blob: 20da394ab2b208c44a126d3675923acf9880ba23 [file] [log] [blame]
/*
*
* Copyright 2022 gRPC authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
package rls
import (
"context"
"encoding/json"
"errors"
"fmt"
"sync"
"testing"
"time"
"github.com/google/go-cmp/cmp"
"google.golang.org/grpc"
"google.golang.org/grpc/balancer"
"google.golang.org/grpc/balancer/rls/internal/test/e2e"
"google.golang.org/grpc/codes"
"google.golang.org/grpc/connectivity"
"google.golang.org/grpc/credentials"
"google.golang.org/grpc/credentials/insecure"
"google.golang.org/grpc/internal"
rlspb "google.golang.org/grpc/internal/proto/grpc_lookup_v1"
internalserviceconfig "google.golang.org/grpc/internal/serviceconfig"
"google.golang.org/grpc/internal/testutils"
rlstest "google.golang.org/grpc/internal/testutils/rls"
"google.golang.org/grpc/metadata"
"google.golang.org/grpc/resolver"
"google.golang.org/grpc/resolver/manual"
"google.golang.org/grpc/serviceconfig"
"google.golang.org/grpc/testdata"
"google.golang.org/protobuf/types/known/durationpb"
)
// TestConfigUpdate_ControlChannel tests the scenario where a config update
// changes the RLS server name. Verifies that the new control channel is created
// and the old one is closed.
func (s) TestConfigUpdate_ControlChannel(t *testing.T) {
// Start two RLS servers.
lis1 := testutils.NewListenerWrapper(t, nil)
rlsServer1, rlsReqCh1 := rlstest.SetupFakeRLSServer(t, lis1)
lis2 := testutils.NewListenerWrapper(t, nil)
rlsServer2, rlsReqCh2 := rlstest.SetupFakeRLSServer(t, lis2)
// Build RLS service config with the RLS server pointing to the first one.
// Set a very low value for maxAge to ensure that the entry expires soon.
rlsConfig := buildBasicRLSConfigWithChildPolicy(t, t.Name(), rlsServer1.Address)
rlsConfig.RouteLookupConfig.MaxAge = durationpb.New(defaultTestShortTimeout)
// Start a couple of test backends, and set up the fake RLS servers to return
// these as a target in the RLS response.
backendCh1, backendAddress1 := startBackend(t)
rlsServer1.SetResponseCallback(func(_ context.Context, req *rlspb.RouteLookupRequest) *rlstest.RouteLookupResponse {
return &rlstest.RouteLookupResponse{Resp: &rlspb.RouteLookupResponse{Targets: []string{backendAddress1}}}
})
backendCh2, backendAddress2 := startBackend(t)
rlsServer2.SetResponseCallback(func(_ context.Context, req *rlspb.RouteLookupRequest) *rlstest.RouteLookupResponse {
return &rlstest.RouteLookupResponse{Resp: &rlspb.RouteLookupResponse{Targets: []string{backendAddress2}}}
})
// Register a manual resolver and push the RLS service config through it.
r := startManualResolverWithConfig(t, rlsConfig)
cc, err := grpc.Dial(r.Scheme()+":///", grpc.WithResolvers(r), grpc.WithTransportCredentials(insecure.NewCredentials()))
if err != nil {
t.Fatalf("grpc.Dial() failed: %v", err)
}
defer cc.Close()
// Make an RPC and ensure it gets routed to the test backend.
ctx, cancel := context.WithTimeout(context.Background(), defaultTestTimeout)
defer cancel()
makeTestRPCAndExpectItToReachBackend(ctx, t, cc, backendCh1)
// Ensure a connection is established to the first RLS server.
val, err := lis1.NewConnCh.Receive(ctx)
if err != nil {
t.Fatal("Timeout expired when waiting for LB policy to create control channel")
}
conn1 := val.(*testutils.ConnWrapper)
// Make sure an RLS request is sent out.
verifyRLSRequest(t, rlsReqCh1, true)
// Change lookup_service field of the RLS config to point to the second one.
rlsConfig.RouteLookupConfig.LookupService = rlsServer2.Address
// Push the config update through the manual resolver.
scJSON, err := rlsConfig.ServiceConfigJSON()
if err != nil {
t.Fatal(err)
}
sc := internal.ParseServiceConfig.(func(string) *serviceconfig.ParseResult)(scJSON)
r.UpdateState(resolver.State{ServiceConfig: sc})
// Ensure a connection is established to the second RLS server.
if _, err := lis2.NewConnCh.Receive(ctx); err != nil {
t.Fatal("Timeout expired when waiting for LB policy to create control channel")
}
// Ensure the connection to the old one is closed.
if _, err := conn1.CloseCh.Receive(ctx); err != nil {
t.Fatal("Timeout expired when waiting for LB policy to close control channel")
}
// Make an RPC and expect it to get routed to the second test backend through
// the second RLS server.
makeTestRPCAndExpectItToReachBackend(ctx, t, cc, backendCh2)
verifyRLSRequest(t, rlsReqCh2, true)
}
// TestConfigUpdate_ControlChannelWithCreds tests the scenario where a config
// update specified an RLS server name, and the parent ClientConn specifies
// transport credentials. The RLS server and the test backend are configured to
// accept those transport credentials. This test verifies that the parent
// channel credentials are correctly propagated to the control channel.
func (s) TestConfigUpdate_ControlChannelWithCreds(t *testing.T) {
serverCreds, err := credentials.NewServerTLSFromFile(testdata.Path("x509/server1_cert.pem"), testdata.Path("x509/server1_key.pem"))
if err != nil {
t.Fatalf("credentials.NewServerTLSFromFile(server1.pem, server1.key) = %v", err)
}
clientCreds, err := credentials.NewClientTLSFromFile(testdata.Path("x509/server_ca_cert.pem"), "")
if err != nil {
t.Fatalf("credentials.NewClientTLSFromFile(ca.pem) = %v", err)
}
// Start an RLS server with the wrapped listener and credentials.
lis := testutils.NewListenerWrapper(t, nil)
rlsServer, rlsReqCh := rlstest.SetupFakeRLSServer(t, lis, grpc.Creds(serverCreds))
overrideAdaptiveThrottler(t, neverThrottlingThrottler())
// Build RLS service config.
rlsConfig := buildBasicRLSConfigWithChildPolicy(t, t.Name(), rlsServer.Address)
// Start a test backend which uses the same credentials as the RLS server,
// and set up the fake RLS server to return this as the target in the RLS
// response.
backendCh, backendAddress := startBackend(t, grpc.Creds(serverCreds))
rlsServer.SetResponseCallback(func(_ context.Context, req *rlspb.RouteLookupRequest) *rlstest.RouteLookupResponse {
return &rlstest.RouteLookupResponse{Resp: &rlspb.RouteLookupResponse{Targets: []string{backendAddress}}}
})
// Register a manual resolver and push the RLS service config through it.
r := startManualResolverWithConfig(t, rlsConfig)
// Dial with credentials and expect the RLS server to receive the same. The
// server certificate used for the RLS server and the backend specifies a
// DNS SAN of "*.test.example.com". Hence we use a dial target which is a
// subdomain of the same here.
cc, err := grpc.Dial(r.Scheme()+":///rls.test.example.com", grpc.WithResolvers(r), grpc.WithTransportCredentials(clientCreds))
if err != nil {
t.Fatalf("grpc.Dial() failed: %v", err)
}
defer cc.Close()
// Make an RPC and ensure it gets routed to the test backend.
ctx, cancel := context.WithTimeout(context.Background(), defaultTestTimeout)
defer cancel()
makeTestRPCAndExpectItToReachBackend(ctx, t, cc, backendCh)
// Make sure an RLS request is sent out.
verifyRLSRequest(t, rlsReqCh, true)
// Ensure a connection is established to the first RLS server.
if _, err := lis.NewConnCh.Receive(ctx); err != nil {
t.Fatal("Timeout expired when waiting for LB policy to create control channel")
}
}
// TestConfigUpdate_ControlChannelServiceConfig tests the scenario where RLS LB
// policy's configuration specifies the service config for the control channel
// via the `routeLookupChannelServiceConfig` field. This test verifies that the
// provided service config is applied for the control channel.
func (s) TestConfigUpdate_ControlChannelServiceConfig(t *testing.T) {
// Start an RLS server and set the throttler to never throttle requests.
rlsServer, rlsReqCh := rlstest.SetupFakeRLSServer(t, nil)
overrideAdaptiveThrottler(t, neverThrottlingThrottler())
// Register a balancer to be used for the control channel, and set up a
// callback to get notified when the balancer receives a clientConn updates.
ccUpdateCh := testutils.NewChannel()
bf := &e2e.BalancerFuncs{
UpdateClientConnState: func(cfg *e2e.RLSChildPolicyConfig) error {
if cfg.Backend != rlsServer.Address {
return fmt.Errorf("control channel LB policy received config with backend %q, want %q", cfg.Backend, rlsServer.Address)
}
ccUpdateCh.Replace(nil)
return nil
},
}
controlChannelPolicyName := "test-control-channel-" + t.Name()
e2e.RegisterRLSChildPolicy(controlChannelPolicyName, bf)
t.Logf("Registered child policy with name %q", controlChannelPolicyName)
// Build RLS service config and set the `routeLookupChannelServiceConfig`
// field to a service config which uses the above balancer.
rlsConfig := buildBasicRLSConfigWithChildPolicy(t, t.Name(), rlsServer.Address)
rlsConfig.RouteLookupChannelServiceConfig = fmt.Sprintf(`{"loadBalancingConfig" : [{%q: {"backend": %q} }]}`, controlChannelPolicyName, rlsServer.Address)
// Start a test backend, and set up the fake RLS server to return this as a
// target in the RLS response.
backendCh, backendAddress := startBackend(t)
rlsServer.SetResponseCallback(func(_ context.Context, req *rlspb.RouteLookupRequest) *rlstest.RouteLookupResponse {
return &rlstest.RouteLookupResponse{Resp: &rlspb.RouteLookupResponse{Targets: []string{backendAddress}}}
})
// Register a manual resolver and push the RLS service config through it.
r := startManualResolverWithConfig(t, rlsConfig)
cc, err := grpc.Dial(r.Scheme()+":///rls.test.example.com", grpc.WithResolvers(r), grpc.WithTransportCredentials(insecure.NewCredentials()))
if err != nil {
t.Fatalf("grpc.Dial() failed: %v", err)
}
defer cc.Close()
// Make an RPC and ensure it gets routed to the test backend.
ctx, cancel := context.WithTimeout(context.Background(), defaultTestTimeout)
defer cancel()
makeTestRPCAndExpectItToReachBackend(ctx, t, cc, backendCh)
// Make sure an RLS request is sent out.
verifyRLSRequest(t, rlsReqCh, true)
// Verify that the control channel is using the LB policy we injected via the
// routeLookupChannelServiceConfig field.
if _, err := ccUpdateCh.Receive(ctx); err != nil {
t.Fatalf("timeout when waiting for control channel LB policy to receive a clientConn update")
}
}
// TestConfigUpdate_DefaultTarget tests the scenario where a config update
// changes the default target. Verifies that RPCs get routed to the new default
// target after the config has been applied.
func (s) TestConfigUpdate_DefaultTarget(t *testing.T) {
// Start an RLS server and set the throttler to always throttle requests.
rlsServer, _ := rlstest.SetupFakeRLSServer(t, nil)
overrideAdaptiveThrottler(t, alwaysThrottlingThrottler())
// Build RLS service config with a default target.
rlsConfig := buildBasicRLSConfigWithChildPolicy(t, t.Name(), rlsServer.Address)
backendCh1, backendAddress1 := startBackend(t)
rlsConfig.RouteLookupConfig.DefaultTarget = backendAddress1
// Register a manual resolver and push the RLS service config through it.
r := startManualResolverWithConfig(t, rlsConfig)
cc, err := grpc.Dial(r.Scheme()+":///", grpc.WithResolvers(r), grpc.WithTransportCredentials(insecure.NewCredentials()))
if err != nil {
t.Fatalf("grpc.Dial() failed: %v", err)
}
defer cc.Close()
// Make an RPC and ensure it gets routed to the default target.
ctx, cancel := context.WithTimeout(context.Background(), defaultTestTimeout)
defer cancel()
makeTestRPCAndExpectItToReachBackend(ctx, t, cc, backendCh1)
// Change default_target field of the RLS config.
backendCh2, backendAddress2 := startBackend(t)
rlsConfig.RouteLookupConfig.DefaultTarget = backendAddress2
// Push the config update through the manual resolver.
scJSON, err := rlsConfig.ServiceConfigJSON()
if err != nil {
t.Fatal(err)
}
sc := internal.ParseServiceConfig.(func(string) *serviceconfig.ParseResult)(scJSON)
r.UpdateState(resolver.State{ServiceConfig: sc})
makeTestRPCAndExpectItToReachBackend(ctx, t, cc, backendCh2)
}
// TestConfigUpdate_ChildPolicyConfigs verifies that config changes which affect
// child policy configuration are propagated correctly.
func (s) TestConfigUpdate_ChildPolicyConfigs(t *testing.T) {
// Start an RLS server and set the throttler to never throttle requests.
rlsServer, rlsReqCh := rlstest.SetupFakeRLSServer(t, nil)
overrideAdaptiveThrottler(t, neverThrottlingThrottler())
// Start a default backend and a test backend.
_, defBackendAddress := startBackend(t)
testBackendCh, testBackendAddress := startBackend(t)
// Set up the RLS server to respond with the test backend.
rlsServer.SetResponseCallback(func(_ context.Context, req *rlspb.RouteLookupRequest) *rlstest.RouteLookupResponse {
return &rlstest.RouteLookupResponse{Resp: &rlspb.RouteLookupResponse{Targets: []string{testBackendAddress}}}
})
// Set up a test balancer callback to push configs received by child policies.
defBackendConfigsCh := make(chan *e2e.RLSChildPolicyConfig, 1)
testBackendConfigsCh := make(chan *e2e.RLSChildPolicyConfig, 1)
bf := &e2e.BalancerFuncs{
UpdateClientConnState: func(cfg *e2e.RLSChildPolicyConfig) error {
switch cfg.Backend {
case defBackendAddress:
defBackendConfigsCh <- cfg
case testBackendAddress:
testBackendConfigsCh <- cfg
default:
t.Errorf("Received child policy configs for unknown target %q", cfg.Backend)
}
return nil
},
}
// Register an LB policy to act as the child policy for RLS LB policy.
childPolicyName := "test-child-policy" + t.Name()
e2e.RegisterRLSChildPolicy(childPolicyName, bf)
t.Logf("Registered child policy with name %q", childPolicyName)
// Build RLS service config with default target.
rlsConfig := buildBasicRLSConfig(childPolicyName, rlsServer.Address)
rlsConfig.RouteLookupConfig.DefaultTarget = defBackendAddress
// Register a manual resolver and push the RLS service config through it.
r := startManualResolverWithConfig(t, rlsConfig)
cc, err := grpc.Dial(r.Scheme()+":///", grpc.WithResolvers(r), grpc.WithTransportCredentials(insecure.NewCredentials()))
if err != nil {
t.Fatalf("grpc.Dial() failed: %v", err)
}
defer cc.Close()
// At this point, the RLS LB policy should have received its config, and
// should have created a child policy for the default target.
ctx, cancel := context.WithTimeout(context.Background(), defaultTestTimeout)
defer cancel()
wantCfg := &e2e.RLSChildPolicyConfig{Backend: defBackendAddress}
select {
case <-ctx.Done():
t.Fatal("Timed out when waiting for the default target child policy to receive its config")
case gotCfg := <-defBackendConfigsCh:
if !cmp.Equal(gotCfg, wantCfg) {
t.Fatalf("Default target child policy received config %+v, want %+v", gotCfg, wantCfg)
}
}
// Make an RPC and ensure it gets routed to the test backend.
makeTestRPCAndExpectItToReachBackend(ctx, t, cc, testBackendCh)
// Make sure an RLS request is sent out.
verifyRLSRequest(t, rlsReqCh, true)
// As part of handling the above RPC, the RLS LB policy should have created
// a child policy for the test target.
wantCfg = &e2e.RLSChildPolicyConfig{Backend: testBackendAddress}
select {
case <-ctx.Done():
t.Fatal("Timed out when waiting for the test target child policy to receive its config")
case gotCfg := <-testBackendConfigsCh:
if !cmp.Equal(gotCfg, wantCfg) {
t.Fatalf("Test target child policy received config %+v, want %+v", gotCfg, wantCfg)
}
}
// Push an RLS config update with a change in the child policy config.
childPolicyBuilder := balancer.Get(childPolicyName)
childPolicyParser := childPolicyBuilder.(balancer.ConfigParser)
lbCfg, err := childPolicyParser.ParseConfig([]byte(`{"Random": "random"}`))
if err != nil {
t.Fatal(err)
}
rlsConfig.ChildPolicy.Config = lbCfg
scJSON, err := rlsConfig.ServiceConfigJSON()
if err != nil {
t.Fatal(err)
}
sc := internal.ParseServiceConfig.(func(string) *serviceconfig.ParseResult)(scJSON)
r.UpdateState(resolver.State{ServiceConfig: sc})
// Expect the child policy for the test backend to receive the update.
wantCfg = &e2e.RLSChildPolicyConfig{
Backend: testBackendAddress,
Random: "random",
}
select {
case <-ctx.Done():
t.Fatal("Timed out when waiting for the test target child policy to receive its config")
case gotCfg := <-testBackendConfigsCh:
if !cmp.Equal(gotCfg, wantCfg) {
t.Fatalf("Test target child policy received config %+v, want %+v", gotCfg, wantCfg)
}
}
// Expect the child policy for the default backend to receive the update.
wantCfg = &e2e.RLSChildPolicyConfig{
Backend: defBackendAddress,
Random: "random",
}
select {
case <-ctx.Done():
t.Fatal("Timed out when waiting for the default target child policy to receive its config")
case gotCfg := <-defBackendConfigsCh:
if !cmp.Equal(gotCfg, wantCfg) {
t.Fatalf("Default target child policy received config %+v, want %+v", gotCfg, wantCfg)
}
}
}
// TestConfigUpdate_ChildPolicyChange verifies that a child policy change is
// handled by closing the old balancer and creating a new one.
func (s) TestConfigUpdate_ChildPolicyChange(t *testing.T) {
// Start an RLS server and set the throttler to never throttle requests.
rlsServer, _ := rlstest.SetupFakeRLSServer(t, nil)
overrideAdaptiveThrottler(t, neverThrottlingThrottler())
// Set up balancer callbacks.
configsCh1 := make(chan *e2e.RLSChildPolicyConfig, 1)
closeCh1 := make(chan struct{}, 1)
bf := &e2e.BalancerFuncs{
UpdateClientConnState: func(cfg *e2e.RLSChildPolicyConfig) error {
configsCh1 <- cfg
return nil
},
Close: func() {
closeCh1 <- struct{}{}
},
}
// Register an LB policy to act as the child policy for RLS LB policy.
childPolicyName1 := "test-child-policy-1" + t.Name()
e2e.RegisterRLSChildPolicy(childPolicyName1, bf)
t.Logf("Registered child policy with name %q", childPolicyName1)
// Build RLS service config with a dummy default target.
const defaultBackend = "default-backend"
rlsConfig := buildBasicRLSConfig(childPolicyName1, rlsServer.Address)
rlsConfig.RouteLookupConfig.DefaultTarget = defaultBackend
// Register a manual resolver and push the RLS service config through it.
r := startManualResolverWithConfig(t, rlsConfig)
cc, err := grpc.Dial(r.Scheme()+":///", grpc.WithResolvers(r), grpc.WithTransportCredentials(insecure.NewCredentials()))
if err != nil {
t.Fatalf("grpc.Dial() failed: %v", err)
}
defer cc.Close()
// At this point, the RLS LB policy should have received its config, and
// should have created a child policy for the default target.
ctx, cancel := context.WithTimeout(context.Background(), defaultTestTimeout)
defer cancel()
wantCfg := &e2e.RLSChildPolicyConfig{Backend: defaultBackend}
select {
case <-ctx.Done():
t.Fatal("Timed out when waiting for the first child policy to receive its config")
case gotCfg := <-configsCh1:
if !cmp.Equal(gotCfg, wantCfg) {
t.Fatalf("First child policy received config %+v, want %+v", gotCfg, wantCfg)
}
}
// Set up balancer callbacks for the second policy.
configsCh2 := make(chan *e2e.RLSChildPolicyConfig, 1)
bf = &e2e.BalancerFuncs{
UpdateClientConnState: func(cfg *e2e.RLSChildPolicyConfig) error {
configsCh2 <- cfg
return nil
},
}
// Register a second LB policy to act as the child policy for RLS LB policy.
childPolicyName2 := "test-child-policy-2" + t.Name()
e2e.RegisterRLSChildPolicy(childPolicyName2, bf)
t.Logf("Registered child policy with name %q", childPolicyName2)
// Push an RLS config update with a change in the child policy name.
rlsConfig.ChildPolicy = &internalserviceconfig.BalancerConfig{Name: childPolicyName2}
scJSON, err := rlsConfig.ServiceConfigJSON()
if err != nil {
t.Fatal(err)
}
sc := internal.ParseServiceConfig.(func(string) *serviceconfig.ParseResult)(scJSON)
r.UpdateState(resolver.State{ServiceConfig: sc})
// The above update should result in the first LB policy being shutdown and
// the second LB policy receiving a config update.
select {
case <-ctx.Done():
t.Fatal("Timed out when waiting for the first child policy to be shutdown")
case <-closeCh1:
}
select {
case <-ctx.Done():
t.Fatal("Timed out when waiting for the second child policy to receive its config")
case gotCfg := <-configsCh2:
if !cmp.Equal(gotCfg, wantCfg) {
t.Fatalf("First child policy received config %+v, want %+v", gotCfg, wantCfg)
}
}
}
// TestConfigUpdate_BadChildPolicyConfigs tests the scenario where a config
// update is rejected by the child policy. Verifies that the child policy
// wrapper goes "lame" and the error from the child policy is reported back to
// the caller of the RPC.
func (s) TestConfigUpdate_BadChildPolicyConfigs(t *testing.T) {
// Start an RLS server and set the throttler to never throttle requests.
rlsServer, rlsReqCh := rlstest.SetupFakeRLSServer(t, nil)
overrideAdaptiveThrottler(t, neverThrottlingThrottler())
// Set up the RLS server to respond with a bad target field which is expected
// to cause the child policy's ParseTarget to fail and should result in the LB
// policy creating a lame child policy wrapper.
rlsServer.SetResponseCallback(func(_ context.Context, req *rlspb.RouteLookupRequest) *rlstest.RouteLookupResponse {
return &rlstest.RouteLookupResponse{Resp: &rlspb.RouteLookupResponse{Targets: []string{e2e.RLSChildPolicyBadTarget}}}
})
// Build RLS service config with a default target. This default backend is
// expected to be healthy (even though we don't attempt to route RPCs to it)
// and ensures that the overall connectivity state of the RLS LB policy is not
// TRANSIENT_FAILURE. This is required to make sure that the pick for the bad
// child policy actually gets delegated to the child policy picker.
rlsConfig := buildBasicRLSConfigWithChildPolicy(t, t.Name(), rlsServer.Address)
_, addr := startBackend(t)
rlsConfig.RouteLookupConfig.DefaultTarget = addr
// Register a manual resolver and push the RLS service config through it.
r := startManualResolverWithConfig(t, rlsConfig)
cc, err := grpc.Dial(r.Scheme()+":///", grpc.WithResolvers(r), grpc.WithTransportCredentials(insecure.NewCredentials()))
if err != nil {
t.Fatalf("grpc.Dial() failed: %v", err)
}
defer cc.Close()
// Make an RPC and ensure that if fails with the expected error.
ctx, cancel := context.WithTimeout(context.Background(), defaultTestTimeout)
defer cancel()
makeTestRPCAndVerifyError(ctx, t, cc, codes.Unavailable, e2e.ErrParseConfigBadTarget)
// Make sure an RLS request is sent out.
verifyRLSRequest(t, rlsReqCh, true)
}
// TestConfigUpdate_DataCacheSizeDecrease tests the scenario where a config
// update decreases the data cache size. Verifies that entries are evicted from
// the cache.
func (s) TestConfigUpdate_DataCacheSizeDecrease(t *testing.T) {
// Override the clientConn update hook to get notified.
clientConnUpdateDone := make(chan struct{}, 1)
origClientConnUpdateHook := clientConnUpdateHook
clientConnUpdateHook = func() { clientConnUpdateDone <- struct{}{} }
defer func() { clientConnUpdateHook = origClientConnUpdateHook }()
// Override the cache entry size func, and always return 1.
origEntrySizeFunc := computeDataCacheEntrySize
computeDataCacheEntrySize = func(cacheKey, *cacheEntry) int64 { return 1 }
defer func() { computeDataCacheEntrySize = origEntrySizeFunc }()
// Override the minEvictionDuration to ensure that when the config update
// reduces the cache size, the resize operation is not stopped because
// we find an entry whose minExpiryDuration has not elapsed.
origMinEvictDuration := minEvictDuration
minEvictDuration = time.Duration(0)
defer func() { minEvictDuration = origMinEvictDuration }()
// Start an RLS server and set the throttler to never throttle requests.
rlsServer, rlsReqCh := rlstest.SetupFakeRLSServer(t, nil)
overrideAdaptiveThrottler(t, neverThrottlingThrottler())
// Register an LB policy to act as the child policy for RLS LB policy.
childPolicyName := "test-child-policy" + t.Name()
e2e.RegisterRLSChildPolicy(childPolicyName, nil)
t.Logf("Registered child policy with name %q", childPolicyName)
// Build RLS service config with header matchers.
rlsConfig := buildBasicRLSConfig(childPolicyName, rlsServer.Address)
// Start a couple of test backends, and set up the fake RLS server to return
// these as targets in the RLS response, based on request keys.
backendCh1, backendAddress1 := startBackend(t)
backendCh2, backendAddress2 := startBackend(t)
rlsServer.SetResponseCallback(func(ctx context.Context, req *rlspb.RouteLookupRequest) *rlstest.RouteLookupResponse {
if req.KeyMap["k1"] == "v1" {
return &rlstest.RouteLookupResponse{Resp: &rlspb.RouteLookupResponse{Targets: []string{backendAddress1}}}
}
if req.KeyMap["k2"] == "v2" {
return &rlstest.RouteLookupResponse{Resp: &rlspb.RouteLookupResponse{Targets: []string{backendAddress2}}}
}
return &rlstest.RouteLookupResponse{Err: errors.New("no keys in request metadata")}
})
// Register a manual resolver and push the RLS service config through it.
r := startManualResolverWithConfig(t, rlsConfig)
cc, err := grpc.Dial(r.Scheme()+":///", grpc.WithResolvers(r), grpc.WithTransportCredentials(insecure.NewCredentials()))
if err != nil {
t.Fatalf("grpc.Dial() failed: %v", err)
}
defer cc.Close()
<-clientConnUpdateDone
// Make an RPC and ensure it gets routed to the first backend.
ctx, cancel := context.WithTimeout(context.Background(), defaultTestTimeout)
defer cancel()
ctxOutgoing := metadata.AppendToOutgoingContext(ctx, "n1", "v1")
makeTestRPCAndExpectItToReachBackend(ctxOutgoing, t, cc, backendCh1)
// Make sure an RLS request is sent out.
verifyRLSRequest(t, rlsReqCh, true)
// Make another RPC with a different set of headers. This will force the LB
// policy to send out a new RLS request, resulting in a new data cache
// entry.
ctxOutgoing = metadata.AppendToOutgoingContext(ctx, "n2", "v2")
makeTestRPCAndExpectItToReachBackend(ctxOutgoing, t, cc, backendCh2)
// Make sure an RLS request is sent out.
verifyRLSRequest(t, rlsReqCh, true)
// We currently have two cache entries. Setting the size to 1, will cause
// the entry corresponding to backend1 to be evicted.
rlsConfig.RouteLookupConfig.CacheSizeBytes = 1
// Push the config update through the manual resolver.
scJSON, err := rlsConfig.ServiceConfigJSON()
if err != nil {
t.Fatal(err)
}
sc := internal.ParseServiceConfig.(func(string) *serviceconfig.ParseResult)(scJSON)
r.UpdateState(resolver.State{ServiceConfig: sc})
<-clientConnUpdateDone
// Make an RPC to match the cache entry which got evicted above, and expect
// an RLS request to be made to fetch the targets.
ctxOutgoing = metadata.AppendToOutgoingContext(ctx, "n1", "v1")
makeTestRPCAndExpectItToReachBackend(ctxOutgoing, t, cc, backendCh1)
// Make sure an RLS request is sent out.
verifyRLSRequest(t, rlsReqCh, true)
}
// TestDataCachePurging verifies that the LB policy periodically evicts expired
// entries from the data cache.
func (s) TestDataCachePurging(t *testing.T) {
// Override the frequency of the data cache purger to a small one.
origDataCachePurgeTicker := dataCachePurgeTicker
ticker := time.NewTicker(defaultTestShortTimeout)
defer ticker.Stop()
dataCachePurgeTicker = func() *time.Ticker { return ticker }
defer func() { dataCachePurgeTicker = origDataCachePurgeTicker }()
// Override the data cache purge hook to get notified.
dataCachePurgeDone := make(chan struct{}, 1)
origDataCachePurgeHook := dataCachePurgeHook
dataCachePurgeHook = func() { dataCachePurgeDone <- struct{}{} }
defer func() { dataCachePurgeHook = origDataCachePurgeHook }()
// Start an RLS server and set the throttler to never throttle requests.
rlsServer, rlsReqCh := rlstest.SetupFakeRLSServer(t, nil)
overrideAdaptiveThrottler(t, neverThrottlingThrottler())
// Register an LB policy to act as the child policy for RLS LB policy.
childPolicyName := "test-child-policy" + t.Name()
e2e.RegisterRLSChildPolicy(childPolicyName, nil)
t.Logf("Registered child policy with name %q", childPolicyName)
// Build RLS service config with header matchers and lookupService pointing to
// the fake RLS server created above. Set a very low value for maxAge to
// ensure that the entry expires soon.
rlsConfig := buildBasicRLSConfig(childPolicyName, rlsServer.Address)
rlsConfig.RouteLookupConfig.MaxAge = durationpb.New(time.Millisecond)
// Start a test backend, and set up the fake RLS server to return this as a
// target in the RLS response.
backendCh, backendAddress := startBackend(t)
rlsServer.SetResponseCallback(func(_ context.Context, req *rlspb.RouteLookupRequest) *rlstest.RouteLookupResponse {
return &rlstest.RouteLookupResponse{Resp: &rlspb.RouteLookupResponse{Targets: []string{backendAddress}}}
})
// Register a manual resolver and push the RLS service config through it.
r := startManualResolverWithConfig(t, rlsConfig)
cc, err := grpc.Dial(r.Scheme()+":///", grpc.WithResolvers(r), grpc.WithTransportCredentials(insecure.NewCredentials()))
if err != nil {
t.Fatalf("grpc.Dial() failed: %v", err)
}
defer cc.Close()
// Make an RPC and ensure it gets routed to the test backend.
ctx, cancel := context.WithTimeout(context.Background(), defaultTestTimeout)
defer cancel()
ctxOutgoing := metadata.AppendToOutgoingContext(ctx, "n1", "v1")
makeTestRPCAndExpectItToReachBackend(ctxOutgoing, t, cc, backendCh)
// Make sure an RLS request is sent out.
verifyRLSRequest(t, rlsReqCh, true)
// Make another RPC with different headers. This will force the LB policy to
// send out a new RLS request, resulting in a new data cache entry.
ctxOutgoing = metadata.AppendToOutgoingContext(ctx, "n2", "v2")
makeTestRPCAndExpectItToReachBackend(ctxOutgoing, t, cc, backendCh)
// Make sure an RLS request is sent out.
verifyRLSRequest(t, rlsReqCh, true)
// Wait for the data cache purging to happen before proceeding.
<-dataCachePurgeDone
// Perform the same RPCs again and verify that they result in RLS requests.
ctxOutgoing = metadata.AppendToOutgoingContext(ctx, "n1", "v1")
makeTestRPCAndExpectItToReachBackend(ctxOutgoing, t, cc, backendCh)
// Make sure an RLS request is sent out.
verifyRLSRequest(t, rlsReqCh, true)
// Make another RPC with different headers. This will force the LB policy to
// send out a new RLS request, resulting in a new data cache entry.
ctxOutgoing = metadata.AppendToOutgoingContext(ctx, "n2", "v2")
makeTestRPCAndExpectItToReachBackend(ctxOutgoing, t, cc, backendCh)
// Make sure an RLS request is sent out.
verifyRLSRequest(t, rlsReqCh, true)
}
// TestControlChannelConnectivityStateMonitoring tests the scenario where the
// control channel goes down and comes back up again and verifies that backoff
// state is reset for cache entries in this scenario.
func (s) TestControlChannelConnectivityStateMonitoring(t *testing.T) {
// Create a restartable listener which can close existing connections.
l, err := testutils.LocalTCPListener()
if err != nil {
t.Fatalf("net.Listen() failed: %v", err)
}
lis := testutils.NewRestartableListener(l)
// Start an RLS server with the restartable listener and set the throttler to
// never throttle requests.
rlsServer, rlsReqCh := rlstest.SetupFakeRLSServer(t, lis)
overrideAdaptiveThrottler(t, neverThrottlingThrottler())
// Override the reset backoff hook to get notified.
resetBackoffDone := make(chan struct{}, 1)
origResetBackoffHook := resetBackoffHook
resetBackoffHook = func() { resetBackoffDone <- struct{}{} }
defer func() { resetBackoffHook = origResetBackoffHook }()
// Override the backoff strategy to return a large backoff which
// will make sure the date cache entry remains in backoff for the
// duration of the test.
origBackoffStrategy := defaultBackoffStrategy
defaultBackoffStrategy = &fakeBackoffStrategy{backoff: defaultTestTimeout}
defer func() { defaultBackoffStrategy = origBackoffStrategy }()
// Register an LB policy to act as the child policy for RLS LB policy.
childPolicyName := "test-child-policy" + t.Name()
e2e.RegisterRLSChildPolicy(childPolicyName, nil)
t.Logf("Registered child policy with name %q", childPolicyName)
// Build RLS service config with header matchers, and a very low value for
// maxAge to ensure that cache entries become invalid very soon.
rlsConfig := buildBasicRLSConfig(childPolicyName, rlsServer.Address)
rlsConfig.RouteLookupConfig.MaxAge = durationpb.New(defaultTestShortTimeout)
// Start a test backend, and set up the fake RLS server to return this as a
// target in the RLS response.
backendCh, backendAddress := startBackend(t)
rlsServer.SetResponseCallback(func(_ context.Context, req *rlspb.RouteLookupRequest) *rlstest.RouteLookupResponse {
return &rlstest.RouteLookupResponse{Resp: &rlspb.RouteLookupResponse{Targets: []string{backendAddress}}}
})
// Register a manual resolver and push the RLS service config through it.
r := startManualResolverWithConfig(t, rlsConfig)
cc, err := grpc.Dial(r.Scheme()+":///", grpc.WithResolvers(r), grpc.WithTransportCredentials(insecure.NewCredentials()))
if err != nil {
t.Fatalf("grpc.Dial() failed: %v", err)
}
defer cc.Close()
// Make an RPC and ensure it gets routed to the test backend.
ctx, cancel := context.WithTimeout(context.Background(), defaultTestTimeout)
defer cancel()
makeTestRPCAndExpectItToReachBackend(ctx, t, cc, backendCh)
// Make sure an RLS request is sent out.
verifyRLSRequest(t, rlsReqCh, true)
// Stop the RLS server.
lis.Stop()
// Make another RPC similar to the first one. Since the above cache entry
// would have expired by now, this should trigger another RLS request. And
// since the RLS server is down, RLS request will fail and the cache entry
// will enter backoff, and we have overridden the default backoff strategy to
// return a value which will keep this entry in backoff for the whole duration
// of the test.
makeTestRPCAndVerifyError(ctx, t, cc, codes.Unavailable, nil)
// Restart the RLS server.
lis.Restart()
// When we closed the RLS server earlier, the existing transport to the RLS
// server would have closed, and the RLS control channel would have moved to
// TRANSIENT_FAILURE with a subConn backoff before moving to IDLE. This
// backoff will last for about a second. We need to keep retrying RPCs for the
// subConn to eventually come out of backoff and attempt to reconnect.
//
// Make this RPC with a different set of headers leading to the creation of
// a new cache entry and a new RLS request. This RLS request will also fail
// till the control channel comes moves back to READY. So, override the
// backoff strategy to perform a small backoff on this entry.
defaultBackoffStrategy = &fakeBackoffStrategy{backoff: defaultTestShortTimeout}
ctxOutgoing := metadata.AppendToOutgoingContext(ctx, "n1", "v1")
makeTestRPCAndExpectItToReachBackend(ctxOutgoing, t, cc, backendCh)
select {
case <-ctx.Done():
t.Fatalf("Timed out waiting for resetBackoffDone")
case <-resetBackoffDone:
}
// The fact that the above RPC succeeded indicates that the control channel
// has moved back to READY. The connectivity state monitoring code should have
// realized this and should have reset all backoff timers (which in this case
// is the cache entry corresponding to the first RPC). Retrying that RPC now
// should succeed with an RLS request being sent out.
makeTestRPCAndExpectItToReachBackend(ctx, t, cc, backendCh)
verifyRLSRequest(t, rlsReqCh, true)
}
const wrappingTopLevelBalancerName = "wrapping-top-level-balancer"
const multipleUpdateStateChildBalancerName = "multiple-update-state-child-balancer"
type wrappingTopLevelBalancerBuilder struct {
balCh chan balancer.Balancer
}
func (w *wrappingTopLevelBalancerBuilder) Build(cc balancer.ClientConn, opts balancer.BuildOptions) balancer.Balancer {
tlb := &wrappingTopLevelBalancer{ClientConn: cc}
tlb.Balancer = balancer.Get(Name).Build(tlb, balancer.BuildOptions{})
w.balCh <- tlb
return tlb
}
func (w *wrappingTopLevelBalancerBuilder) Name() string {
return wrappingTopLevelBalancerName
}
func (w *wrappingTopLevelBalancerBuilder) ParseConfig(sc json.RawMessage) (serviceconfig.LoadBalancingConfig, error) {
parser := balancer.Get(Name).(balancer.ConfigParser)
return parser.ParseConfig(sc)
}
// wrappingTopLevelBalancer acts as the top-level LB policy on the channel and
// wraps an RLS LB policy. It forwards all balancer API calls unmodified to the
// underlying RLS LB policy. It overrides the UpdateState method on the
// balancer.ClientConn passed to the RLS LB policy and stores all state updates
// pushed by the latter.
type wrappingTopLevelBalancer struct {
balancer.ClientConn
balancer.Balancer
mu sync.Mutex
states []balancer.State
}
func (w *wrappingTopLevelBalancer) UpdateState(bs balancer.State) {
w.mu.Lock()
w.states = append(w.states, bs)
w.mu.Unlock()
w.ClientConn.UpdateState(bs)
}
func (w *wrappingTopLevelBalancer) getStates() []balancer.State {
w.mu.Lock()
defer w.mu.Unlock()
states := make([]balancer.State, len(w.states))
copy(states, w.states)
return states
}
// wrappedPickFirstBalancerBuilder builds a balancer which wraps a pickfirst
// balancer. The wrapping balancing receives addresses to be passed to the
// underlying pickfirst balancer as part of its configuration.
type wrappedPickFirstBalancerBuilder struct{}
func (wrappedPickFirstBalancerBuilder) Build(cc balancer.ClientConn, opts balancer.BuildOptions) balancer.Balancer {
builder := balancer.Get(grpc.PickFirstBalancerName)
wpfb := &wrappedPickFirstBalancer{
ClientConn: cc,
}
pf := builder.Build(wpfb, opts)
wpfb.Balancer = pf
return wpfb
}
func (wrappedPickFirstBalancerBuilder) Name() string {
return multipleUpdateStateChildBalancerName
}
type WrappedPickFirstBalancerConfig struct {
serviceconfig.LoadBalancingConfig
Backend string // The target for which this child policy was created.
}
func (wbb *wrappedPickFirstBalancerBuilder) ParseConfig(c json.RawMessage) (serviceconfig.LoadBalancingConfig, error) {
cfg := &WrappedPickFirstBalancerConfig{}
if err := json.Unmarshal(c, cfg); err != nil {
return nil, err
}
return cfg, nil
}
// wrappedPickFirstBalancer wraps a pickfirst balancer and makes multiple calls
// to UpdateState when handling a config update in UpdateClientConnState. When
// this policy is used as a child policy of the RLS LB policy, it is expected
// that the latter suppress these updates and push a single picker update on the
// channel (after the config has been processed by all child policies).
type wrappedPickFirstBalancer struct {
balancer.Balancer
balancer.ClientConn
}
func (wb *wrappedPickFirstBalancer) UpdateClientConnState(ccs balancer.ClientConnState) error {
wb.ClientConn.UpdateState(balancer.State{ConnectivityState: connectivity.Idle, Picker: &testutils.TestConstPicker{Err: balancer.ErrNoSubConnAvailable}})
wb.ClientConn.UpdateState(balancer.State{ConnectivityState: connectivity.Connecting, Picker: &testutils.TestConstPicker{Err: balancer.ErrNoSubConnAvailable}})
cfg := ccs.BalancerConfig.(*WrappedPickFirstBalancerConfig)
return wb.Balancer.UpdateClientConnState(balancer.ClientConnState{
ResolverState: resolver.State{Addresses: []resolver.Address{{Addr: cfg.Backend}}},
})
}
func (wb *wrappedPickFirstBalancer) UpdateState(state balancer.State) {
// Eat it if IDLE - allows it to switch over only on a READY SubConn.
if state.ConnectivityState == connectivity.Idle {
return
}
wb.ClientConn.UpdateState(state)
}
// TestUpdateStatePauses tests the scenario where a config update received by
// the RLS LB policy results in multiple UpdateState calls from the child
// policies. This test verifies that picker updates are paused when the config
// update is being processed by RLS LB policy and its child policies.
//
// The test uses a wrapping balancer as the top-level LB policy on the channel.
// The wrapping balancer wraps an RLS LB policy as a child policy and forwards
// all calls to it. It also records the UpdateState() calls from the RLS LB
// policy and makes it available for inspection by the test.
//
// The test uses another wrapped balancer (which wraps a pickfirst balancer) as
// the child policy of the RLS LB policy. This balancer makes multiple
// UpdateState calls when handling an update from its parent in
// UpdateClientConnState.
func (s) TestUpdateStatePauses(t *testing.T) {
// Override the hook to get notified when UpdateClientConnState is done.
clientConnUpdateDone := make(chan struct{}, 1)
origClientConnUpdateHook := clientConnUpdateHook
clientConnUpdateHook = func() { clientConnUpdateDone <- struct{}{} }
defer func() { clientConnUpdateHook = origClientConnUpdateHook }()
// Register the top-level wrapping balancer which forwards calls to RLS.
bb := &wrappingTopLevelBalancerBuilder{balCh: make(chan balancer.Balancer, 1)}
balancer.Register(bb)
// Start an RLS server and set the throttler to never throttle requests.
rlsServer, rlsReqCh := rlstest.SetupFakeRLSServer(t, nil)
overrideAdaptiveThrottler(t, neverThrottlingThrottler())
// Start a test backend and set the RLS server to respond with it.
testBackendCh, testBackendAddress := startBackend(t)
rlsServer.SetResponseCallback(func(_ context.Context, req *rlspb.RouteLookupRequest) *rlstest.RouteLookupResponse {
return &rlstest.RouteLookupResponse{Resp: &rlspb.RouteLookupResponse{Targets: []string{testBackendAddress}}}
})
// Register a child policy which wraps a pickfirst balancer and receives the
// backend address as part of its configuration.
balancer.Register(&wrappedPickFirstBalancerBuilder{})
// Register a manual resolver and push the RLS service config through it.
r := manual.NewBuilderWithScheme("rls-e2e")
scJSON := fmt.Sprintf(`
{
"loadBalancingConfig": [
{
"%s": {
"routeLookupConfig": {
"grpcKeybuilders": [{
"names": [{"service": "grpc.testing.TestService"}]
}],
"lookupService": "%s",
"cacheSizeBytes": 1000
},
"childPolicy": [{"%s": {}}],
"childPolicyConfigTargetFieldName": "Backend"
}
}
]
}`, wrappingTopLevelBalancerName, rlsServer.Address, multipleUpdateStateChildBalancerName)
sc := internal.ParseServiceConfig.(func(string) *serviceconfig.ParseResult)(scJSON)
r.InitialState(resolver.State{ServiceConfig: sc})
cc, err := grpc.Dial(r.Scheme()+":///", grpc.WithResolvers(r), grpc.WithTransportCredentials(insecure.NewCredentials()))
if err != nil {
t.Fatalf("grpc.Dial() failed: %v", err)
}
defer cc.Close()
// Wait for the clientconn update to be processed by the RLS LB policy.
ctx, cancel := context.WithTimeout(context.Background(), defaultTestTimeout)
defer cancel()
select {
case <-ctx.Done():
case <-clientConnUpdateDone:
}
// Get the top-level LB policy configured on the channel, to be able to read
// the state updates pushed by its child (the RLS LB policy.)
var wb *wrappingTopLevelBalancer
select {
case <-ctx.Done():
t.Fatal("Timeout when waiting for state update on the top-level LB policy")
case b := <-bb.balCh:
wb = b.(*wrappingTopLevelBalancer)
}
// It is important to note that at this point no child policies have been
// created because we have not attempted any RPC so far. When we attempt an
// RPC (below), child policies will be created and their configs will be
// pushed to them. But this config update will not happen in the context of
// a config update on the parent.
// Make an RPC and ensure it gets routed to the test backend.
makeTestRPCAndExpectItToReachBackend(ctx, t, cc, testBackendCh)
// Make sure an RLS request is sent out.
verifyRLSRequest(t, rlsReqCh, true)
// Wait for the control channel to become READY, before reading the states
// out of the wrapping top-level balancer.
//
// makeTestRPCAndExpectItToReachBackend repeatedly sends RPCs with short
// deadlines until one succeeds. See its docstring for details.
//
// The following sequence of events is possible:
// 1. When the first RPC is attempted above, a pending cache entry is
// created, an RLS request is sent out, and the pick is queued. The
// channel is in CONNECTING state.
// 2. When the RLS response arrives, the pending cache entry is moved to the
// data cache, a child policy is created for the target specified in the
// response and a new picker is returned. The channel is still in
// CONNECTING, and retried pick is again queued.
// 3. The child policy moves through the standard set of states, IDLE -->
// CONNECTING --> READY. And for each of these state changes, a new
// picker is sent on the channel. But the overall connectivity state of
// the channel is still CONNECTING.
// 4. Right around the time when the child policy becomes READY, the
// deadline associated with the first RPC made by
// makeTestRPCAndExpectItToReachBackend() could expire, and it could send
// a new one. And because the internal state of the LB policy now
// contains a child policy which is READY, this RPC will succeed. But the
// RLS LB policy has yet to push a new picker on the channel.
// 5. If we read the states seen by the top-level wrapping LB policy without
// waiting for the channel to become READY, there is a possibility that we
// might not see the READY state in there. And if that happens, we will
// see two extra states in the last check made in the test, and thereby
// the test would fail. Waiting for the channel to become READY here
// ensures that the test does not flake because of this rare sequence of
// events.
for s := cc.GetState(); s != connectivity.Ready; s = cc.GetState() {
if !cc.WaitForStateChange(ctx, s) {
t.Fatal("Timeout when waiting for connectivity state to reach READY")
}
}
// Cache the state changes seen up to this point.
states0 := wb.getStates()
// Push an updated service config. As mentioned earlier, the previous config
// updates on the child policies did not happen in the context of a config
// update on the parent. Hence, this update is required to force the
// scenario which we are interesting in testing here, i.e child policies get
// config updates as part of the parent policy getting its config update.
scJSON = fmt.Sprintf(`
{
"loadBalancingConfig": [
{
"%s": {
"routeLookupConfig": {
"grpcKeybuilders": [{
"names": [
{"service": "grpc.testing.TestService"},
{"service": "grpc.health.v1.Health"}
]
}],
"lookupService": "%s",
"cacheSizeBytes": 1000
},
"childPolicy": [{"%s": {}}],
"childPolicyConfigTargetFieldName": "Backend"
}
}
]
}`, wrappingTopLevelBalancerName, rlsServer.Address, multipleUpdateStateChildBalancerName)
sc = internal.ParseServiceConfig.(func(string) *serviceconfig.ParseResult)(scJSON)
r.UpdateState(resolver.State{ServiceConfig: sc})
// Wait for the clientconn update to be processed by the RLS LB policy.
select {
case <-ctx.Done():
case <-clientConnUpdateDone:
}
// Even though the child policies used in this test make multiple calls to
// UpdateState as part of handling their configs, we expect the RLS policy
// to inhibit picker updates during this time frame, and send a single
// picker once the config update is completely handled.
states1 := wb.getStates()
if len(states1) != len(states0)+1 {
t.Fatalf("more than one state update seen. before %v, after %v", states0, states1)
}
}