blob: 37eb5827d3c93ebc1847072b491409f07351bcf4 [file] [log] [blame]
#include "jemalloc/internal/jemalloc_preamble.h"
#include "jemalloc/internal/jemalloc_internal_includes.h"
#include "jemalloc/internal/thread_event.h"
/*
* Signatures for event specific functions. These functions should be defined
* by the modules owning each event. The signatures here verify that the
* definitions follow the right format.
*
* The first two are functions computing new / postponed event wait time. New
* event wait time is the time till the next event if an event is currently
* being triggered; postponed event wait time is the time till the next event
* if an event should be triggered but needs to be postponed, e.g. when the TSD
* is not nominal or during reentrancy.
*
* The third is the event handler function, which is called whenever an event
* is triggered. The parameter is the elapsed time since the last time an
* event of the same type was triggered.
*/
#define E(event, condition_unused, is_alloc_event_unused) \
uint64_t event##_new_event_wait(tsd_t *tsd); \
uint64_t event##_postponed_event_wait(tsd_t *tsd); \
void event##_event_handler(tsd_t *tsd, uint64_t elapsed);
ITERATE_OVER_ALL_EVENTS
#undef E
/* Signatures for internal functions fetching elapsed time. */
#define E(event, condition_unused, is_alloc_event_unused) \
static uint64_t event##_fetch_elapsed(tsd_t *tsd);
ITERATE_OVER_ALL_EVENTS
#undef E
static uint64_t
tcache_gc_fetch_elapsed(tsd_t *tsd) {
return TE_INVALID_ELAPSED;
}
static uint64_t
tcache_gc_dalloc_fetch_elapsed(tsd_t *tsd) {
return TE_INVALID_ELAPSED;
}
static uint64_t
prof_sample_fetch_elapsed(tsd_t *tsd) {
uint64_t last_event = thread_allocated_last_event_get(tsd);
uint64_t last_sample_event = prof_sample_last_event_get(tsd);
prof_sample_last_event_set(tsd, last_event);
return last_event - last_sample_event;
}
static uint64_t
stats_interval_fetch_elapsed(tsd_t *tsd) {
uint64_t last_event = thread_allocated_last_event_get(tsd);
uint64_t last_stats_event = stats_interval_last_event_get(tsd);
stats_interval_last_event_set(tsd, last_event);
return last_event - last_stats_event;
}
static uint64_t
peak_alloc_fetch_elapsed(tsd_t *tsd) {
return TE_INVALID_ELAPSED;
}
static uint64_t
peak_dalloc_fetch_elapsed(tsd_t *tsd) {
return TE_INVALID_ELAPSED;
}
/* Per event facilities done. */
static bool
te_ctx_has_active_events(te_ctx_t *ctx) {
assert(config_debug);
#define E(event, condition, alloc_event) \
if (condition && alloc_event == ctx->is_alloc) { \
return true; \
}
ITERATE_OVER_ALL_EVENTS
#undef E
return false;
}
static uint64_t
te_next_event_compute(tsd_t *tsd, bool is_alloc) {
uint64_t wait = TE_MAX_START_WAIT;
#define E(event, condition, alloc_event) \
if (is_alloc == alloc_event && condition) { \
uint64_t event_wait = \
event##_event_wait_get(tsd); \
assert(event_wait <= TE_MAX_START_WAIT); \
if (event_wait > 0U && event_wait < wait) { \
wait = event_wait; \
} \
}
ITERATE_OVER_ALL_EVENTS
#undef E
assert(wait <= TE_MAX_START_WAIT);
return wait;
}
static void
te_assert_invariants_impl(tsd_t *tsd, te_ctx_t *ctx) {
uint64_t current_bytes = te_ctx_current_bytes_get(ctx);
uint64_t last_event = te_ctx_last_event_get(ctx);
uint64_t next_event = te_ctx_next_event_get(ctx);
uint64_t next_event_fast = te_ctx_next_event_fast_get(ctx);
assert(last_event != next_event);
if (next_event > TE_NEXT_EVENT_FAST_MAX || !tsd_fast(tsd)) {
assert(next_event_fast == 0U);
} else {
assert(next_event_fast == next_event);
}
/* The subtraction is intentionally susceptible to underflow. */
uint64_t interval = next_event - last_event;
/* The subtraction is intentionally susceptible to underflow. */
assert(current_bytes - last_event < interval);
uint64_t min_wait = te_next_event_compute(tsd, te_ctx_is_alloc(ctx));
/*
* next_event should have been pushed up only except when no event is
* on and the TSD is just initialized. The last_event == 0U guard
* below is stronger than needed, but having an exactly accurate guard
* is more complicated to implement.
*/
assert((!te_ctx_has_active_events(ctx) && last_event == 0U) ||
interval == min_wait ||
(interval < min_wait && interval == TE_MAX_INTERVAL));
}
void
te_assert_invariants_debug(tsd_t *tsd) {
te_ctx_t ctx;
te_ctx_get(tsd, &ctx, true);
te_assert_invariants_impl(tsd, &ctx);
te_ctx_get(tsd, &ctx, false);
te_assert_invariants_impl(tsd, &ctx);
}
/*
* Synchronization around the fast threshold in tsd --
* There are two threads to consider in the synchronization here:
* - The owner of the tsd being updated by a slow path change
* - The remote thread, doing that slow path change.
*
* As a design constraint, we want to ensure that a slow-path transition cannot
* be ignored for arbitrarily long, and that if the remote thread causes a
* slow-path transition and then communicates with the owner thread that it has
* occurred, then the owner will go down the slow path on the next allocator
* operation (so that we don't want to just wait until the owner hits its slow
* path reset condition on its own).
*
* Here's our strategy to do that:
*
* The remote thread will update the slow-path stores to TSD variables, issue a
* SEQ_CST fence, and then update the TSD next_event_fast counter. The owner
* thread will update next_event_fast, issue an SEQ_CST fence, and then check
* its TSD to see if it's on the slow path.
* This is fairly straightforward when 64-bit atomics are supported. Assume that
* the remote fence is sandwiched between two owner fences in the reset pathway.
* The case where there is no preceding or trailing owner fence (i.e. because
* the owner thread is near the beginning or end of its life) can be analyzed
* similarly. The owner store to next_event_fast preceding the earlier owner
* fence will be earlier in coherence order than the remote store to it, so that
* the owner thread will go down the slow path once the store becomes visible to
* it, which is no later than the time of the second fence.
* The case where we don't support 64-bit atomics is trickier, since word
* tearing is possible. We'll repeat the same analysis, and look at the two
* owner fences sandwiching the remote fence. The next_event_fast stores done
* alongside the earlier owner fence cannot overwrite any of the remote stores
* (since they precede the earlier owner fence in sb, which precedes the remote
* fence in sc, which precedes the remote stores in sb). After the second owner
* fence there will be a re-check of the slow-path variables anyways, so the
* "owner will notice that it's on the slow path eventually" guarantee is
* satisfied. To make sure that the out-of-band-messaging constraint is as well,
* note that either the message passing is sequenced before the second owner
* fence (in which case the remote stores happen before the second set of owner
* stores, so malloc sees a value of zero for next_event_fast and goes down the
* slow path), or it is not (in which case the owner sees the tsd slow-path
* writes on its previous update). This leaves open the possibility that the
* remote thread will (at some arbitrary point in the future) zero out one half
* of the owner thread's next_event_fast, but that's always safe (it just sends
* it down the slow path earlier).
*/
static void
te_ctx_next_event_fast_update(te_ctx_t *ctx) {
uint64_t next_event = te_ctx_next_event_get(ctx);
uint64_t next_event_fast = (next_event <= TE_NEXT_EVENT_FAST_MAX) ?
next_event : 0U;
te_ctx_next_event_fast_set(ctx, next_event_fast);
}
void
te_recompute_fast_threshold(tsd_t *tsd) {
if (tsd_state_get(tsd) != tsd_state_nominal) {
/* Check first because this is also called on purgatory. */
te_next_event_fast_set_non_nominal(tsd);
return;
}
te_ctx_t ctx;
te_ctx_get(tsd, &ctx, true);
te_ctx_next_event_fast_update(&ctx);
te_ctx_get(tsd, &ctx, false);
te_ctx_next_event_fast_update(&ctx);
atomic_fence(ATOMIC_SEQ_CST);
if (tsd_state_get(tsd) != tsd_state_nominal) {
te_next_event_fast_set_non_nominal(tsd);
}
}
static void
te_adjust_thresholds_helper(tsd_t *tsd, te_ctx_t *ctx,
uint64_t wait) {
/*
* The next threshold based on future events can only be adjusted after
* progressing the last_event counter (which is set to current).
*/
assert(te_ctx_current_bytes_get(ctx) == te_ctx_last_event_get(ctx));
assert(wait <= TE_MAX_START_WAIT);
uint64_t next_event = te_ctx_last_event_get(ctx) + (wait <=
TE_MAX_INTERVAL ? wait : TE_MAX_INTERVAL);
te_ctx_next_event_set(tsd, ctx, next_event);
}
static uint64_t
te_clip_event_wait(uint64_t event_wait) {
assert(event_wait > 0U);
if (TE_MIN_START_WAIT > 1U &&
unlikely(event_wait < TE_MIN_START_WAIT)) {
event_wait = TE_MIN_START_WAIT;
}
if (TE_MAX_START_WAIT < UINT64_MAX &&
unlikely(event_wait > TE_MAX_START_WAIT)) {
event_wait = TE_MAX_START_WAIT;
}
return event_wait;
}
void
te_event_trigger(tsd_t *tsd, te_ctx_t *ctx) {
/* usize has already been added to thread_allocated. */
uint64_t bytes_after = te_ctx_current_bytes_get(ctx);
/* The subtraction is intentionally susceptible to underflow. */
uint64_t accumbytes = bytes_after - te_ctx_last_event_get(ctx);
te_ctx_last_event_set(ctx, bytes_after);
bool allow_event_trigger = tsd_nominal(tsd) &&
tsd_reentrancy_level_get(tsd) == 0;
bool is_alloc = ctx->is_alloc;
uint64_t wait = TE_MAX_START_WAIT;
#define E(event, condition, alloc_event) \
bool is_##event##_triggered = false; \
if (is_alloc == alloc_event && condition) { \
uint64_t event_wait = event##_event_wait_get(tsd); \
assert(event_wait <= TE_MAX_START_WAIT); \
if (event_wait > accumbytes) { \
event_wait -= accumbytes; \
} else if (!allow_event_trigger) { \
event_wait = event##_postponed_event_wait(tsd); \
} else { \
is_##event##_triggered = true; \
event_wait = event##_new_event_wait(tsd); \
} \
event_wait = te_clip_event_wait(event_wait); \
event##_event_wait_set(tsd, event_wait); \
if (event_wait < wait) { \
wait = event_wait; \
} \
}
ITERATE_OVER_ALL_EVENTS
#undef E
assert(wait <= TE_MAX_START_WAIT);
te_adjust_thresholds_helper(tsd, ctx, wait);
te_assert_invariants(tsd);
#define E(event, condition, alloc_event) \
if (is_alloc == alloc_event && condition && \
is_##event##_triggered) { \
assert(allow_event_trigger); \
uint64_t elapsed = event##_fetch_elapsed(tsd); \
event##_event_handler(tsd, elapsed); \
}
ITERATE_OVER_ALL_EVENTS
#undef E
te_assert_invariants(tsd);
}
static void
te_init(tsd_t *tsd, bool is_alloc) {
te_ctx_t ctx;
te_ctx_get(tsd, &ctx, is_alloc);
/*
* Reset the last event to current, which starts the events from a clean
* state. This is necessary when re-init the tsd event counters.
*
* The event counters maintain a relationship with the current bytes:
* last_event <= current < next_event. When a reinit happens (e.g.
* reincarnated tsd), the last event needs progressing because all
* events start fresh from the current bytes.
*/
te_ctx_last_event_set(&ctx, te_ctx_current_bytes_get(&ctx));
uint64_t wait = TE_MAX_START_WAIT;
#define E(event, condition, alloc_event) \
if (is_alloc == alloc_event && condition) { \
uint64_t event_wait = event##_new_event_wait(tsd); \
event_wait = te_clip_event_wait(event_wait); \
event##_event_wait_set(tsd, event_wait); \
if (event_wait < wait) { \
wait = event_wait; \
} \
}
ITERATE_OVER_ALL_EVENTS
#undef E
te_adjust_thresholds_helper(tsd, &ctx, wait);
}
void
tsd_te_init(tsd_t *tsd) {
/* Make sure no overflow for the bytes accumulated on event_trigger. */
assert(TE_MAX_INTERVAL <= UINT64_MAX - SC_LARGE_MAXCLASS + 1);
te_init(tsd, true);
te_init(tsd, false);
te_assert_invariants(tsd);
}