blob: 0cf1cc320bb23cf183becfa8f303fe8a58508c72 [file] [log] [blame]
/*
*
* Copyright 2014 gRPC authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
package transport
import (
"bytes"
"context"
"errors"
"fmt"
"io"
"math"
"net"
"strconv"
"sync"
"sync/atomic"
"time"
"github.com/golang/protobuf/proto"
"golang.org/x/net/http2"
"golang.org/x/net/http2/hpack"
"google.golang.org/grpc/internal/grpcutil"
"google.golang.org/grpc/codes"
"google.golang.org/grpc/credentials"
"google.golang.org/grpc/internal/channelz"
"google.golang.org/grpc/internal/grpcrand"
"google.golang.org/grpc/keepalive"
"google.golang.org/grpc/metadata"
"google.golang.org/grpc/peer"
"google.golang.org/grpc/stats"
"google.golang.org/grpc/status"
"google.golang.org/grpc/tap"
)
var (
// ErrIllegalHeaderWrite indicates that setting header is illegal because of
// the stream's state.
ErrIllegalHeaderWrite = errors.New("transport: the stream is done or WriteHeader was already called")
// ErrHeaderListSizeLimitViolation indicates that the header list size is larger
// than the limit set by peer.
ErrHeaderListSizeLimitViolation = errors.New("transport: trying to send header list size larger than the limit set by peer")
)
// serverConnectionCounter counts the number of connections a server has seen
// (equal to the number of http2Servers created). Must be accessed atomically.
var serverConnectionCounter uint64
// http2Server implements the ServerTransport interface with HTTP2.
type http2Server struct {
lastRead int64 // Keep this field 64-bit aligned. Accessed atomically.
ctx context.Context
done chan struct{}
conn net.Conn
loopy *loopyWriter
readerDone chan struct{} // sync point to enable testing.
writerDone chan struct{} // sync point to enable testing.
remoteAddr net.Addr
localAddr net.Addr
maxStreamID uint32 // max stream ID ever seen
authInfo credentials.AuthInfo // auth info about the connection
inTapHandle tap.ServerInHandle
framer *framer
// The max number of concurrent streams.
maxStreams uint32
// controlBuf delivers all the control related tasks (e.g., window
// updates, reset streams, and various settings) to the controller.
controlBuf *controlBuffer
fc *trInFlow
stats stats.Handler
// Keepalive and max-age parameters for the server.
kp keepalive.ServerParameters
// Keepalive enforcement policy.
kep keepalive.EnforcementPolicy
// The time instance last ping was received.
lastPingAt time.Time
// Number of times the client has violated keepalive ping policy so far.
pingStrikes uint8
// Flag to signify that number of ping strikes should be reset to 0.
// This is set whenever data or header frames are sent.
// 1 means yes.
resetPingStrikes uint32 // Accessed atomically.
initialWindowSize int32
bdpEst *bdpEstimator
maxSendHeaderListSize *uint32
mu sync.Mutex // guard the following
// drainChan is initialized when drain(...) is called the first time.
// After which the server writes out the first GoAway(with ID 2^31-1) frame.
// Then an independent goroutine will be launched to later send the second GoAway.
// During this time we don't want to write another first GoAway(with ID 2^31 -1) frame.
// Thus call to drain(...) will be a no-op if drainChan is already initialized since draining is
// already underway.
drainChan chan struct{}
state transportState
activeStreams map[uint32]*Stream
// idle is the time instant when the connection went idle.
// This is either the beginning of the connection or when the number of
// RPCs go down to 0.
// When the connection is busy, this value is set to 0.
idle time.Time
// Fields below are for channelz metric collection.
channelzID int64 // channelz unique identification number
czData *channelzData
bufferPool *bufferPool
connectionID uint64
}
// newHTTP2Server constructs a ServerTransport based on HTTP2. ConnectionError is
// returned if something goes wrong.
func newHTTP2Server(conn net.Conn, config *ServerConfig) (_ ServerTransport, err error) {
writeBufSize := config.WriteBufferSize
readBufSize := config.ReadBufferSize
maxHeaderListSize := defaultServerMaxHeaderListSize
if config.MaxHeaderListSize != nil {
maxHeaderListSize = *config.MaxHeaderListSize
}
framer := newFramer(conn, writeBufSize, readBufSize, maxHeaderListSize)
// Send initial settings as connection preface to client.
isettings := []http2.Setting{{
ID: http2.SettingMaxFrameSize,
Val: http2MaxFrameLen,
}}
// TODO(zhaoq): Have a better way to signal "no limit" because 0 is
// permitted in the HTTP2 spec.
maxStreams := config.MaxStreams
if maxStreams == 0 {
maxStreams = math.MaxUint32
} else {
isettings = append(isettings, http2.Setting{
ID: http2.SettingMaxConcurrentStreams,
Val: maxStreams,
})
}
dynamicWindow := true
iwz := int32(initialWindowSize)
if config.InitialWindowSize >= defaultWindowSize {
iwz = config.InitialWindowSize
dynamicWindow = false
}
icwz := int32(initialWindowSize)
if config.InitialConnWindowSize >= defaultWindowSize {
icwz = config.InitialConnWindowSize
dynamicWindow = false
}
if iwz != defaultWindowSize {
isettings = append(isettings, http2.Setting{
ID: http2.SettingInitialWindowSize,
Val: uint32(iwz)})
}
if config.MaxHeaderListSize != nil {
isettings = append(isettings, http2.Setting{
ID: http2.SettingMaxHeaderListSize,
Val: *config.MaxHeaderListSize,
})
}
if config.HeaderTableSize != nil {
isettings = append(isettings, http2.Setting{
ID: http2.SettingHeaderTableSize,
Val: *config.HeaderTableSize,
})
}
if err := framer.fr.WriteSettings(isettings...); err != nil {
return nil, connectionErrorf(false, err, "transport: %v", err)
}
// Adjust the connection flow control window if needed.
if delta := uint32(icwz - defaultWindowSize); delta > 0 {
if err := framer.fr.WriteWindowUpdate(0, delta); err != nil {
return nil, connectionErrorf(false, err, "transport: %v", err)
}
}
kp := config.KeepaliveParams
if kp.MaxConnectionIdle == 0 {
kp.MaxConnectionIdle = defaultMaxConnectionIdle
}
if kp.MaxConnectionAge == 0 {
kp.MaxConnectionAge = defaultMaxConnectionAge
}
// Add a jitter to MaxConnectionAge.
kp.MaxConnectionAge += getJitter(kp.MaxConnectionAge)
if kp.MaxConnectionAgeGrace == 0 {
kp.MaxConnectionAgeGrace = defaultMaxConnectionAgeGrace
}
if kp.Time == 0 {
kp.Time = defaultServerKeepaliveTime
}
if kp.Timeout == 0 {
kp.Timeout = defaultServerKeepaliveTimeout
}
kep := config.KeepalivePolicy
if kep.MinTime == 0 {
kep.MinTime = defaultKeepalivePolicyMinTime
}
done := make(chan struct{})
t := &http2Server{
ctx: context.Background(),
done: done,
conn: conn,
remoteAddr: conn.RemoteAddr(),
localAddr: conn.LocalAddr(),
authInfo: config.AuthInfo,
framer: framer,
readerDone: make(chan struct{}),
writerDone: make(chan struct{}),
maxStreams: maxStreams,
inTapHandle: config.InTapHandle,
fc: &trInFlow{limit: uint32(icwz)},
state: reachable,
activeStreams: make(map[uint32]*Stream),
stats: config.StatsHandler,
kp: kp,
idle: time.Now(),
kep: kep,
initialWindowSize: iwz,
czData: new(channelzData),
bufferPool: newBufferPool(),
}
t.controlBuf = newControlBuffer(t.done)
if dynamicWindow {
t.bdpEst = &bdpEstimator{
bdp: initialWindowSize,
updateFlowControl: t.updateFlowControl,
}
}
if t.stats != nil {
t.ctx = t.stats.TagConn(t.ctx, &stats.ConnTagInfo{
RemoteAddr: t.remoteAddr,
LocalAddr: t.localAddr,
})
connBegin := &stats.ConnBegin{}
t.stats.HandleConn(t.ctx, connBegin)
}
if channelz.IsOn() {
t.channelzID = channelz.RegisterNormalSocket(t, config.ChannelzParentID, fmt.Sprintf("%s -> %s", t.remoteAddr, t.localAddr))
}
t.connectionID = atomic.AddUint64(&serverConnectionCounter, 1)
t.framer.writer.Flush()
defer func() {
if err != nil {
t.Close()
}
}()
// Check the validity of client preface.
preface := make([]byte, len(clientPreface))
if _, err := io.ReadFull(t.conn, preface); err != nil {
return nil, connectionErrorf(false, err, "transport: http2Server.HandleStreams failed to receive the preface from client: %v", err)
}
if !bytes.Equal(preface, clientPreface) {
return nil, connectionErrorf(false, nil, "transport: http2Server.HandleStreams received bogus greeting from client: %q", preface)
}
frame, err := t.framer.fr.ReadFrame()
if err == io.EOF || err == io.ErrUnexpectedEOF {
return nil, err
}
if err != nil {
return nil, connectionErrorf(false, err, "transport: http2Server.HandleStreams failed to read initial settings frame: %v", err)
}
atomic.StoreInt64(&t.lastRead, time.Now().UnixNano())
sf, ok := frame.(*http2.SettingsFrame)
if !ok {
return nil, connectionErrorf(false, nil, "transport: http2Server.HandleStreams saw invalid preface type %T from client", frame)
}
t.handleSettings(sf)
go func() {
t.loopy = newLoopyWriter(serverSide, t.framer, t.controlBuf, t.bdpEst)
t.loopy.ssGoAwayHandler = t.outgoingGoAwayHandler
if err := t.loopy.run(); err != nil {
if logger.V(logLevel) {
logger.Errorf("transport: loopyWriter.run returning. Err: %v", err)
}
}
t.conn.Close()
close(t.writerDone)
}()
go t.keepalive()
return t, nil
}
// operateHeader takes action on the decoded headers.
func (t *http2Server) operateHeaders(frame *http2.MetaHeadersFrame, handle func(*Stream), traceCtx func(context.Context, string) context.Context) (fatal bool) {
streamID := frame.Header().StreamID
state := &decodeState{
serverSide: true,
}
if h2code, err := state.decodeHeader(frame); err != nil {
if _, ok := status.FromError(err); ok {
t.controlBuf.put(&cleanupStream{
streamID: streamID,
rst: true,
rstCode: h2code,
onWrite: func() {},
})
}
return false
}
buf := newRecvBuffer()
s := &Stream{
id: streamID,
st: t,
buf: buf,
fc: &inFlow{limit: uint32(t.initialWindowSize)},
recvCompress: state.data.encoding,
method: state.data.method,
contentSubtype: state.data.contentSubtype,
}
if frame.StreamEnded() {
// s is just created by the caller. No lock needed.
s.state = streamReadDone
}
if state.data.timeoutSet {
s.ctx, s.cancel = context.WithTimeout(t.ctx, state.data.timeout)
} else {
s.ctx, s.cancel = context.WithCancel(t.ctx)
}
pr := &peer.Peer{
Addr: t.remoteAddr,
}
// Attach Auth info if there is any.
if t.authInfo != nil {
pr.AuthInfo = t.authInfo
}
s.ctx = peer.NewContext(s.ctx, pr)
// Attach the received metadata to the context.
if len(state.data.mdata) > 0 {
s.ctx = metadata.NewIncomingContext(s.ctx, state.data.mdata)
}
if state.data.statsTags != nil {
s.ctx = stats.SetIncomingTags(s.ctx, state.data.statsTags)
}
if state.data.statsTrace != nil {
s.ctx = stats.SetIncomingTrace(s.ctx, state.data.statsTrace)
}
if t.inTapHandle != nil {
var err error
info := &tap.Info{
FullMethodName: state.data.method,
}
s.ctx, err = t.inTapHandle(s.ctx, info)
if err != nil {
if logger.V(logLevel) {
logger.Warningf("transport: http2Server.operateHeaders got an error from InTapHandle: %v", err)
}
t.controlBuf.put(&cleanupStream{
streamID: s.id,
rst: true,
rstCode: http2.ErrCodeRefusedStream,
onWrite: func() {},
})
s.cancel()
return false
}
}
t.mu.Lock()
if t.state != reachable {
t.mu.Unlock()
s.cancel()
return false
}
if uint32(len(t.activeStreams)) >= t.maxStreams {
t.mu.Unlock()
t.controlBuf.put(&cleanupStream{
streamID: streamID,
rst: true,
rstCode: http2.ErrCodeRefusedStream,
onWrite: func() {},
})
s.cancel()
return false
}
if streamID%2 != 1 || streamID <= t.maxStreamID {
t.mu.Unlock()
// illegal gRPC stream id.
if logger.V(logLevel) {
logger.Errorf("transport: http2Server.HandleStreams received an illegal stream id: %v", streamID)
}
s.cancel()
return true
}
t.maxStreamID = streamID
t.activeStreams[streamID] = s
if len(t.activeStreams) == 1 {
t.idle = time.Time{}
}
t.mu.Unlock()
if channelz.IsOn() {
atomic.AddInt64(&t.czData.streamsStarted, 1)
atomic.StoreInt64(&t.czData.lastStreamCreatedTime, time.Now().UnixNano())
}
s.requestRead = func(n int) {
t.adjustWindow(s, uint32(n))
}
s.ctx = traceCtx(s.ctx, s.method)
if t.stats != nil {
s.ctx = t.stats.TagRPC(s.ctx, &stats.RPCTagInfo{FullMethodName: s.method})
inHeader := &stats.InHeader{
FullMethod: s.method,
RemoteAddr: t.remoteAddr,
LocalAddr: t.localAddr,
Compression: s.recvCompress,
WireLength: int(frame.Header().Length),
Header: metadata.MD(state.data.mdata).Copy(),
}
t.stats.HandleRPC(s.ctx, inHeader)
}
s.ctxDone = s.ctx.Done()
s.wq = newWriteQuota(defaultWriteQuota, s.ctxDone)
s.trReader = &transportReader{
reader: &recvBufferReader{
ctx: s.ctx,
ctxDone: s.ctxDone,
recv: s.buf,
freeBuffer: t.bufferPool.put,
},
windowHandler: func(n int) {
t.updateWindow(s, uint32(n))
},
}
// Register the stream with loopy.
t.controlBuf.put(&registerStream{
streamID: s.id,
wq: s.wq,
})
handle(s)
return false
}
// HandleStreams receives incoming streams using the given handler. This is
// typically run in a separate goroutine.
// traceCtx attaches trace to ctx and returns the new context.
func (t *http2Server) HandleStreams(handle func(*Stream), traceCtx func(context.Context, string) context.Context) {
defer close(t.readerDone)
for {
t.controlBuf.throttle()
frame, err := t.framer.fr.ReadFrame()
atomic.StoreInt64(&t.lastRead, time.Now().UnixNano())
if err != nil {
if se, ok := err.(http2.StreamError); ok {
if logger.V(logLevel) {
logger.Warningf("transport: http2Server.HandleStreams encountered http2.StreamError: %v", se)
}
t.mu.Lock()
s := t.activeStreams[se.StreamID]
t.mu.Unlock()
if s != nil {
t.closeStream(s, true, se.Code, false)
} else {
t.controlBuf.put(&cleanupStream{
streamID: se.StreamID,
rst: true,
rstCode: se.Code,
onWrite: func() {},
})
}
continue
}
if err == io.EOF || err == io.ErrUnexpectedEOF {
t.Close()
return
}
if logger.V(logLevel) {
logger.Warningf("transport: http2Server.HandleStreams failed to read frame: %v", err)
}
t.Close()
return
}
switch frame := frame.(type) {
case *http2.MetaHeadersFrame:
if t.operateHeaders(frame, handle, traceCtx) {
t.Close()
break
}
case *http2.DataFrame:
t.handleData(frame)
case *http2.RSTStreamFrame:
t.handleRSTStream(frame)
case *http2.SettingsFrame:
t.handleSettings(frame)
case *http2.PingFrame:
t.handlePing(frame)
case *http2.WindowUpdateFrame:
t.handleWindowUpdate(frame)
case *http2.GoAwayFrame:
// TODO: Handle GoAway from the client appropriately.
default:
if logger.V(logLevel) {
logger.Errorf("transport: http2Server.HandleStreams found unhandled frame type %v.", frame)
}
}
}
}
func (t *http2Server) getStream(f http2.Frame) (*Stream, bool) {
t.mu.Lock()
defer t.mu.Unlock()
if t.activeStreams == nil {
// The transport is closing.
return nil, false
}
s, ok := t.activeStreams[f.Header().StreamID]
if !ok {
// The stream is already done.
return nil, false
}
return s, true
}
// adjustWindow sends out extra window update over the initial window size
// of stream if the application is requesting data larger in size than
// the window.
func (t *http2Server) adjustWindow(s *Stream, n uint32) {
if w := s.fc.maybeAdjust(n); w > 0 {
t.controlBuf.put(&outgoingWindowUpdate{streamID: s.id, increment: w})
}
}
// updateWindow adjusts the inbound quota for the stream and the transport.
// Window updates will deliver to the controller for sending when
// the cumulative quota exceeds the corresponding threshold.
func (t *http2Server) updateWindow(s *Stream, n uint32) {
if w := s.fc.onRead(n); w > 0 {
t.controlBuf.put(&outgoingWindowUpdate{streamID: s.id,
increment: w,
})
}
}
// updateFlowControl updates the incoming flow control windows
// for the transport and the stream based on the current bdp
// estimation.
func (t *http2Server) updateFlowControl(n uint32) {
t.mu.Lock()
for _, s := range t.activeStreams {
s.fc.newLimit(n)
}
t.initialWindowSize = int32(n)
t.mu.Unlock()
t.controlBuf.put(&outgoingWindowUpdate{
streamID: 0,
increment: t.fc.newLimit(n),
})
t.controlBuf.put(&outgoingSettings{
ss: []http2.Setting{
{
ID: http2.SettingInitialWindowSize,
Val: n,
},
},
})
}
func (t *http2Server) handleData(f *http2.DataFrame) {
size := f.Header().Length
var sendBDPPing bool
if t.bdpEst != nil {
sendBDPPing = t.bdpEst.add(size)
}
// Decouple connection's flow control from application's read.
// An update on connection's flow control should not depend on
// whether user application has read the data or not. Such a
// restriction is already imposed on the stream's flow control,
// and therefore the sender will be blocked anyways.
// Decoupling the connection flow control will prevent other
// active(fast) streams from starving in presence of slow or
// inactive streams.
if w := t.fc.onData(size); w > 0 {
t.controlBuf.put(&outgoingWindowUpdate{
streamID: 0,
increment: w,
})
}
if sendBDPPing {
// Avoid excessive ping detection (e.g. in an L7 proxy)
// by sending a window update prior to the BDP ping.
if w := t.fc.reset(); w > 0 {
t.controlBuf.put(&outgoingWindowUpdate{
streamID: 0,
increment: w,
})
}
t.controlBuf.put(bdpPing)
}
// Select the right stream to dispatch.
s, ok := t.getStream(f)
if !ok {
return
}
if s.getState() == streamReadDone {
t.closeStream(s, true, http2.ErrCodeStreamClosed, false)
return
}
if size > 0 {
if err := s.fc.onData(size); err != nil {
t.closeStream(s, true, http2.ErrCodeFlowControl, false)
return
}
if f.Header().Flags.Has(http2.FlagDataPadded) {
if w := s.fc.onRead(size - uint32(len(f.Data()))); w > 0 {
t.controlBuf.put(&outgoingWindowUpdate{s.id, w})
}
}
// TODO(bradfitz, zhaoq): A copy is required here because there is no
// guarantee f.Data() is consumed before the arrival of next frame.
// Can this copy be eliminated?
if len(f.Data()) > 0 {
buffer := t.bufferPool.get()
buffer.Reset()
buffer.Write(f.Data())
s.write(recvMsg{buffer: buffer})
}
}
if f.Header().Flags.Has(http2.FlagDataEndStream) {
// Received the end of stream from the client.
s.compareAndSwapState(streamActive, streamReadDone)
s.write(recvMsg{err: io.EOF})
}
}
func (t *http2Server) handleRSTStream(f *http2.RSTStreamFrame) {
// If the stream is not deleted from the transport's active streams map, then do a regular close stream.
if s, ok := t.getStream(f); ok {
t.closeStream(s, false, 0, false)
return
}
// If the stream is already deleted from the active streams map, then put a cleanupStream item into controlbuf to delete the stream from loopy writer's established streams map.
t.controlBuf.put(&cleanupStream{
streamID: f.Header().StreamID,
rst: false,
rstCode: 0,
onWrite: func() {},
})
}
func (t *http2Server) handleSettings(f *http2.SettingsFrame) {
if f.IsAck() {
return
}
var ss []http2.Setting
var updateFuncs []func()
f.ForeachSetting(func(s http2.Setting) error {
switch s.ID {
case http2.SettingMaxHeaderListSize:
updateFuncs = append(updateFuncs, func() {
t.maxSendHeaderListSize = new(uint32)
*t.maxSendHeaderListSize = s.Val
})
default:
ss = append(ss, s)
}
return nil
})
t.controlBuf.executeAndPut(func(interface{}) bool {
for _, f := range updateFuncs {
f()
}
return true
}, &incomingSettings{
ss: ss,
})
}
const (
maxPingStrikes = 2
defaultPingTimeout = 2 * time.Hour
)
func (t *http2Server) handlePing(f *http2.PingFrame) {
if f.IsAck() {
if f.Data == goAwayPing.data && t.drainChan != nil {
close(t.drainChan)
return
}
// Maybe it's a BDP ping.
if t.bdpEst != nil {
t.bdpEst.calculate(f.Data)
}
return
}
pingAck := &ping{ack: true}
copy(pingAck.data[:], f.Data[:])
t.controlBuf.put(pingAck)
now := time.Now()
defer func() {
t.lastPingAt = now
}()
// A reset ping strikes means that we don't need to check for policy
// violation for this ping and the pingStrikes counter should be set
// to 0.
if atomic.CompareAndSwapUint32(&t.resetPingStrikes, 1, 0) {
t.pingStrikes = 0
return
}
t.mu.Lock()
ns := len(t.activeStreams)
t.mu.Unlock()
if ns < 1 && !t.kep.PermitWithoutStream {
// Keepalive shouldn't be active thus, this new ping should
// have come after at least defaultPingTimeout.
if t.lastPingAt.Add(defaultPingTimeout).After(now) {
t.pingStrikes++
}
} else {
// Check if keepalive policy is respected.
if t.lastPingAt.Add(t.kep.MinTime).After(now) {
t.pingStrikes++
}
}
if t.pingStrikes > maxPingStrikes {
// Send goaway and close the connection.
if logger.V(logLevel) {
logger.Errorf("transport: Got too many pings from the client, closing the connection.")
}
t.controlBuf.put(&goAway{code: http2.ErrCodeEnhanceYourCalm, debugData: []byte("too_many_pings"), closeConn: true})
}
}
func (t *http2Server) handleWindowUpdate(f *http2.WindowUpdateFrame) {
t.controlBuf.put(&incomingWindowUpdate{
streamID: f.Header().StreamID,
increment: f.Increment,
})
}
func appendHeaderFieldsFromMD(headerFields []hpack.HeaderField, md metadata.MD) []hpack.HeaderField {
for k, vv := range md {
if isReservedHeader(k) {
// Clients don't tolerate reading restricted headers after some non restricted ones were sent.
continue
}
for _, v := range vv {
headerFields = append(headerFields, hpack.HeaderField{Name: k, Value: encodeMetadataHeader(k, v)})
}
}
return headerFields
}
func (t *http2Server) checkForHeaderListSize(it interface{}) bool {
if t.maxSendHeaderListSize == nil {
return true
}
hdrFrame := it.(*headerFrame)
var sz int64
for _, f := range hdrFrame.hf {
if sz += int64(f.Size()); sz > int64(*t.maxSendHeaderListSize) {
if logger.V(logLevel) {
logger.Errorf("header list size to send violates the maximum size (%d bytes) set by client", *t.maxSendHeaderListSize)
}
return false
}
}
return true
}
// WriteHeader sends the header metadata md back to the client.
func (t *http2Server) WriteHeader(s *Stream, md metadata.MD) error {
if s.updateHeaderSent() || s.getState() == streamDone {
return ErrIllegalHeaderWrite
}
s.hdrMu.Lock()
if md.Len() > 0 {
if s.header.Len() > 0 {
s.header = metadata.Join(s.header, md)
} else {
s.header = md
}
}
if err := t.writeHeaderLocked(s); err != nil {
s.hdrMu.Unlock()
return err
}
s.hdrMu.Unlock()
return nil
}
func (t *http2Server) setResetPingStrikes() {
atomic.StoreUint32(&t.resetPingStrikes, 1)
}
func (t *http2Server) writeHeaderLocked(s *Stream) error {
// TODO(mmukhi): Benchmark if the performance gets better if count the metadata and other header fields
// first and create a slice of that exact size.
headerFields := make([]hpack.HeaderField, 0, 2) // at least :status, content-type will be there if none else.
headerFields = append(headerFields, hpack.HeaderField{Name: ":status", Value: "200"})
headerFields = append(headerFields, hpack.HeaderField{Name: "content-type", Value: grpcutil.ContentType(s.contentSubtype)})
if s.sendCompress != "" {
headerFields = append(headerFields, hpack.HeaderField{Name: "grpc-encoding", Value: s.sendCompress})
}
headerFields = appendHeaderFieldsFromMD(headerFields, s.header)
success, err := t.controlBuf.executeAndPut(t.checkForHeaderListSize, &headerFrame{
streamID: s.id,
hf: headerFields,
endStream: false,
onWrite: t.setResetPingStrikes,
})
if !success {
if err != nil {
return err
}
t.closeStream(s, true, http2.ErrCodeInternal, false)
return ErrHeaderListSizeLimitViolation
}
if t.stats != nil {
// Note: Headers are compressed with hpack after this call returns.
// No WireLength field is set here.
outHeader := &stats.OutHeader{
Header: s.header.Copy(),
Compression: s.sendCompress,
}
t.stats.HandleRPC(s.Context(), outHeader)
}
return nil
}
// WriteStatus sends stream status to the client and terminates the stream.
// There is no further I/O operations being able to perform on this stream.
// TODO(zhaoq): Now it indicates the end of entire stream. Revisit if early
// OK is adopted.
func (t *http2Server) WriteStatus(s *Stream, st *status.Status) error {
if s.getState() == streamDone {
return nil
}
s.hdrMu.Lock()
// TODO(mmukhi): Benchmark if the performance gets better if count the metadata and other header fields
// first and create a slice of that exact size.
headerFields := make([]hpack.HeaderField, 0, 2) // grpc-status and grpc-message will be there if none else.
if !s.updateHeaderSent() { // No headers have been sent.
if len(s.header) > 0 { // Send a separate header frame.
if err := t.writeHeaderLocked(s); err != nil {
s.hdrMu.Unlock()
return err
}
} else { // Send a trailer only response.
headerFields = append(headerFields, hpack.HeaderField{Name: ":status", Value: "200"})
headerFields = append(headerFields, hpack.HeaderField{Name: "content-type", Value: grpcutil.ContentType(s.contentSubtype)})
}
}
headerFields = append(headerFields, hpack.HeaderField{Name: "grpc-status", Value: strconv.Itoa(int(st.Code()))})
headerFields = append(headerFields, hpack.HeaderField{Name: "grpc-message", Value: encodeGrpcMessage(st.Message())})
if p := st.Proto(); p != nil && len(p.Details) > 0 {
stBytes, err := proto.Marshal(p)
if err != nil {
// TODO: return error instead, when callers are able to handle it.
logger.Errorf("transport: failed to marshal rpc status: %v, error: %v", p, err)
} else {
headerFields = append(headerFields, hpack.HeaderField{Name: "grpc-status-details-bin", Value: encodeBinHeader(stBytes)})
}
}
// Attach the trailer metadata.
headerFields = appendHeaderFieldsFromMD(headerFields, s.trailer)
trailingHeader := &headerFrame{
streamID: s.id,
hf: headerFields,
endStream: true,
onWrite: t.setResetPingStrikes,
}
s.hdrMu.Unlock()
success, err := t.controlBuf.execute(t.checkForHeaderListSize, trailingHeader)
if !success {
if err != nil {
return err
}
t.closeStream(s, true, http2.ErrCodeInternal, false)
return ErrHeaderListSizeLimitViolation
}
// Send a RST_STREAM after the trailers if the client has not already half-closed.
rst := s.getState() == streamActive
t.finishStream(s, rst, http2.ErrCodeNo, trailingHeader, true)
if t.stats != nil {
// Note: The trailer fields are compressed with hpack after this call returns.
// No WireLength field is set here.
t.stats.HandleRPC(s.Context(), &stats.OutTrailer{
Trailer: s.trailer.Copy(),
})
}
return nil
}
// Write converts the data into HTTP2 data frame and sends it out. Non-nil error
// is returns if it fails (e.g., framing error, transport error).
func (t *http2Server) Write(s *Stream, hdr []byte, data []byte, opts *Options) error {
if !s.isHeaderSent() { // Headers haven't been written yet.
if err := t.WriteHeader(s, nil); err != nil {
if _, ok := err.(ConnectionError); ok {
return err
}
// TODO(mmukhi, dfawley): Make sure this is the right code to return.
return status.Errorf(codes.Internal, "transport: %v", err)
}
} else {
// Writing headers checks for this condition.
if s.getState() == streamDone {
// TODO(mmukhi, dfawley): Should the server write also return io.EOF?
s.cancel()
select {
case <-t.done:
return ErrConnClosing
default:
}
return ContextErr(s.ctx.Err())
}
}
df := &dataFrame{
streamID: s.id,
h: hdr,
d: data,
onEachWrite: t.setResetPingStrikes,
}
if err := s.wq.get(int32(len(hdr) + len(data))); err != nil {
select {
case <-t.done:
return ErrConnClosing
default:
}
return ContextErr(s.ctx.Err())
}
return t.controlBuf.put(df)
}
// keepalive running in a separate goroutine does the following:
// 1. Gracefully closes an idle connection after a duration of keepalive.MaxConnectionIdle.
// 2. Gracefully closes any connection after a duration of keepalive.MaxConnectionAge.
// 3. Forcibly closes a connection after an additive period of keepalive.MaxConnectionAgeGrace over keepalive.MaxConnectionAge.
// 4. Makes sure a connection is alive by sending pings with a frequency of keepalive.Time and closes a non-responsive connection
// after an additional duration of keepalive.Timeout.
func (t *http2Server) keepalive() {
p := &ping{}
// True iff a ping has been sent, and no data has been received since then.
outstandingPing := false
// Amount of time remaining before which we should receive an ACK for the
// last sent ping.
kpTimeoutLeft := time.Duration(0)
// Records the last value of t.lastRead before we go block on the timer.
// This is required to check for read activity since then.
prevNano := time.Now().UnixNano()
// Initialize the different timers to their default values.
idleTimer := time.NewTimer(t.kp.MaxConnectionIdle)
ageTimer := time.NewTimer(t.kp.MaxConnectionAge)
kpTimer := time.NewTimer(t.kp.Time)
defer func() {
// We need to drain the underlying channel in these timers after a call
// to Stop(), only if we are interested in resetting them. Clearly we
// are not interested in resetting them here.
idleTimer.Stop()
ageTimer.Stop()
kpTimer.Stop()
}()
for {
select {
case <-idleTimer.C:
t.mu.Lock()
idle := t.idle
if idle.IsZero() { // The connection is non-idle.
t.mu.Unlock()
idleTimer.Reset(t.kp.MaxConnectionIdle)
continue
}
val := t.kp.MaxConnectionIdle - time.Since(idle)
t.mu.Unlock()
if val <= 0 {
// The connection has been idle for a duration of keepalive.MaxConnectionIdle or more.
// Gracefully close the connection.
t.drain(http2.ErrCodeNo, []byte{})
return
}
idleTimer.Reset(val)
case <-ageTimer.C:
t.drain(http2.ErrCodeNo, []byte{})
ageTimer.Reset(t.kp.MaxConnectionAgeGrace)
select {
case <-ageTimer.C:
// Close the connection after grace period.
if logger.V(logLevel) {
logger.Infof("transport: closing server transport due to maximum connection age.")
}
t.Close()
case <-t.done:
}
return
case <-kpTimer.C:
lastRead := atomic.LoadInt64(&t.lastRead)
if lastRead > prevNano {
// There has been read activity since the last time we were
// here. Setup the timer to fire at kp.Time seconds from
// lastRead time and continue.
outstandingPing = false
kpTimer.Reset(time.Duration(lastRead) + t.kp.Time - time.Duration(time.Now().UnixNano()))
prevNano = lastRead
continue
}
if outstandingPing && kpTimeoutLeft <= 0 {
if logger.V(logLevel) {
logger.Infof("transport: closing server transport due to idleness.")
}
t.Close()
return
}
if !outstandingPing {
if channelz.IsOn() {
atomic.AddInt64(&t.czData.kpCount, 1)
}
t.controlBuf.put(p)
kpTimeoutLeft = t.kp.Timeout
outstandingPing = true
}
// The amount of time to sleep here is the minimum of kp.Time and
// timeoutLeft. This will ensure that we wait only for kp.Time
// before sending out the next ping (for cases where the ping is
// acked).
sleepDuration := minTime(t.kp.Time, kpTimeoutLeft)
kpTimeoutLeft -= sleepDuration
kpTimer.Reset(sleepDuration)
case <-t.done:
return
}
}
}
// Close starts shutting down the http2Server transport.
// TODO(zhaoq): Now the destruction is not blocked on any pending streams. This
// could cause some resource issue. Revisit this later.
func (t *http2Server) Close() error {
t.mu.Lock()
if t.state == closing {
t.mu.Unlock()
return errors.New("transport: Close() was already called")
}
t.state = closing
streams := t.activeStreams
t.activeStreams = nil
t.mu.Unlock()
t.controlBuf.finish()
close(t.done)
err := t.conn.Close()
if channelz.IsOn() {
channelz.RemoveEntry(t.channelzID)
}
// Cancel all active streams.
for _, s := range streams {
s.cancel()
}
if t.stats != nil {
connEnd := &stats.ConnEnd{}
t.stats.HandleConn(t.ctx, connEnd)
}
return err
}
// deleteStream deletes the stream s from transport's active streams.
func (t *http2Server) deleteStream(s *Stream, eosReceived bool) {
// In case stream sending and receiving are invoked in separate
// goroutines (e.g., bi-directional streaming), cancel needs to be
// called to interrupt the potential blocking on other goroutines.
s.cancel()
t.mu.Lock()
if _, ok := t.activeStreams[s.id]; ok {
delete(t.activeStreams, s.id)
if len(t.activeStreams) == 0 {
t.idle = time.Now()
}
}
t.mu.Unlock()
if channelz.IsOn() {
if eosReceived {
atomic.AddInt64(&t.czData.streamsSucceeded, 1)
} else {
atomic.AddInt64(&t.czData.streamsFailed, 1)
}
}
}
// finishStream closes the stream and puts the trailing headerFrame into controlbuf.
func (t *http2Server) finishStream(s *Stream, rst bool, rstCode http2.ErrCode, hdr *headerFrame, eosReceived bool) {
oldState := s.swapState(streamDone)
if oldState == streamDone {
// If the stream was already done, return.
return
}
hdr.cleanup = &cleanupStream{
streamID: s.id,
rst: rst,
rstCode: rstCode,
onWrite: func() {
t.deleteStream(s, eosReceived)
},
}
t.controlBuf.put(hdr)
}
// closeStream clears the footprint of a stream when the stream is not needed any more.
func (t *http2Server) closeStream(s *Stream, rst bool, rstCode http2.ErrCode, eosReceived bool) {
s.swapState(streamDone)
t.deleteStream(s, eosReceived)
t.controlBuf.put(&cleanupStream{
streamID: s.id,
rst: rst,
rstCode: rstCode,
onWrite: func() {},
})
}
func (t *http2Server) RemoteAddr() net.Addr {
return t.remoteAddr
}
func (t *http2Server) Drain() {
t.drain(http2.ErrCodeNo, []byte{})
}
func (t *http2Server) drain(code http2.ErrCode, debugData []byte) {
t.mu.Lock()
defer t.mu.Unlock()
if t.drainChan != nil {
return
}
t.drainChan = make(chan struct{})
t.controlBuf.put(&goAway{code: code, debugData: debugData, headsUp: true})
}
var goAwayPing = &ping{data: [8]byte{1, 6, 1, 8, 0, 3, 3, 9}}
// Handles outgoing GoAway and returns true if loopy needs to put itself
// in draining mode.
func (t *http2Server) outgoingGoAwayHandler(g *goAway) (bool, error) {
t.mu.Lock()
if t.state == closing { // TODO(mmukhi): This seems unnecessary.
t.mu.Unlock()
// The transport is closing.
return false, ErrConnClosing
}
sid := t.maxStreamID
if !g.headsUp {
// Stop accepting more streams now.
t.state = draining
if len(t.activeStreams) == 0 {
g.closeConn = true
}
t.mu.Unlock()
if err := t.framer.fr.WriteGoAway(sid, g.code, g.debugData); err != nil {
return false, err
}
if g.closeConn {
// Abruptly close the connection following the GoAway (via
// loopywriter). But flush out what's inside the buffer first.
t.framer.writer.Flush()
return false, fmt.Errorf("transport: Connection closing")
}
return true, nil
}
t.mu.Unlock()
// For a graceful close, send out a GoAway with stream ID of MaxUInt32,
// Follow that with a ping and wait for the ack to come back or a timer
// to expire. During this time accept new streams since they might have
// originated before the GoAway reaches the client.
// After getting the ack or timer expiration send out another GoAway this
// time with an ID of the max stream server intends to process.
if err := t.framer.fr.WriteGoAway(math.MaxUint32, http2.ErrCodeNo, []byte{}); err != nil {
return false, err
}
if err := t.framer.fr.WritePing(false, goAwayPing.data); err != nil {
return false, err
}
go func() {
timer := time.NewTimer(time.Minute)
defer timer.Stop()
select {
case <-t.drainChan:
case <-timer.C:
case <-t.done:
return
}
t.controlBuf.put(&goAway{code: g.code, debugData: g.debugData})
}()
return false, nil
}
func (t *http2Server) ChannelzMetric() *channelz.SocketInternalMetric {
s := channelz.SocketInternalMetric{
StreamsStarted: atomic.LoadInt64(&t.czData.streamsStarted),
StreamsSucceeded: atomic.LoadInt64(&t.czData.streamsSucceeded),
StreamsFailed: atomic.LoadInt64(&t.czData.streamsFailed),
MessagesSent: atomic.LoadInt64(&t.czData.msgSent),
MessagesReceived: atomic.LoadInt64(&t.czData.msgRecv),
KeepAlivesSent: atomic.LoadInt64(&t.czData.kpCount),
LastRemoteStreamCreatedTimestamp: time.Unix(0, atomic.LoadInt64(&t.czData.lastStreamCreatedTime)),
LastMessageSentTimestamp: time.Unix(0, atomic.LoadInt64(&t.czData.lastMsgSentTime)),
LastMessageReceivedTimestamp: time.Unix(0, atomic.LoadInt64(&t.czData.lastMsgRecvTime)),
LocalFlowControlWindow: int64(t.fc.getSize()),
SocketOptions: channelz.GetSocketOption(t.conn),
LocalAddr: t.localAddr,
RemoteAddr: t.remoteAddr,
// RemoteName :
}
if au, ok := t.authInfo.(credentials.ChannelzSecurityInfo); ok {
s.Security = au.GetSecurityValue()
}
s.RemoteFlowControlWindow = t.getOutFlowWindow()
return &s
}
func (t *http2Server) IncrMsgSent() {
atomic.AddInt64(&t.czData.msgSent, 1)
atomic.StoreInt64(&t.czData.lastMsgSentTime, time.Now().UnixNano())
}
func (t *http2Server) IncrMsgRecv() {
atomic.AddInt64(&t.czData.msgRecv, 1)
atomic.StoreInt64(&t.czData.lastMsgRecvTime, time.Now().UnixNano())
}
func (t *http2Server) getOutFlowWindow() int64 {
resp := make(chan uint32, 1)
timer := time.NewTimer(time.Second)
defer timer.Stop()
t.controlBuf.put(&outFlowControlSizeRequest{resp})
select {
case sz := <-resp:
return int64(sz)
case <-t.done:
return -1
case <-timer.C:
return -2
}
}
func getJitter(v time.Duration) time.Duration {
if v == infinity {
return 0
}
// Generate a jitter between +/- 10% of the value.
r := int64(v / 10)
j := grpcrand.Int63n(2*r) - r
return time.Duration(j)
}