blob: 7d4c454d2e957bd8f4233796013d39884d28fb6e [file] [log] [blame]
#include "test/jemalloc_test.h"
#include <stdlib.h>
#include "jemalloc/internal/rb.h"
#define rbtn_black_height(a_type, a_field, a_rbt, r_height) do { \
a_type *rbp_bh_t; \
for (rbp_bh_t = (a_rbt)->rbt_root, (r_height) = 0; rbp_bh_t != \
NULL; rbp_bh_t = rbtn_left_get(a_type, a_field, \
rbp_bh_t)) { \
if (!rbtn_red_get(a_type, a_field, rbp_bh_t)) { \
(r_height)++; \
} \
} \
} while (0)
static bool summarize_always_returns_true = false;
typedef struct node_s node_t;
struct node_s {
#define NODE_MAGIC 0x9823af7e
uint32_t magic;
rb_node(node_t) link;
/* Order used by nodes. */
uint64_t key;
/*
* Our made-up summary property is "specialness", with summarization
* taking the max.
*/
uint64_t specialness;
/*
* Used by some of the test randomization to avoid double-removing
* nodes.
*/
bool mid_remove;
/*
* To test searching functionality, we want to temporarily weaken the
* ordering to allow non-equal nodes that nevertheless compare equal.
*/
bool allow_duplicates;
/*
* In check_consistency, it's handy to know a node's rank in the tree;
* this tracks it (but only there; not all tests use this).
*/
int rank;
int filtered_rank;
/*
* Replicate the internal structure of the tree, to make sure the
* implementation doesn't miss any updates.
*/
const node_t *summary_lchild;
const node_t *summary_rchild;
uint64_t summary_max_specialness;
};
static int
node_cmp(const node_t *a, const node_t *b) {
int ret;
expect_u32_eq(a->magic, NODE_MAGIC, "Bad magic");
expect_u32_eq(b->magic, NODE_MAGIC, "Bad magic");
ret = (a->key > b->key) - (a->key < b->key);
if (ret == 0 && !a->allow_duplicates) {
/*
* Duplicates are not allowed in the tree, so force an
* arbitrary ordering for non-identical items with equal keys,
* unless the user is searching and wants to allow the
* duplicate.
*/
ret = (((uintptr_t)a) > ((uintptr_t)b))
- (((uintptr_t)a) < ((uintptr_t)b));
}
return ret;
}
static uint64_t
node_subtree_specialness(node_t *n, const node_t *lchild,
const node_t *rchild) {
uint64_t subtree_specialness = n->specialness;
if (lchild != NULL
&& lchild->summary_max_specialness > subtree_specialness) {
subtree_specialness = lchild->summary_max_specialness;
}
if (rchild != NULL
&& rchild->summary_max_specialness > subtree_specialness) {
subtree_specialness = rchild->summary_max_specialness;
}
return subtree_specialness;
}
static bool
node_summarize(node_t *a, const node_t *lchild, const node_t *rchild) {
uint64_t new_summary_max_specialness = node_subtree_specialness(
a, lchild, rchild);
bool changed = (a->summary_lchild != lchild)
|| (a->summary_rchild != rchild)
|| (new_summary_max_specialness != a->summary_max_specialness);
a->summary_max_specialness = new_summary_max_specialness;
a->summary_lchild = lchild;
a->summary_rchild = rchild;
return changed || summarize_always_returns_true;
}
typedef rb_tree(node_t) tree_t;
rb_summarized_proto(static, tree_, tree_t, node_t);
rb_summarized_gen(static, tree_, tree_t, node_t, link, node_cmp,
node_summarize);
static bool
specialness_filter_node(void *ctx, node_t *node) {
uint64_t specialness = *(uint64_t *)ctx;
return node->specialness >= specialness;
}
static bool
specialness_filter_subtree(void *ctx, node_t *node) {
uint64_t specialness = *(uint64_t *)ctx;
return node->summary_max_specialness >= specialness;
}
static node_t *
tree_iterate_cb(tree_t *tree, node_t *node, void *data) {
unsigned *i = (unsigned *)data;
node_t *search_node;
expect_u32_eq(node->magic, NODE_MAGIC, "Bad magic");
/* Test rb_search(). */
search_node = tree_search(tree, node);
expect_ptr_eq(search_node, node,
"tree_search() returned unexpected node");
/* Test rb_nsearch(). */
search_node = tree_nsearch(tree, node);
expect_ptr_eq(search_node, node,
"tree_nsearch() returned unexpected node");
/* Test rb_psearch(). */
search_node = tree_psearch(tree, node);
expect_ptr_eq(search_node, node,
"tree_psearch() returned unexpected node");
(*i)++;
return NULL;
}
TEST_BEGIN(test_rb_empty) {
tree_t tree;
node_t key;
tree_new(&tree);
expect_true(tree_empty(&tree), "Tree should be empty");
expect_ptr_null(tree_first(&tree), "Unexpected node");
expect_ptr_null(tree_last(&tree), "Unexpected node");
key.key = 0;
key.magic = NODE_MAGIC;
expect_ptr_null(tree_search(&tree, &key), "Unexpected node");
key.key = 0;
key.magic = NODE_MAGIC;
expect_ptr_null(tree_nsearch(&tree, &key), "Unexpected node");
key.key = 0;
key.magic = NODE_MAGIC;
expect_ptr_null(tree_psearch(&tree, &key), "Unexpected node");
unsigned nodes = 0;
tree_iter_filtered(&tree, NULL, &tree_iterate_cb,
&nodes, &specialness_filter_node, &specialness_filter_subtree,
NULL);
expect_u_eq(0, nodes, "");
nodes = 0;
tree_reverse_iter_filtered(&tree, NULL, &tree_iterate_cb,
&nodes, &specialness_filter_node, &specialness_filter_subtree,
NULL);
expect_u_eq(0, nodes, "");
expect_ptr_null(tree_first_filtered(&tree, &specialness_filter_node,
&specialness_filter_subtree, NULL), "");
expect_ptr_null(tree_last_filtered(&tree, &specialness_filter_node,
&specialness_filter_subtree, NULL), "");
key.key = 0;
key.magic = NODE_MAGIC;
expect_ptr_null(tree_search_filtered(&tree, &key,
&specialness_filter_node, &specialness_filter_subtree, NULL), "");
expect_ptr_null(tree_nsearch_filtered(&tree, &key,
&specialness_filter_node, &specialness_filter_subtree, NULL), "");
expect_ptr_null(tree_psearch_filtered(&tree, &key,
&specialness_filter_node, &specialness_filter_subtree, NULL), "");
}
TEST_END
static unsigned
tree_recurse(node_t *node, unsigned black_height, unsigned black_depth) {
unsigned ret = 0;
node_t *left_node;
node_t *right_node;
if (node == NULL) {
return ret;
}
left_node = rbtn_left_get(node_t, link, node);
right_node = rbtn_right_get(node_t, link, node);
expect_ptr_eq(left_node, node->summary_lchild,
"summary missed a tree update");
expect_ptr_eq(right_node, node->summary_rchild,
"summary missed a tree update");
uint64_t expected_subtree_specialness = node_subtree_specialness(node,
left_node, right_node);
expect_u64_eq(expected_subtree_specialness,
node->summary_max_specialness, "Incorrect summary");
if (!rbtn_red_get(node_t, link, node)) {
black_depth++;
}
/* Red nodes must be interleaved with black nodes. */
if (rbtn_red_get(node_t, link, node)) {
if (left_node != NULL) {
expect_false(rbtn_red_get(node_t, link, left_node),
"Node should be black");
}
if (right_node != NULL) {
expect_false(rbtn_red_get(node_t, link, right_node),
"Node should be black");
}
}
/* Self. */
expect_u32_eq(node->magic, NODE_MAGIC, "Bad magic");
/* Left subtree. */
if (left_node != NULL) {
ret += tree_recurse(left_node, black_height, black_depth);
} else {
ret += (black_depth != black_height);
}
/* Right subtree. */
if (right_node != NULL) {
ret += tree_recurse(right_node, black_height, black_depth);
} else {
ret += (black_depth != black_height);
}
return ret;
}
static unsigned
tree_iterate(tree_t *tree) {
unsigned i;
i = 0;
tree_iter(tree, NULL, tree_iterate_cb, (void *)&i);
return i;
}
static unsigned
tree_iterate_reverse(tree_t *tree) {
unsigned i;
i = 0;
tree_reverse_iter(tree, NULL, tree_iterate_cb, (void *)&i);
return i;
}
static void
node_remove(tree_t *tree, node_t *node, unsigned nnodes) {
node_t *search_node;
unsigned black_height, imbalances;
tree_remove(tree, node);
/* Test rb_nsearch(). */
search_node = tree_nsearch(tree, node);
if (search_node != NULL) {
expect_u64_ge(search_node->key, node->key,
"Key ordering error");
}
/* Test rb_psearch(). */
search_node = tree_psearch(tree, node);
if (search_node != NULL) {
expect_u64_le(search_node->key, node->key,
"Key ordering error");
}
node->magic = 0;
rbtn_black_height(node_t, link, tree, black_height);
imbalances = tree_recurse(tree->rbt_root, black_height, 0);
expect_u_eq(imbalances, 0, "Tree is unbalanced");
expect_u_eq(tree_iterate(tree), nnodes-1,
"Unexpected node iteration count");
expect_u_eq(tree_iterate_reverse(tree), nnodes-1,
"Unexpected node iteration count");
}
static node_t *
remove_iterate_cb(tree_t *tree, node_t *node, void *data) {
unsigned *nnodes = (unsigned *)data;
node_t *ret = tree_next(tree, node);
node_remove(tree, node, *nnodes);
return ret;
}
static node_t *
remove_reverse_iterate_cb(tree_t *tree, node_t *node, void *data) {
unsigned *nnodes = (unsigned *)data;
node_t *ret = tree_prev(tree, node);
node_remove(tree, node, *nnodes);
return ret;
}
static void
destroy_cb(node_t *node, void *data) {
unsigned *nnodes = (unsigned *)data;
expect_u_gt(*nnodes, 0, "Destruction removed too many nodes");
(*nnodes)--;
}
TEST_BEGIN(test_rb_random) {
enum {
NNODES = 25,
NBAGS = 500,
SEED = 42
};
sfmt_t *sfmt;
uint64_t bag[NNODES];
tree_t tree;
node_t nodes[NNODES];
unsigned i, j, k, black_height, imbalances;
sfmt = init_gen_rand(SEED);
for (i = 0; i < NBAGS; i++) {
switch (i) {
case 0:
/* Insert in order. */
for (j = 0; j < NNODES; j++) {
bag[j] = j;
}
break;
case 1:
/* Insert in reverse order. */
for (j = 0; j < NNODES; j++) {
bag[j] = NNODES - j - 1;
}
break;
default:
for (j = 0; j < NNODES; j++) {
bag[j] = gen_rand64_range(sfmt, NNODES);
}
}
/*
* We alternate test behavior with a period of 2 here, and a
* period of 5 down below, so there's no cycle in which certain
* combinations get omitted.
*/
summarize_always_returns_true = (i % 2 == 0);
for (j = 1; j <= NNODES; j++) {
/* Initialize tree and nodes. */
tree_new(&tree);
for (k = 0; k < j; k++) {
nodes[k].magic = NODE_MAGIC;
nodes[k].key = bag[k];
nodes[k].specialness = gen_rand64_range(sfmt,
NNODES);
nodes[k].mid_remove = false;
nodes[k].allow_duplicates = false;
nodes[k].summary_lchild = NULL;
nodes[k].summary_rchild = NULL;
nodes[k].summary_max_specialness = 0;
}
/* Insert nodes. */
for (k = 0; k < j; k++) {
tree_insert(&tree, &nodes[k]);
rbtn_black_height(node_t, link, &tree,
black_height);
imbalances = tree_recurse(tree.rbt_root,
black_height, 0);
expect_u_eq(imbalances, 0,
"Tree is unbalanced");
expect_u_eq(tree_iterate(&tree), k+1,
"Unexpected node iteration count");
expect_u_eq(tree_iterate_reverse(&tree), k+1,
"Unexpected node iteration count");
expect_false(tree_empty(&tree),
"Tree should not be empty");
expect_ptr_not_null(tree_first(&tree),
"Tree should not be empty");
expect_ptr_not_null(tree_last(&tree),
"Tree should not be empty");
tree_next(&tree, &nodes[k]);
tree_prev(&tree, &nodes[k]);
}
/* Remove nodes. */
switch (i % 5) {
case 0:
for (k = 0; k < j; k++) {
node_remove(&tree, &nodes[k], j - k);
}
break;
case 1:
for (k = j; k > 0; k--) {
node_remove(&tree, &nodes[k-1], k);
}
break;
case 2: {
node_t *start;
unsigned nnodes = j;
start = NULL;
do {
start = tree_iter(&tree, start,
remove_iterate_cb, (void *)&nnodes);
nnodes--;
} while (start != NULL);
expect_u_eq(nnodes, 0,
"Removal terminated early");
break;
} case 3: {
node_t *start;
unsigned nnodes = j;
start = NULL;
do {
start = tree_reverse_iter(&tree, start,
remove_reverse_iterate_cb,
(void *)&nnodes);
nnodes--;
} while (start != NULL);
expect_u_eq(nnodes, 0,
"Removal terminated early");
break;
} case 4: {
unsigned nnodes = j;
tree_destroy(&tree, destroy_cb, &nnodes);
expect_u_eq(nnodes, 0,
"Destruction terminated early");
break;
} default:
not_reached();
}
}
}
fini_gen_rand(sfmt);
}
TEST_END
static void
expect_simple_consistency(tree_t *tree, uint64_t specialness,
bool expected_empty, node_t *expected_first, node_t *expected_last) {
bool empty;
node_t *first;
node_t *last;
empty = tree_empty_filtered(tree, &specialness_filter_node,
&specialness_filter_subtree, &specialness);
expect_b_eq(expected_empty, empty, "");
first = tree_first_filtered(tree,
&specialness_filter_node, &specialness_filter_subtree,
(void *)&specialness);
expect_ptr_eq(expected_first, first, "");
last = tree_last_filtered(tree,
&specialness_filter_node, &specialness_filter_subtree,
(void *)&specialness);
expect_ptr_eq(expected_last, last, "");
}
TEST_BEGIN(test_rb_filter_simple) {
enum {FILTER_NODES = 10};
node_t nodes[FILTER_NODES];
for (unsigned i = 0; i < FILTER_NODES; i++) {
nodes[i].magic = NODE_MAGIC;
nodes[i].key = i;
if (i == 0) {
nodes[i].specialness = 0;
} else {
nodes[i].specialness = ffs_u(i);
}
nodes[i].mid_remove = false;
nodes[i].allow_duplicates = false;
nodes[i].summary_lchild = NULL;
nodes[i].summary_rchild = NULL;
nodes[i].summary_max_specialness = 0;
}
summarize_always_returns_true = false;
tree_t tree;
tree_new(&tree);
/* Should be empty */
expect_simple_consistency(&tree, /* specialness */ 0, /* empty */ true,
/* first */ NULL, /* last */ NULL);
/* Fill in just the odd nodes. */
for (int i = 1; i < FILTER_NODES; i += 2) {
tree_insert(&tree, &nodes[i]);
}
/* A search for an odd node should succeed. */
expect_simple_consistency(&tree, /* specialness */ 0, /* empty */ false,
/* first */ &nodes[1], /* last */ &nodes[9]);
/* But a search for an even one should fail. */
expect_simple_consistency(&tree, /* specialness */ 1, /* empty */ true,
/* first */ NULL, /* last */ NULL);
/* Now we add an even. */
tree_insert(&tree, &nodes[4]);
expect_simple_consistency(&tree, /* specialness */ 1, /* empty */ false,
/* first */ &nodes[4], /* last */ &nodes[4]);
/* A smaller even, and a larger even. */
tree_insert(&tree, &nodes[2]);
tree_insert(&tree, &nodes[8]);
/*
* A first-search (resp. last-search) for an even should switch to the
* lower (higher) one, now that it's been added.
*/
expect_simple_consistency(&tree, /* specialness */ 1, /* empty */ false,
/* first */ &nodes[2], /* last */ &nodes[8]);
/*
* If we remove 2, a first-search we should go back to 4, while a
* last-search should remain unchanged.
*/
tree_remove(&tree, &nodes[2]);
expect_simple_consistency(&tree, /* specialness */ 1, /* empty */ false,
/* first */ &nodes[4], /* last */ &nodes[8]);
/* Reinsert 2, then find it again. */
tree_insert(&tree, &nodes[2]);
expect_simple_consistency(&tree, /* specialness */ 1, /* empty */ false,
/* first */ &nodes[2], /* last */ &nodes[8]);
/* Searching for a multiple of 4 should not have changed. */
expect_simple_consistency(&tree, /* specialness */ 2, /* empty */ false,
/* first */ &nodes[4], /* last */ &nodes[8]);
/* And a multiple of 8 */
expect_simple_consistency(&tree, /* specialness */ 3, /* empty */ false,
/* first */ &nodes[8], /* last */ &nodes[8]);
/* But not a multiple of 16 */
expect_simple_consistency(&tree, /* specialness */ 4, /* empty */ true,
/* first */ NULL, /* last */ NULL);
}
TEST_END
typedef struct iter_ctx_s iter_ctx_t;
struct iter_ctx_s {
int ncalls;
node_t *last_node;
int ncalls_max;
bool forward;
};
static node_t *
tree_iterate_filtered_cb(tree_t *tree, node_t *node, void *arg) {
iter_ctx_t *ctx = (iter_ctx_t *)arg;
ctx->ncalls++;
expect_u64_ge(node->specialness, 1,
"Should only invoke cb on nodes that pass the filter");
if (ctx->last_node != NULL) {
if (ctx->forward) {
expect_d_lt(node_cmp(ctx->last_node, node), 0,
"Incorrect iteration order");
} else {
expect_d_gt(node_cmp(ctx->last_node, node), 0,
"Incorrect iteration order");
}
}
ctx->last_node = node;
if (ctx->ncalls == ctx->ncalls_max) {
return node;
}
return NULL;
}
static int
qsort_node_cmp(const void *ap, const void *bp) {
node_t *a = *(node_t **)ap;
node_t *b = *(node_t **)bp;
return node_cmp(a, b);
}
#define UPDATE_TEST_MAX 100
static void
check_consistency(tree_t *tree, node_t nodes[UPDATE_TEST_MAX], int nnodes) {
uint64_t specialness = 1;
bool empty;
bool real_empty = true;
node_t *first;
node_t *real_first = NULL;
node_t *last;
node_t *real_last = NULL;
for (int i = 0; i < nnodes; i++) {
if (nodes[i].specialness >= specialness) {
real_empty = false;
if (real_first == NULL
|| node_cmp(&nodes[i], real_first) < 0) {
real_first = &nodes[i];
}
if (real_last == NULL
|| node_cmp(&nodes[i], real_last) > 0) {
real_last = &nodes[i];
}
}
}
empty = tree_empty_filtered(tree, &specialness_filter_node,
&specialness_filter_subtree, &specialness);
expect_b_eq(real_empty, empty, "");
first = tree_first_filtered(tree, &specialness_filter_node,
&specialness_filter_subtree, &specialness);
expect_ptr_eq(real_first, first, "");
last = tree_last_filtered(tree, &specialness_filter_node,
&specialness_filter_subtree, &specialness);
expect_ptr_eq(real_last, last, "");
for (int i = 0; i < nnodes; i++) {
node_t *next_filtered;
node_t *real_next_filtered = NULL;
node_t *prev_filtered;
node_t *real_prev_filtered = NULL;
for (int j = 0; j < nnodes; j++) {
if (nodes[j].specialness < specialness) {
continue;
}
if (node_cmp(&nodes[j], &nodes[i]) < 0
&& (real_prev_filtered == NULL
|| node_cmp(&nodes[j], real_prev_filtered) > 0)) {
real_prev_filtered = &nodes[j];
}
if (node_cmp(&nodes[j], &nodes[i]) > 0
&& (real_next_filtered == NULL
|| node_cmp(&nodes[j], real_next_filtered) < 0)) {
real_next_filtered = &nodes[j];
}
}
next_filtered = tree_next_filtered(tree, &nodes[i],
&specialness_filter_node, &specialness_filter_subtree,
&specialness);
expect_ptr_eq(real_next_filtered, next_filtered, "");
prev_filtered = tree_prev_filtered(tree, &nodes[i],
&specialness_filter_node, &specialness_filter_subtree,
&specialness);
expect_ptr_eq(real_prev_filtered, prev_filtered, "");
node_t *search_filtered;
node_t *real_search_filtered;
node_t *nsearch_filtered;
node_t *real_nsearch_filtered;
node_t *psearch_filtered;
node_t *real_psearch_filtered;
/*
* search, nsearch, psearch from a node before nodes[i] in the
* ordering.
*/
node_t before;
before.magic = NODE_MAGIC;
before.key = nodes[i].key - 1;
before.allow_duplicates = false;
real_search_filtered = NULL;
search_filtered = tree_search_filtered(tree, &before,
&specialness_filter_node, &specialness_filter_subtree,
&specialness);
expect_ptr_eq(real_search_filtered, search_filtered, "");
real_nsearch_filtered = (nodes[i].specialness >= specialness ?
&nodes[i] : real_next_filtered);
nsearch_filtered = tree_nsearch_filtered(tree, &before,
&specialness_filter_node, &specialness_filter_subtree,
&specialness);
expect_ptr_eq(real_nsearch_filtered, nsearch_filtered, "");
real_psearch_filtered = real_prev_filtered;
psearch_filtered = tree_psearch_filtered(tree, &before,
&specialness_filter_node, &specialness_filter_subtree,
&specialness);
expect_ptr_eq(real_psearch_filtered, psearch_filtered, "");
/* search, nsearch, psearch from nodes[i] */
real_search_filtered = (nodes[i].specialness >= specialness ?
&nodes[i] : NULL);
search_filtered = tree_search_filtered(tree, &nodes[i],
&specialness_filter_node, &specialness_filter_subtree,
&specialness);
expect_ptr_eq(real_search_filtered, search_filtered, "");
real_nsearch_filtered = (nodes[i].specialness >= specialness ?
&nodes[i] : real_next_filtered);
nsearch_filtered = tree_nsearch_filtered(tree, &nodes[i],
&specialness_filter_node, &specialness_filter_subtree,
&specialness);
expect_ptr_eq(real_nsearch_filtered, nsearch_filtered, "");
real_psearch_filtered = (nodes[i].specialness >= specialness ?
&nodes[i] : real_prev_filtered);
psearch_filtered = tree_psearch_filtered(tree, &nodes[i],
&specialness_filter_node, &specialness_filter_subtree,
&specialness);
expect_ptr_eq(real_psearch_filtered, psearch_filtered, "");
/*
* search, nsearch, psearch from a node equivalent to but
* distinct from nodes[i].
*/
node_t equiv;
equiv.magic = NODE_MAGIC;
equiv.key = nodes[i].key;
equiv.allow_duplicates = true;
real_search_filtered = (nodes[i].specialness >= specialness ?
&nodes[i] : NULL);
search_filtered = tree_search_filtered(tree, &equiv,
&specialness_filter_node, &specialness_filter_subtree,
&specialness);
expect_ptr_eq(real_search_filtered, search_filtered, "");
real_nsearch_filtered = (nodes[i].specialness >= specialness ?
&nodes[i] : real_next_filtered);
nsearch_filtered = tree_nsearch_filtered(tree, &equiv,
&specialness_filter_node, &specialness_filter_subtree,
&specialness);
expect_ptr_eq(real_nsearch_filtered, nsearch_filtered, "");
real_psearch_filtered = (nodes[i].specialness >= specialness ?
&nodes[i] : real_prev_filtered);
psearch_filtered = tree_psearch_filtered(tree, &equiv,
&specialness_filter_node, &specialness_filter_subtree,
&specialness);
expect_ptr_eq(real_psearch_filtered, psearch_filtered, "");
/*
* search, nsearch, psearch from a node after nodes[i] in the
* ordering.
*/
node_t after;
after.magic = NODE_MAGIC;
after.key = nodes[i].key + 1;
after.allow_duplicates = false;
real_search_filtered = NULL;
search_filtered = tree_search_filtered(tree, &after,
&specialness_filter_node, &specialness_filter_subtree,
&specialness);
expect_ptr_eq(real_search_filtered, search_filtered, "");
real_nsearch_filtered = real_next_filtered;
nsearch_filtered = tree_nsearch_filtered(tree, &after,
&specialness_filter_node, &specialness_filter_subtree,
&specialness);
expect_ptr_eq(real_nsearch_filtered, nsearch_filtered, "");
real_psearch_filtered = (nodes[i].specialness >= specialness ?
&nodes[i] : real_prev_filtered);
psearch_filtered = tree_psearch_filtered(tree, &after,
&specialness_filter_node, &specialness_filter_subtree,
&specialness);
expect_ptr_eq(real_psearch_filtered, psearch_filtered, "");
}
/* Filtered iteration test setup. */
int nspecial = 0;
node_t *sorted_nodes[UPDATE_TEST_MAX];
node_t *sorted_filtered_nodes[UPDATE_TEST_MAX];
for (int i = 0; i < nnodes; i++) {
sorted_nodes[i] = &nodes[i];
}
qsort(sorted_nodes, nnodes, sizeof(node_t *), &qsort_node_cmp);
for (int i = 0; i < nnodes; i++) {
sorted_nodes[i]->rank = i;
sorted_nodes[i]->filtered_rank = nspecial;
if (sorted_nodes[i]->specialness >= 1) {
sorted_filtered_nodes[nspecial] = sorted_nodes[i];
nspecial++;
}
}
node_t *iter_result;
iter_ctx_t ctx;
ctx.ncalls = 0;
ctx.last_node = NULL;
ctx.ncalls_max = INT_MAX;
ctx.forward = true;
/* Filtered forward iteration from the beginning. */
iter_result = tree_iter_filtered(tree, NULL, &tree_iterate_filtered_cb,
&ctx, &specialness_filter_node, &specialness_filter_subtree,
&specialness);
expect_ptr_null(iter_result, "");
expect_d_eq(nspecial, ctx.ncalls, "");
/* Filtered forward iteration from a starting point. */
for (int i = 0; i < nnodes; i++) {
ctx.ncalls = 0;
ctx.last_node = NULL;
iter_result = tree_iter_filtered(tree, &nodes[i],
&tree_iterate_filtered_cb, &ctx, &specialness_filter_node,
&specialness_filter_subtree, &specialness);
expect_ptr_null(iter_result, "");
expect_d_eq(nspecial - nodes[i].filtered_rank, ctx.ncalls, "");
}
/* Filtered forward iteration from the beginning, with stopping */
for (int i = 0; i < nspecial; i++) {
ctx.ncalls = 0;
ctx.last_node = NULL;
ctx.ncalls_max = i + 1;
iter_result = tree_iter_filtered(tree, NULL,
&tree_iterate_filtered_cb, &ctx, &specialness_filter_node,
&specialness_filter_subtree, &specialness);
expect_ptr_eq(sorted_filtered_nodes[i], iter_result, "");
expect_d_eq(ctx.ncalls, i + 1, "");
}
/* Filtered forward iteration from a starting point, with stopping. */
for (int i = 0; i < nnodes; i++) {
for (int j = 0; j < nspecial - nodes[i].filtered_rank; j++) {
ctx.ncalls = 0;
ctx.last_node = NULL;
ctx.ncalls_max = j + 1;
iter_result = tree_iter_filtered(tree, &nodes[i],
&tree_iterate_filtered_cb, &ctx,
&specialness_filter_node,
&specialness_filter_subtree, &specialness);
expect_d_eq(j + 1, ctx.ncalls, "");
expect_ptr_eq(sorted_filtered_nodes[
nodes[i].filtered_rank + j], iter_result, "");
}
}
/* Backwards iteration. */
ctx.ncalls = 0;
ctx.last_node = NULL;
ctx.ncalls_max = INT_MAX;
ctx.forward = false;
/* Filtered backward iteration from the end. */
iter_result = tree_reverse_iter_filtered(tree, NULL,
&tree_iterate_filtered_cb, &ctx, &specialness_filter_node,
&specialness_filter_subtree, &specialness);
expect_ptr_null(iter_result, "");
expect_d_eq(nspecial, ctx.ncalls, "");
/* Filtered backward iteration from a starting point. */
for (int i = 0; i < nnodes; i++) {
ctx.ncalls = 0;
ctx.last_node = NULL;
iter_result = tree_reverse_iter_filtered(tree, &nodes[i],
&tree_iterate_filtered_cb, &ctx, &specialness_filter_node,
&specialness_filter_subtree, &specialness);
expect_ptr_null(iter_result, "");
int surplus_rank = (nodes[i].specialness >= 1 ? 1 : 0);
expect_d_eq(nodes[i].filtered_rank + surplus_rank, ctx.ncalls,
"");
}
/* Filtered backward iteration from the end, with stopping */
for (int i = 0; i < nspecial; i++) {
ctx.ncalls = 0;
ctx.last_node = NULL;
ctx.ncalls_max = i + 1;
iter_result = tree_reverse_iter_filtered(tree, NULL,
&tree_iterate_filtered_cb, &ctx, &specialness_filter_node,
&specialness_filter_subtree, &specialness);
expect_ptr_eq(sorted_filtered_nodes[nspecial - i - 1],
iter_result, "");
expect_d_eq(ctx.ncalls, i + 1, "");
}
/* Filtered backward iteration from a starting point, with stopping. */
for (int i = 0; i < nnodes; i++) {
int surplus_rank = (nodes[i].specialness >= 1 ? 1 : 0);
for (int j = 0; j < nodes[i].filtered_rank + surplus_rank;
j++) {
ctx.ncalls = 0;
ctx.last_node = NULL;
ctx.ncalls_max = j + 1;
iter_result = tree_reverse_iter_filtered(tree,
&nodes[i], &tree_iterate_filtered_cb, &ctx,
&specialness_filter_node,
&specialness_filter_subtree, &specialness);
expect_d_eq(j + 1, ctx.ncalls, "");
expect_ptr_eq(sorted_filtered_nodes[
nodes[i].filtered_rank - j - 1 + surplus_rank],
iter_result, "");
}
}
}
static void
do_update_search_test(int nnodes, int ntrees, int nremovals,
int nupdates) {
node_t nodes[UPDATE_TEST_MAX];
assert(nnodes <= UPDATE_TEST_MAX);
sfmt_t *sfmt = init_gen_rand(12345);
for (int i = 0; i < ntrees; i++) {
tree_t tree;
tree_new(&tree);
for (int j = 0; j < nnodes; j++) {
nodes[j].magic = NODE_MAGIC;
/*
* In consistency checking, we increment or decrement a
* key and assume that the result is not a key in the
* tree. This isn't a *real* concern with 64-bit keys
* and a good PRNG, but why not be correct anyways?
*/
nodes[j].key = 2 * gen_rand64(sfmt);
nodes[j].specialness = 0;
nodes[j].mid_remove = false;
nodes[j].allow_duplicates = false;
nodes[j].summary_lchild = NULL;
nodes[j].summary_rchild = NULL;
nodes[j].summary_max_specialness = 0;
tree_insert(&tree, &nodes[j]);
}
for (int j = 0; j < nremovals; j++) {
int victim = (int)gen_rand64_range(sfmt, nnodes);
if (!nodes[victim].mid_remove) {
tree_remove(&tree, &nodes[victim]);
nodes[victim].mid_remove = true;
}
}
for (int j = 0; j < nnodes; j++) {
if (nodes[j].mid_remove) {
nodes[j].mid_remove = false;
nodes[j].key = 2 * gen_rand64(sfmt);
tree_insert(&tree, &nodes[j]);
}
}
for (int i = 0; i < nupdates; i++) {
uint32_t ind = gen_rand32_range(sfmt, nnodes);
nodes[ind].specialness = 1 - nodes[ind].specialness;
tree_update_summaries(&tree, &nodes[ind]);
check_consistency(&tree, nodes, nnodes);
}
}
}
TEST_BEGIN(test_rb_update_search) {
summarize_always_returns_true = false;
do_update_search_test(2, 100, 3, 50);
do_update_search_test(5, 100, 3, 50);
do_update_search_test(12, 100, 5, 1000);
do_update_search_test(100, 1, 50, 500);
}
TEST_END
typedef rb_tree(node_t) unsummarized_tree_t;
rb_gen(static UNUSED, unsummarized_tree_, unsummarized_tree_t, node_t, link,
node_cmp);
static node_t *
unsummarized_tree_iterate_cb(unsummarized_tree_t *tree, node_t *node,
void *data) {
unsigned *i = (unsigned *)data;
(*i)++;
return NULL;
}
/*
* The unsummarized and summarized funtionality is implemented via the same
* functions; we don't really need to do much more than test that we can exclude
* the filtered functionality without anything breaking.
*/
TEST_BEGIN(test_rb_unsummarized) {
unsummarized_tree_t tree;
unsummarized_tree_new(&tree);
unsigned nnodes = 0;
unsummarized_tree_iter(&tree, NULL, &unsummarized_tree_iterate_cb,
&nnodes);
expect_u_eq(0, nnodes, "");
}
TEST_END
int
main(void) {
return test_no_reentrancy(
test_rb_empty,
test_rb_random,
test_rb_filter_simple,
test_rb_update_search,
test_rb_unsummarized);
}