread_name) {
return ENOENT;
} else {
return prof_thread_name_set_impl(tsd, thread_name);
}
}
bool
prof_thread_active_get(tsd_t *tsd) {
assert(tsd_reentrancy_level_get(tsd) == 0);
prof_tdata_t *tdata;
tdata = prof_tdata_get(tsd, true);
if (tdata == NULL) {
return false;
}
return tdata->active;
}
bool
prof_thread_active_set(tsd_t *tsd, bool active) {
assert(tsd_reentrancy_level_get(tsd) == 0);
prof_tdata_t *tdata;
tdata = prof_tdata_get(tsd, true);
if (tdata == NULL) {
return true;
}
tdata->active = active;
return false;
}
bool
prof_thread_active_init_get(tsdn_t *tsdn) {
bool active_init;
malloc_mutex_lock(tsdn, &prof_thread_active_init_mtx);
active_init = prof_thread_active_init;
malloc_mutex_unlock(tsdn, &prof_thread_active_init_mtx);
return active_init;
}
bool
prof_thread_active_init_set(tsdn_t *tsdn, bool active_init) {
bool active_init_old;
malloc_mutex_lock(tsdn, &prof_thread_active_init_mtx);
active_init_old = prof_thread_active_init;
prof_thread_active_init = active_init;
malloc_mutex_unlock(tsdn, &prof_thread_active_init_mtx);
return active_init_old;
}
bool
prof_gdump_get(tsdn_t *tsdn) {
bool prof_gdump_current;
malloc_mutex_lock(tsdn, &prof_gdump_mtx);
prof_gdump_current = prof_gdump_val;
malloc_mutex_unlock(tsdn, &prof_gdump_mtx);
return prof_gdump_current;
}
bool
prof_gdump_set(tsdn_t *tsdn, bool gdump) {
bool prof_gdump_old;
malloc_mutex_lock(tsdn, &prof_gdump_mtx);
prof_gdump_old = prof_gdump_val;
prof_gdump_val = gdump;
malloc_mutex_unlock(tsdn, &prof_gdump_mtx);
return prof_gdump_old;
}
void
prof_backtrace_hook_set(prof_backtrace_hook_t hook) {
atomic_store_p(&prof_backtrace_hook, hook, ATOMIC_RELEASE);
}
prof_backtrace_hook_t
prof_backtrace_hook_get() {
return (prof_backtrace_hook_t)atomic_load_p(&prof_backtrace_hook,
ATOMIC_ACQUIRE);
}
void
prof_dump_hook_set(prof_dump_hook_t hook) {
atomic_store_p(&prof_dump_hook, hook, ATOMIC_RELEASE);
}
prof_dump_hook_t
prof_dump_hook_get() {
return (prof_dump_hook_t)atomic_load_p(&prof_dump_hook,
ATOMIC_ACQUIRE);
}
void
prof_boot0(void) {
cassert(config_prof);
memcpy(opt_prof_prefix, PROF_PREFIX_DEFAULT,
sizeof(PROF_PREFIX_DEFAULT));
}
void
prof_boot1(void) {
cassert(config_prof);
/*
* opt_prof must be in its final state before any arenas are
* initialized, so this function must be executed early.
*/
if (opt_prof_leak_error && !opt_prof_leak) {
opt_prof_leak = true;
}
if (opt_prof_leak && !opt_prof) {
/*
* Enable opt_prof, but in such a way that profiles are never
* automatically dumped.
*/
opt_prof = true;
opt_prof_gdump = false;
} else if (opt_prof) {
if (opt_lg_prof_interval >= 0) {
prof_interval = (((uint64_t)1U) <<
opt_lg_prof_interval);
}
}
}
bool
prof_boot2(tsd_t *tsd, base_t *base) {
cassert(config_prof);
/*
* Initialize the global mutexes unconditionally to maintain correct
* stats when opt_prof is false.
*/
if (malloc_mutex_init(&prof_active_mtx, "prof_active",
WITNESS_RANK_PROF_ACTIVE, malloc_mutex_rank_exclusive)) {
return true;
}
if (malloc_mutex_init(&prof_gdump_mtx, "prof_gdump",
WITNESS_RANK_PROF_GDUMP, malloc_mutex_rank_exclusive)) {
return true;
}
if (malloc_mutex_init(&prof_thread_active_init_mtx,
"prof_thread_active_init", WITNESS_RANK_PROF_THREAD_ACTIVE_INIT,
malloc_mutex_rank_exclusive)) {
return true;
}
if (malloc_mutex_init(&bt2gctx_mtx, "prof_bt2gctx",
WITNESS_RANK_PROF_BT2GCTX, malloc_mutex_rank_exclusive)) {
return true;
}
if (malloc_mutex_init(&tdatas_mtx, "prof_tdatas",
WITNESS_RANK_PROF_TDATAS, malloc_mutex_rank_exclusive)) {
return true;
}
if (malloc_mutex_init(&next_thr_uid_mtx, "prof_next_thr_uid",
WITNESS_RANK_PROF_NEXT_THR_UID, malloc_mutex_rank_exclusive)) {
return true;
}
if (malloc_mutex_init(&prof_stats_mtx, "prof_stats",
WITNESS_RANK_PROF_STATS, malloc_mutex_rank_exclusive)) {
return true;
}
if (malloc_mutex_init(&prof_dump_filename_mtx,
"prof_dump_filename", WITNESS_RANK_PROF_DUMP_FILENAME,
malloc_mutex_rank_exclusive)) {
return true;
}
if (malloc_mutex_init(&prof_dump_mtx, "prof_dump",
WITNESS_RANK_PROF_DUMP, malloc_mutex_rank_exclusive)) {
return true;
}
if (opt_prof) {
lg_prof_sample = opt_lg_prof_sample;
prof_unbias_map_init();
prof_active_state = opt_prof_active;
prof_gdump_val = opt_prof_gdump;
prof_thread_active_init = opt_prof_thread_active_init;
if (prof_data_init(tsd)) {
return true;
}
next_thr_uid = 0;
if (prof_idump_accum_init()) {
return true;
}
if (opt_prof_final && opt_prof_prefix[0] != '\0' &&
atexit(prof_fdump) != 0) {
malloc_write("<jemalloc>: Error in atexit()\n");
if (opt_abort) {
abort();
}
}
if (prof_log_init(tsd)) {
return true;
}
if (prof_recent_init()) {
return true;
}
prof_base = base;
gctx_locks = (malloc_mutex_t *)base_alloc(tsd_tsdn(tsd), base,
PROF_NCTX_LOCKS * sizeof(malloc_mutex_t), CACHELINE);
if (gctx_locks == NULL) {
return true;
}
for (unsigned i = 0; i < PROF_NCTX_LOCKS; i++) {
if (malloc_mutex_init(&gctx_locks[i], "prof_gctx",
WITNESS_RANK_PROF_GCTX,
malloc_mutex_rank_exclusive)) {
return true;
}
}
tdata_locks = (malloc_mutex_t *)base_alloc(tsd_tsdn(tsd), base,
PROF_NTDATA_LOCKS * sizeof(malloc_mutex_t), CACHELINE);
if (tdata_locks == NULL) {
return true;
}
for (unsigned i = 0; i < PROF_NTDATA_LOCKS; i++) {
if (malloc_mutex_init(&tdata_locks[i], "prof_tdata",
WITNESS_RANK_PROF_TDATA,
malloc_mutex_rank_exclusive)) {
return true;
}
}
prof_unwind_init();
prof_hooks_init();
}
prof_booted = true;
return false;
}
void
prof_prefork0(tsdn_t *tsdn) {
if (config_prof && opt_prof) {
unsigned i;
malloc_mutex_prefork(tsdn, &prof_dump_mtx);
malloc_mutex_prefork(tsdn, &bt2gctx_mtx);
malloc_mutex_prefork(tsdn, &tdatas_mtx);
for (i = 0; i < PROF_NTDATA_LOCKS; i++) {
malloc_mutex_prefork(tsdn, &tdata_locks[i]);
}
malloc_mutex_prefork(tsdn, &log_mtx);
for (i = 0; i < PROF_NCTX_LOCKS; i++) {
malloc_mutex_prefork(tsdn, &gctx_locks[i]);
}
malloc_mutex_prefork(tsdn, &prof_recent_dump_mtx);
}
}
void
prof_prefork1(tsdn_t *tsdn) {
if (config_prof && opt_prof) {
counter_prefork(tsdn, &prof_idump_accumulated);
malloc_mutex_prefork(tsdn, &prof_active_mtx);
malloc_mutex_prefork(tsdn, &prof_dump_filename_mtx);
malloc_mutex_prefork(tsdn, &prof_gdump_mtx);
malloc_mutex_prefork(tsdn, &prof_recent_alloc_mtx);
malloc_mutex_prefork(tsdn, &prof_stats_mtx);
malloc_mutex_prefork(tsdn, &next_thr_uid_mtx);
malloc_mutex_prefork(tsdn, &prof_thread_active_init_mtx);
}
}
void
prof_postfork_parent(tsdn_t *tsdn) {
if (config_prof && opt_prof) {
unsigned i;
malloc_mutex_postfork_parent(tsdn,
&prof_thread_active_init_mtx);
malloc_mutex_postfork_parent(tsdn, &next_thr_uid_mtx);
malloc_mutex_postfork_parent(tsdn, &prof_stats_mtx);
malloc_mutex_postfork_parent(tsdn, &prof_recent_alloc_mtx);
malloc_mutex_postfork_parent(tsdn, &prof_gdump_mtx);
malloc_mutex_postfork_parent(tsdn, &prof_dump_filename_mtx);
malloc_mutex_postfork_parent(tsdn, &prof_active_mtx);
counter_postfork_parent(tsdn, &prof_idump_accumulated);
malloc_mutex_postfork_parent(tsdn, &prof_recent_dump_mtx);
for (i = 0; i < PROF_NCTX_LOCKS; i++) {
malloc_mutex_postfork_parent(tsdn, &gctx_locks[i]);
}
malloc_mutex_postfork_parent(tsdn, &log_mtx);
for (i = 0; i < PROF_NTDATA_LOCKS; i++) {
malloc_mutex_postfork_parent(tsdn, &tdata_locks[i]);
}
malloc_mutex_postfork_parent(tsdn, &tdatas_mtx);
malloc_mutex_postfork_parent(tsdn, &bt2gctx_mtx);
malloc_mutex_postfork_parent(tsdn, &prof_dump_mtx);
}
}
void
prof_postfork_child(tsdn_t *tsdn) {
if (config_prof && opt_prof) {
unsigned i;
malloc_mutex_postfork_child(tsdn, &prof_thread_active_init_mtx);
malloc_mutex_postfork_child(tsdn, &next_thr_uid_mtx);
malloc_mutex_postfork_child(tsdn, &prof_stats_mtx);
malloc_mutex_postfork_child(tsdn, &prof_recent_alloc_mtx);
malloc_mutex_postfork_child(tsdn, &prof_gdump_mtx);
malloc_mutex_postfork_child(tsdn, &prof_dump_filename_mtx);
malloc_mutex_postfork_child(tsdn, &prof_active_mtx);
counter_postfork_child(tsdn, &prof_idump_accumulated);
malloc_mutex_postfork_child(tsdn, &prof_recent_dump_mtx);
for (i = 0; i < PROF_NCTX_LOCKS; i++) {
malloc_mutex_postfork_child(tsdn, &gctx_locks[i]);
}
malloc_mutex_postfork_child(tsdn, &log_mtx);
for (i = 0; i < PROF_NTDATA_LOCKS; i++) {
malloc_mutex_postfork_child(tsdn, &tdata_locks[i]);
}
malloc_mutex_postfork_child(tsdn, &tdatas_mtx);
malloc_mutex_postfork_child(tsdn, &bt2gctx_mtx);
malloc_mutex_postfork_child(tsdn, &prof_dump_mtx);
}
}
/******************************************************************************/