blob: 3c0fc1da33a641ab4d538c222b96ca2930c1caf1 [file] [log] [blame]
#ifndef JEMALLOC_INTERNAL_SIZE_H
#define JEMALLOC_INTERNAL_SIZE_H
#include "jemalloc/internal/bit_util.h"
#include "jemalloc/internal/pages.h"
#include "jemalloc/internal/sc.h"
#include "jemalloc/internal/util.h"
/*
* sz module: Size computations.
*
* Some abbreviations used here:
* p: Page
* ind: Index
* s, sz: Size
* u: Usable size
* a: Aligned
*
* These are not always used completely consistently, but should be enough to
* interpret function names. E.g. sz_psz2ind converts page size to page size
* index; sz_sa2u converts a (size, alignment) allocation request to the usable
* size that would result from such an allocation.
*/
/* Page size index type. */
typedef unsigned pszind_t;
/* Size class index type. */
typedef unsigned szind_t;
/*
* sz_pind2sz_tab encodes the same information as could be computed by
* sz_pind2sz_compute().
*/
extern size_t sz_pind2sz_tab[SC_NPSIZES + 1];
/*
* sz_index2size_tab encodes the same information as could be computed (at
* unacceptable cost in some code paths) by sz_index2size_compute().
*/
extern size_t sz_index2size_tab[SC_NSIZES];
/*
* sz_size2index_tab is a compact lookup table that rounds request sizes up to
* size classes. In order to reduce cache footprint, the table is compressed,
* and all accesses are via sz_size2index().
*/
extern uint8_t sz_size2index_tab[];
/*
* Padding for large allocations: PAGE when opt_cache_oblivious == true (to
* enable cache index randomization); 0 otherwise.
*/
extern size_t sz_large_pad;
extern void sz_boot(const sc_data_t *sc_data, bool cache_oblivious);
JEMALLOC_ALWAYS_INLINE pszind_t
sz_psz2ind(size_t psz) {
assert(psz > 0);
if (unlikely(psz > SC_LARGE_MAXCLASS)) {
return SC_NPSIZES;
}
/* x is the lg of the first base >= psz. */
pszind_t x = lg_ceil(psz);
/*
* sc.h introduces a lot of size classes. These size classes are divided
* into different size class groups. There is a very special size class
* group, each size class in or after it is an integer multiple of PAGE.
* We call it first_ps_rg. It means first page size regular group. The
* range of first_ps_rg is (base, base * 2], and base == PAGE *
* SC_NGROUP. off_to_first_ps_rg begins from 1, instead of 0. e.g.
* off_to_first_ps_rg is 1 when psz is (PAGE * SC_NGROUP + 1).
*/
pszind_t off_to_first_ps_rg = (x < SC_LG_NGROUP + LG_PAGE) ?
0 : x - (SC_LG_NGROUP + LG_PAGE);
/*
* Same as sc_s::lg_delta.
* Delta for off_to_first_ps_rg == 1 is PAGE,
* for each increase in offset, it's multiplied by two.
* Therefore, lg_delta = LG_PAGE + (off_to_first_ps_rg - 1).
*/
pszind_t lg_delta = (off_to_first_ps_rg == 0) ?
LG_PAGE : LG_PAGE + (off_to_first_ps_rg - 1);
/*
* Let's write psz in binary, e.g. 0011 for 0x3, 0111 for 0x7.
* The leftmost bits whose len is lg_base decide the base of psz.
* The rightmost bits whose len is lg_delta decide (pgz % PAGE).
* The middle bits whose len is SC_LG_NGROUP decide ndelta.
* ndelta is offset to the first size class in the size class group,
* starts from 1.
* If you don't know lg_base, ndelta or lg_delta, see sc.h.
* |xxxxxxxxxxxxxxxxxxxx|------------------------|yyyyyyyyyyyyyyyyyyyyy|
* |<-- len: lg_base -->|<-- len: SC_LG_NGROUP-->|<-- len: lg_delta -->|
* |<-- ndelta -->|
* rg_inner_off = ndelta - 1
* Why use (psz - 1)?
* To handle case: psz % (1 << lg_delta) == 0.
*/
pszind_t rg_inner_off = (((psz - 1)) >> lg_delta) & (SC_NGROUP - 1);
pszind_t base_ind = off_to_first_ps_rg << SC_LG_NGROUP;
pszind_t ind = base_ind + rg_inner_off;
return ind;
}
static inline size_t
sz_pind2sz_compute(pszind_t pind) {
if (unlikely(pind == SC_NPSIZES)) {
return SC_LARGE_MAXCLASS + PAGE;
}
size_t grp = pind >> SC_LG_NGROUP;
size_t mod = pind & ((ZU(1) << SC_LG_NGROUP) - 1);
size_t grp_size_mask = ~((!!grp)-1);
size_t grp_size = ((ZU(1) << (LG_PAGE + (SC_LG_NGROUP-1))) << grp)
& grp_size_mask;
size_t shift = (grp == 0) ? 1 : grp;
size_t lg_delta = shift + (LG_PAGE-1);
size_t mod_size = (mod+1) << lg_delta;
size_t sz = grp_size + mod_size;
return sz;
}
static inline size_t
sz_pind2sz_lookup(pszind_t pind) {
size_t ret = (size_t)sz_pind2sz_tab[pind];
assert(ret == sz_pind2sz_compute(pind));
return ret;
}
static inline size_t
sz_pind2sz(pszind_t pind) {
assert(pind < SC_NPSIZES + 1);
return sz_pind2sz_lookup(pind);
}
static inline size_t
sz_psz2u(size_t psz) {
if (unlikely(psz > SC_LARGE_MAXCLASS)) {
return SC_LARGE_MAXCLASS + PAGE;
}
size_t x = lg_floor((psz<<1)-1);
size_t lg_delta = (x < SC_LG_NGROUP + LG_PAGE + 1) ?
LG_PAGE : x - SC_LG_NGROUP - 1;
size_t delta = ZU(1) << lg_delta;
size_t delta_mask = delta - 1;
size_t usize = (psz + delta_mask) & ~delta_mask;
return usize;
}
static inline szind_t
sz_size2index_compute(size_t size) {
if (unlikely(size > SC_LARGE_MAXCLASS)) {
return SC_NSIZES;
}
if (size == 0) {
return 0;
}
#if (SC_NTINY != 0)
if (size <= (ZU(1) << SC_LG_TINY_MAXCLASS)) {
szind_t lg_tmin = SC_LG_TINY_MAXCLASS - SC_NTINY + 1;
szind_t lg_ceil = lg_floor(pow2_ceil_zu(size));
return (lg_ceil < lg_tmin ? 0 : lg_ceil - lg_tmin);
}
#endif
{
szind_t x = lg_floor((size<<1)-1);
szind_t shift = (x < SC_LG_NGROUP + LG_QUANTUM) ? 0 :
x - (SC_LG_NGROUP + LG_QUANTUM);
szind_t grp = shift << SC_LG_NGROUP;
szind_t lg_delta = (x < SC_LG_NGROUP + LG_QUANTUM + 1)
? LG_QUANTUM : x - SC_LG_NGROUP - 1;
size_t delta_inverse_mask = ZU(-1) << lg_delta;
szind_t mod = ((((size-1) & delta_inverse_mask) >> lg_delta)) &
((ZU(1) << SC_LG_NGROUP) - 1);
szind_t index = SC_NTINY + grp + mod;
return index;
}
}
JEMALLOC_ALWAYS_INLINE szind_t
sz_size2index_lookup_impl(size_t size) {
assert(size <= SC_LOOKUP_MAXCLASS);
return sz_size2index_tab[(size + (ZU(1) << SC_LG_TINY_MIN) - 1)
>> SC_LG_TINY_MIN];
}
JEMALLOC_ALWAYS_INLINE szind_t
sz_size2index_lookup(size_t size) {
szind_t ret = sz_size2index_lookup_impl(size);
assert(ret == sz_size2index_compute(size));
return ret;
}
JEMALLOC_ALWAYS_INLINE szind_t
sz_size2index(size_t size) {
if (likely(size <= SC_LOOKUP_MAXCLASS)) {
return sz_size2index_lookup(size);
}
return sz_size2index_compute(size);
}
static inline size_t
sz_index2size_compute(szind_t index) {
#if (SC_NTINY > 0)
if (index < SC_NTINY) {
return (ZU(1) << (SC_LG_TINY_MAXCLASS - SC_NTINY + 1 + index));
}
#endif
{
size_t reduced_index = index - SC_NTINY;
size_t grp = reduced_index >> SC_LG_NGROUP;
size_t mod = reduced_index & ((ZU(1) << SC_LG_NGROUP) -
1);
size_t grp_size_mask = ~((!!grp)-1);
size_t grp_size = ((ZU(1) << (LG_QUANTUM +
(SC_LG_NGROUP-1))) << grp) & grp_size_mask;
size_t shift = (grp == 0) ? 1 : grp;
size_t lg_delta = shift + (LG_QUANTUM-1);
size_t mod_size = (mod+1) << lg_delta;
size_t usize = grp_size + mod_size;
return usize;
}
}
JEMALLOC_ALWAYS_INLINE size_t
sz_index2size_lookup_impl(szind_t index) {
return sz_index2size_tab[index];
}
JEMALLOC_ALWAYS_INLINE size_t
sz_index2size_lookup(szind_t index) {
size_t ret = sz_index2size_lookup_impl(index);
assert(ret == sz_index2size_compute(index));
return ret;
}
JEMALLOC_ALWAYS_INLINE size_t
sz_index2size(szind_t index) {
assert(index < SC_NSIZES);
return sz_index2size_lookup(index);
}
JEMALLOC_ALWAYS_INLINE void
sz_size2index_usize_fastpath(size_t size, szind_t *ind, size_t *usize) {
*ind = sz_size2index_lookup_impl(size);
*usize = sz_index2size_lookup_impl(*ind);
}
JEMALLOC_ALWAYS_INLINE size_t
sz_s2u_compute(size_t size) {
if (unlikely(size > SC_LARGE_MAXCLASS)) {
return 0;
}
if (size == 0) {
size++;
}
#if (SC_NTINY > 0)
if (size <= (ZU(1) << SC_LG_TINY_MAXCLASS)) {
size_t lg_tmin = SC_LG_TINY_MAXCLASS - SC_NTINY + 1;
size_t lg_ceil = lg_floor(pow2_ceil_zu(size));
return (lg_ceil < lg_tmin ? (ZU(1) << lg_tmin) :
(ZU(1) << lg_ceil));
}
#endif
{
size_t x = lg_floor((size<<1)-1);
size_t lg_delta = (x < SC_LG_NGROUP + LG_QUANTUM + 1)
? LG_QUANTUM : x - SC_LG_NGROUP - 1;
size_t delta = ZU(1) << lg_delta;
size_t delta_mask = delta - 1;
size_t usize = (size + delta_mask) & ~delta_mask;
return usize;
}
}
JEMALLOC_ALWAYS_INLINE size_t
sz_s2u_lookup(size_t size) {
size_t ret = sz_index2size_lookup(sz_size2index_lookup(size));
assert(ret == sz_s2u_compute(size));
return ret;
}
/*
* Compute usable size that would result from allocating an object with the
* specified size.
*/
JEMALLOC_ALWAYS_INLINE size_t
sz_s2u(size_t size) {
if (likely(size <= SC_LOOKUP_MAXCLASS)) {
return sz_s2u_lookup(size);
}
return sz_s2u_compute(size);
}
/*
* Compute usable size that would result from allocating an object with the
* specified size and alignment.
*/
JEMALLOC_ALWAYS_INLINE size_t
sz_sa2u(size_t size, size_t alignment) {
size_t usize;
assert(alignment != 0 && ((alignment - 1) & alignment) == 0);
/* Try for a small size class. */
if (size <= SC_SMALL_MAXCLASS && alignment <= PAGE) {
/*
* Round size up to the nearest multiple of alignment.
*
* This done, we can take advantage of the fact that for each
* small size class, every object is aligned at the smallest
* power of two that is non-zero in the base two representation
* of the size. For example:
*
* Size | Base 2 | Minimum alignment
* -----+----------+------------------
* 96 | 1100000 | 32
* 144 | 10100000 | 32
* 192 | 11000000 | 64
*/
usize = sz_s2u(ALIGNMENT_CEILING(size, alignment));
if (usize < SC_LARGE_MINCLASS) {
return usize;
}
}
/* Large size class. Beware of overflow. */
if (unlikely(alignment > SC_LARGE_MAXCLASS)) {
return 0;
}
/* Make sure result is a large size class. */
if (size <= SC_LARGE_MINCLASS) {
usize = SC_LARGE_MINCLASS;
} else {
usize = sz_s2u(size);
if (usize < size) {
/* size_t overflow. */
return 0;
}
}
/*
* Calculate the multi-page mapping that large_palloc() would need in
* order to guarantee the alignment.
*/
if (usize + sz_large_pad + PAGE_CEILING(alignment) - PAGE < usize) {
/* size_t overflow. */
return 0;
}
return usize;
}
size_t sz_psz_quantize_floor(size_t size);
size_t sz_psz_quantize_ceil(size_t size);
#endif /* JEMALLOC_INTERNAL_SIZE_H */