blob: 7b7191b86551ab7a2a734d6eeaae2d589c7cf1ea [file] [log] [blame]
// Copyright 2020 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Code generated by protoc-gen-go. DO NOT EDIT.
// versions:
// protoc-gen-go v1.22.0
// protoc v3.12.3
// source: google/spanner/v1/transaction.proto
package spanner
import (
reflect "reflect"
sync "sync"
proto "github.com/golang/protobuf/proto"
duration "github.com/golang/protobuf/ptypes/duration"
timestamp "github.com/golang/protobuf/ptypes/timestamp"
_ "google.golang.org/genproto/googleapis/api/annotations"
protoreflect "google.golang.org/protobuf/reflect/protoreflect"
protoimpl "google.golang.org/protobuf/runtime/protoimpl"
)
const (
// Verify that this generated code is sufficiently up-to-date.
_ = protoimpl.EnforceVersion(20 - protoimpl.MinVersion)
// Verify that runtime/protoimpl is sufficiently up-to-date.
_ = protoimpl.EnforceVersion(protoimpl.MaxVersion - 20)
)
// This is a compile-time assertion that a sufficiently up-to-date version
// of the legacy proto package is being used.
const _ = proto.ProtoPackageIsVersion4
// # Transactions
//
//
// Each session can have at most one active transaction at a time. After the
// active transaction is completed, the session can immediately be
// re-used for the next transaction. It is not necessary to create a
// new session for each transaction.
//
// # Transaction Modes
//
// Cloud Spanner supports three transaction modes:
//
// 1. Locking read-write. This type of transaction is the only way
// to write data into Cloud Spanner. These transactions rely on
// pessimistic locking and, if necessary, two-phase commit.
// Locking read-write transactions may abort, requiring the
// application to retry.
//
// 2. Snapshot read-only. This transaction type provides guaranteed
// consistency across several reads, but does not allow
// writes. Snapshot read-only transactions can be configured to
// read at timestamps in the past. Snapshot read-only
// transactions do not need to be committed.
//
// 3. Partitioned DML. This type of transaction is used to execute
// a single Partitioned DML statement. Partitioned DML partitions
// the key space and runs the DML statement over each partition
// in parallel using separate, internal transactions that commit
// independently. Partitioned DML transactions do not need to be
// committed.
//
// For transactions that only read, snapshot read-only transactions
// provide simpler semantics and are almost always faster. In
// particular, read-only transactions do not take locks, so they do
// not conflict with read-write transactions. As a consequence of not
// taking locks, they also do not abort, so retry loops are not needed.
//
// Transactions may only read/write data in a single database. They
// may, however, read/write data in different tables within that
// database.
//
// ## Locking Read-Write Transactions
//
// Locking transactions may be used to atomically read-modify-write
// data anywhere in a database. This type of transaction is externally
// consistent.
//
// Clients should attempt to minimize the amount of time a transaction
// is active. Faster transactions commit with higher probability
// and cause less contention. Cloud Spanner attempts to keep read locks
// active as long as the transaction continues to do reads, and the
// transaction has not been terminated by
// [Commit][google.spanner.v1.Spanner.Commit] or
// [Rollback][google.spanner.v1.Spanner.Rollback]. Long periods of
// inactivity at the client may cause Cloud Spanner to release a
// transaction's locks and abort it.
//
// Conceptually, a read-write transaction consists of zero or more
// reads or SQL statements followed by
// [Commit][google.spanner.v1.Spanner.Commit]. At any time before
// [Commit][google.spanner.v1.Spanner.Commit], the client can send a
// [Rollback][google.spanner.v1.Spanner.Rollback] request to abort the
// transaction.
//
// ### Semantics
//
// Cloud Spanner can commit the transaction if all read locks it acquired
// are still valid at commit time, and it is able to acquire write
// locks for all writes. Cloud Spanner can abort the transaction for any
// reason. If a commit attempt returns `ABORTED`, Cloud Spanner guarantees
// that the transaction has not modified any user data in Cloud Spanner.
//
// Unless the transaction commits, Cloud Spanner makes no guarantees about
// how long the transaction's locks were held for. It is an error to
// use Cloud Spanner locks for any sort of mutual exclusion other than
// between Cloud Spanner transactions themselves.
//
// ### Retrying Aborted Transactions
//
// When a transaction aborts, the application can choose to retry the
// whole transaction again. To maximize the chances of successfully
// committing the retry, the client should execute the retry in the
// same session as the original attempt. The original session's lock
// priority increases with each consecutive abort, meaning that each
// attempt has a slightly better chance of success than the previous.
//
// Under some circumstances (e.g., many transactions attempting to
// modify the same row(s)), a transaction can abort many times in a
// short period before successfully committing. Thus, it is not a good
// idea to cap the number of retries a transaction can attempt;
// instead, it is better to limit the total amount of wall time spent
// retrying.
//
// ### Idle Transactions
//
// A transaction is considered idle if it has no outstanding reads or
// SQL queries and has not started a read or SQL query within the last 10
// seconds. Idle transactions can be aborted by Cloud Spanner so that they
// don't hold on to locks indefinitely. In that case, the commit will
// fail with error `ABORTED`.
//
// If this behavior is undesirable, periodically executing a simple
// SQL query in the transaction (e.g., `SELECT 1`) prevents the
// transaction from becoming idle.
//
// ## Snapshot Read-Only Transactions
//
// Snapshot read-only transactions provides a simpler method than
// locking read-write transactions for doing several consistent
// reads. However, this type of transaction does not support writes.
//
// Snapshot transactions do not take locks. Instead, they work by
// choosing a Cloud Spanner timestamp, then executing all reads at that
// timestamp. Since they do not acquire locks, they do not block
// concurrent read-write transactions.
//
// Unlike locking read-write transactions, snapshot read-only
// transactions never abort. They can fail if the chosen read
// timestamp is garbage collected; however, the default garbage
// collection policy is generous enough that most applications do not
// need to worry about this in practice.
//
// Snapshot read-only transactions do not need to call
// [Commit][google.spanner.v1.Spanner.Commit] or
// [Rollback][google.spanner.v1.Spanner.Rollback] (and in fact are not
// permitted to do so).
//
// To execute a snapshot transaction, the client specifies a timestamp
// bound, which tells Cloud Spanner how to choose a read timestamp.
//
// The types of timestamp bound are:
//
// - Strong (the default).
// - Bounded staleness.
// - Exact staleness.
//
// If the Cloud Spanner database to be read is geographically distributed,
// stale read-only transactions can execute more quickly than strong
// or read-write transaction, because they are able to execute far
// from the leader replica.
//
// Each type of timestamp bound is discussed in detail below.
//
// ### Strong
//
// Strong reads are guaranteed to see the effects of all transactions
// that have committed before the start of the read. Furthermore, all
// rows yielded by a single read are consistent with each other -- if
// any part of the read observes a transaction, all parts of the read
// see the transaction.
//
// Strong reads are not repeatable: two consecutive strong read-only
// transactions might return inconsistent results if there are
// concurrent writes. If consistency across reads is required, the
// reads should be executed within a transaction or at an exact read
// timestamp.
//
// See [TransactionOptions.ReadOnly.strong][google.spanner.v1.TransactionOptions.ReadOnly.strong].
//
// ### Exact Staleness
//
// These timestamp bounds execute reads at a user-specified
// timestamp. Reads at a timestamp are guaranteed to see a consistent
// prefix of the global transaction history: they observe
// modifications done by all transactions with a commit timestamp <=
// the read timestamp, and observe none of the modifications done by
// transactions with a larger commit timestamp. They will block until
// all conflicting transactions that may be assigned commit timestamps
// <= the read timestamp have finished.
//
// The timestamp can either be expressed as an absolute Cloud Spanner commit
// timestamp or a staleness relative to the current time.
//
// These modes do not require a "negotiation phase" to pick a
// timestamp. As a result, they execute slightly faster than the
// equivalent boundedly stale concurrency modes. On the other hand,
// boundedly stale reads usually return fresher results.
//
// See [TransactionOptions.ReadOnly.read_timestamp][google.spanner.v1.TransactionOptions.ReadOnly.read_timestamp] and
// [TransactionOptions.ReadOnly.exact_staleness][google.spanner.v1.TransactionOptions.ReadOnly.exact_staleness].
//
// ### Bounded Staleness
//
// Bounded staleness modes allow Cloud Spanner to pick the read timestamp,
// subject to a user-provided staleness bound. Cloud Spanner chooses the
// newest timestamp within the staleness bound that allows execution
// of the reads at the closest available replica without blocking.
//
// All rows yielded are consistent with each other -- if any part of
// the read observes a transaction, all parts of the read see the
// transaction. Boundedly stale reads are not repeatable: two stale
// reads, even if they use the same staleness bound, can execute at
// different timestamps and thus return inconsistent results.
//
// Boundedly stale reads execute in two phases: the first phase
// negotiates a timestamp among all replicas needed to serve the
// read. In the second phase, reads are executed at the negotiated
// timestamp.
//
// As a result of the two phase execution, bounded staleness reads are
// usually a little slower than comparable exact staleness
// reads. However, they are typically able to return fresher
// results, and are more likely to execute at the closest replica.
//
// Because the timestamp negotiation requires up-front knowledge of
// which rows will be read, it can only be used with single-use
// read-only transactions.
//
// See [TransactionOptions.ReadOnly.max_staleness][google.spanner.v1.TransactionOptions.ReadOnly.max_staleness] and
// [TransactionOptions.ReadOnly.min_read_timestamp][google.spanner.v1.TransactionOptions.ReadOnly.min_read_timestamp].
//
// ### Old Read Timestamps and Garbage Collection
//
// Cloud Spanner continuously garbage collects deleted and overwritten data
// in the background to reclaim storage space. This process is known
// as "version GC". By default, version GC reclaims versions after they
// are one hour old. Because of this, Cloud Spanner cannot perform reads
// at read timestamps more than one hour in the past. This
// restriction also applies to in-progress reads and/or SQL queries whose
// timestamp become too old while executing. Reads and SQL queries with
// too-old read timestamps fail with the error `FAILED_PRECONDITION`.
//
// ## Partitioned DML Transactions
//
// Partitioned DML transactions are used to execute DML statements with a
// different execution strategy that provides different, and often better,
// scalability properties for large, table-wide operations than DML in a
// ReadWrite transaction. Smaller scoped statements, such as an OLTP workload,
// should prefer using ReadWrite transactions.
//
// Partitioned DML partitions the keyspace and runs the DML statement on each
// partition in separate, internal transactions. These transactions commit
// automatically when complete, and run independently from one another.
//
// To reduce lock contention, this execution strategy only acquires read locks
// on rows that match the WHERE clause of the statement. Additionally, the
// smaller per-partition transactions hold locks for less time.
//
// That said, Partitioned DML is not a drop-in replacement for standard DML used
// in ReadWrite transactions.
//
// - The DML statement must be fully-partitionable. Specifically, the statement
// must be expressible as the union of many statements which each access only
// a single row of the table.
//
// - The statement is not applied atomically to all rows of the table. Rather,
// the statement is applied atomically to partitions of the table, in
// independent transactions. Secondary index rows are updated atomically
// with the base table rows.
//
// - Partitioned DML does not guarantee exactly-once execution semantics
// against a partition. The statement will be applied at least once to each
// partition. It is strongly recommended that the DML statement should be
// idempotent to avoid unexpected results. For instance, it is potentially
// dangerous to run a statement such as
// `UPDATE table SET column = column + 1` as it could be run multiple times
// against some rows.
//
// - The partitions are committed automatically - there is no support for
// Commit or Rollback. If the call returns an error, or if the client issuing
// the ExecuteSql call dies, it is possible that some rows had the statement
// executed on them successfully. It is also possible that statement was
// never executed against other rows.
//
// - Partitioned DML transactions may only contain the execution of a single
// DML statement via ExecuteSql or ExecuteStreamingSql.
//
// - If any error is encountered during the execution of the partitioned DML
// operation (for instance, a UNIQUE INDEX violation, division by zero, or a
// value that cannot be stored due to schema constraints), then the
// operation is stopped at that point and an error is returned. It is
// possible that at this point, some partitions have been committed (or even
// committed multiple times), and other partitions have not been run at all.
//
// Given the above, Partitioned DML is good fit for large, database-wide,
// operations that are idempotent, such as deleting old rows from a very large
// table.
type TransactionOptions struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
// Required. The type of transaction.
//
// Types that are assignable to Mode:
// *TransactionOptions_ReadWrite_
// *TransactionOptions_PartitionedDml_
// *TransactionOptions_ReadOnly_
Mode isTransactionOptions_Mode `protobuf_oneof:"mode"`
}
func (x *TransactionOptions) Reset() {
*x = TransactionOptions{}
if protoimpl.UnsafeEnabled {
mi := &file_google_spanner_v1_transaction_proto_msgTypes[0]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *TransactionOptions) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*TransactionOptions) ProtoMessage() {}
func (x *TransactionOptions) ProtoReflect() protoreflect.Message {
mi := &file_google_spanner_v1_transaction_proto_msgTypes[0]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use TransactionOptions.ProtoReflect.Descriptor instead.
func (*TransactionOptions) Descriptor() ([]byte, []int) {
return file_google_spanner_v1_transaction_proto_rawDescGZIP(), []int{0}
}
func (m *TransactionOptions) GetMode() isTransactionOptions_Mode {
if m != nil {
return m.Mode
}
return nil
}
func (x *TransactionOptions) GetReadWrite() *TransactionOptions_ReadWrite {
if x, ok := x.GetMode().(*TransactionOptions_ReadWrite_); ok {
return x.ReadWrite
}
return nil
}
func (x *TransactionOptions) GetPartitionedDml() *TransactionOptions_PartitionedDml {
if x, ok := x.GetMode().(*TransactionOptions_PartitionedDml_); ok {
return x.PartitionedDml
}
return nil
}
func (x *TransactionOptions) GetReadOnly() *TransactionOptions_ReadOnly {
if x, ok := x.GetMode().(*TransactionOptions_ReadOnly_); ok {
return x.ReadOnly
}
return nil
}
type isTransactionOptions_Mode interface {
isTransactionOptions_Mode()
}
type TransactionOptions_ReadWrite_ struct {
// Transaction may write.
//
// Authorization to begin a read-write transaction requires
// `spanner.databases.beginOrRollbackReadWriteTransaction` permission
// on the `session` resource.
ReadWrite *TransactionOptions_ReadWrite `protobuf:"bytes,1,opt,name=read_write,json=readWrite,proto3,oneof"`
}
type TransactionOptions_PartitionedDml_ struct {
// Partitioned DML transaction.
//
// Authorization to begin a Partitioned DML transaction requires
// `spanner.databases.beginPartitionedDmlTransaction` permission
// on the `session` resource.
PartitionedDml *TransactionOptions_PartitionedDml `protobuf:"bytes,3,opt,name=partitioned_dml,json=partitionedDml,proto3,oneof"`
}
type TransactionOptions_ReadOnly_ struct {
// Transaction will not write.
//
// Authorization to begin a read-only transaction requires
// `spanner.databases.beginReadOnlyTransaction` permission
// on the `session` resource.
ReadOnly *TransactionOptions_ReadOnly `protobuf:"bytes,2,opt,name=read_only,json=readOnly,proto3,oneof"`
}
func (*TransactionOptions_ReadWrite_) isTransactionOptions_Mode() {}
func (*TransactionOptions_PartitionedDml_) isTransactionOptions_Mode() {}
func (*TransactionOptions_ReadOnly_) isTransactionOptions_Mode() {}
// A transaction.
type Transaction struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
// `id` may be used to identify the transaction in subsequent
// [Read][google.spanner.v1.Spanner.Read],
// [ExecuteSql][google.spanner.v1.Spanner.ExecuteSql],
// [Commit][google.spanner.v1.Spanner.Commit], or
// [Rollback][google.spanner.v1.Spanner.Rollback] calls.
//
// Single-use read-only transactions do not have IDs, because
// single-use transactions do not support multiple requests.
Id []byte `protobuf:"bytes,1,opt,name=id,proto3" json:"id,omitempty"`
// For snapshot read-only transactions, the read timestamp chosen
// for the transaction. Not returned by default: see
// [TransactionOptions.ReadOnly.return_read_timestamp][google.spanner.v1.TransactionOptions.ReadOnly.return_read_timestamp].
//
// A timestamp in RFC3339 UTC \"Zulu\" format, accurate to nanoseconds.
// Example: `"2014-10-02T15:01:23.045123456Z"`.
ReadTimestamp *timestamp.Timestamp `protobuf:"bytes,2,opt,name=read_timestamp,json=readTimestamp,proto3" json:"read_timestamp,omitempty"`
}
func (x *Transaction) Reset() {
*x = Transaction{}
if protoimpl.UnsafeEnabled {
mi := &file_google_spanner_v1_transaction_proto_msgTypes[1]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *Transaction) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*Transaction) ProtoMessage() {}
func (x *Transaction) ProtoReflect() protoreflect.Message {
mi := &file_google_spanner_v1_transaction_proto_msgTypes[1]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use Transaction.ProtoReflect.Descriptor instead.
func (*Transaction) Descriptor() ([]byte, []int) {
return file_google_spanner_v1_transaction_proto_rawDescGZIP(), []int{1}
}
func (x *Transaction) GetId() []byte {
if x != nil {
return x.Id
}
return nil
}
func (x *Transaction) GetReadTimestamp() *timestamp.Timestamp {
if x != nil {
return x.ReadTimestamp
}
return nil
}
// This message is used to select the transaction in which a
// [Read][google.spanner.v1.Spanner.Read] or
// [ExecuteSql][google.spanner.v1.Spanner.ExecuteSql] call runs.
//
// See [TransactionOptions][google.spanner.v1.TransactionOptions] for more information about transactions.
type TransactionSelector struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
// If no fields are set, the default is a single use transaction
// with strong concurrency.
//
// Types that are assignable to Selector:
// *TransactionSelector_SingleUse
// *TransactionSelector_Id
// *TransactionSelector_Begin
Selector isTransactionSelector_Selector `protobuf_oneof:"selector"`
}
func (x *TransactionSelector) Reset() {
*x = TransactionSelector{}
if protoimpl.UnsafeEnabled {
mi := &file_google_spanner_v1_transaction_proto_msgTypes[2]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *TransactionSelector) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*TransactionSelector) ProtoMessage() {}
func (x *TransactionSelector) ProtoReflect() protoreflect.Message {
mi := &file_google_spanner_v1_transaction_proto_msgTypes[2]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use TransactionSelector.ProtoReflect.Descriptor instead.
func (*TransactionSelector) Descriptor() ([]byte, []int) {
return file_google_spanner_v1_transaction_proto_rawDescGZIP(), []int{2}
}
func (m *TransactionSelector) GetSelector() isTransactionSelector_Selector {
if m != nil {
return m.Selector
}
return nil
}
func (x *TransactionSelector) GetSingleUse() *TransactionOptions {
if x, ok := x.GetSelector().(*TransactionSelector_SingleUse); ok {
return x.SingleUse
}
return nil
}
func (x *TransactionSelector) GetId() []byte {
if x, ok := x.GetSelector().(*TransactionSelector_Id); ok {
return x.Id
}
return nil
}
func (x *TransactionSelector) GetBegin() *TransactionOptions {
if x, ok := x.GetSelector().(*TransactionSelector_Begin); ok {
return x.Begin
}
return nil
}
type isTransactionSelector_Selector interface {
isTransactionSelector_Selector()
}
type TransactionSelector_SingleUse struct {
// Execute the read or SQL query in a temporary transaction.
// This is the most efficient way to execute a transaction that
// consists of a single SQL query.
SingleUse *TransactionOptions `protobuf:"bytes,1,opt,name=single_use,json=singleUse,proto3,oneof"`
}
type TransactionSelector_Id struct {
// Execute the read or SQL query in a previously-started transaction.
Id []byte `protobuf:"bytes,2,opt,name=id,proto3,oneof"`
}
type TransactionSelector_Begin struct {
// Begin a new transaction and execute this read or SQL query in
// it. The transaction ID of the new transaction is returned in
// [ResultSetMetadata.transaction][google.spanner.v1.ResultSetMetadata.transaction], which is a [Transaction][google.spanner.v1.Transaction].
Begin *TransactionOptions `protobuf:"bytes,3,opt,name=begin,proto3,oneof"`
}
func (*TransactionSelector_SingleUse) isTransactionSelector_Selector() {}
func (*TransactionSelector_Id) isTransactionSelector_Selector() {}
func (*TransactionSelector_Begin) isTransactionSelector_Selector() {}
// Message type to initiate a read-write transaction. Currently this
// transaction type has no options.
type TransactionOptions_ReadWrite struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
}
func (x *TransactionOptions_ReadWrite) Reset() {
*x = TransactionOptions_ReadWrite{}
if protoimpl.UnsafeEnabled {
mi := &file_google_spanner_v1_transaction_proto_msgTypes[3]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *TransactionOptions_ReadWrite) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*TransactionOptions_ReadWrite) ProtoMessage() {}
func (x *TransactionOptions_ReadWrite) ProtoReflect() protoreflect.Message {
mi := &file_google_spanner_v1_transaction_proto_msgTypes[3]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use TransactionOptions_ReadWrite.ProtoReflect.Descriptor instead.
func (*TransactionOptions_ReadWrite) Descriptor() ([]byte, []int) {
return file_google_spanner_v1_transaction_proto_rawDescGZIP(), []int{0, 0}
}
// Message type to initiate a Partitioned DML transaction.
type TransactionOptions_PartitionedDml struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
}
func (x *TransactionOptions_PartitionedDml) Reset() {
*x = TransactionOptions_PartitionedDml{}
if protoimpl.UnsafeEnabled {
mi := &file_google_spanner_v1_transaction_proto_msgTypes[4]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *TransactionOptions_PartitionedDml) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*TransactionOptions_PartitionedDml) ProtoMessage() {}
func (x *TransactionOptions_PartitionedDml) ProtoReflect() protoreflect.Message {
mi := &file_google_spanner_v1_transaction_proto_msgTypes[4]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use TransactionOptions_PartitionedDml.ProtoReflect.Descriptor instead.
func (*TransactionOptions_PartitionedDml) Descriptor() ([]byte, []int) {
return file_google_spanner_v1_transaction_proto_rawDescGZIP(), []int{0, 1}
}
// Message type to initiate a read-only transaction.
type TransactionOptions_ReadOnly struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
// How to choose the timestamp for the read-only transaction.
//
// Types that are assignable to TimestampBound:
// *TransactionOptions_ReadOnly_Strong
// *TransactionOptions_ReadOnly_MinReadTimestamp
// *TransactionOptions_ReadOnly_MaxStaleness
// *TransactionOptions_ReadOnly_ReadTimestamp
// *TransactionOptions_ReadOnly_ExactStaleness
TimestampBound isTransactionOptions_ReadOnly_TimestampBound `protobuf_oneof:"timestamp_bound"`
// If true, the Cloud Spanner-selected read timestamp is included in
// the [Transaction][google.spanner.v1.Transaction] message that describes the transaction.
ReturnReadTimestamp bool `protobuf:"varint,6,opt,name=return_read_timestamp,json=returnReadTimestamp,proto3" json:"return_read_timestamp,omitempty"`
}
func (x *TransactionOptions_ReadOnly) Reset() {
*x = TransactionOptions_ReadOnly{}
if protoimpl.UnsafeEnabled {
mi := &file_google_spanner_v1_transaction_proto_msgTypes[5]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *TransactionOptions_ReadOnly) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*TransactionOptions_ReadOnly) ProtoMessage() {}
func (x *TransactionOptions_ReadOnly) ProtoReflect() protoreflect.Message {
mi := &file_google_spanner_v1_transaction_proto_msgTypes[5]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use TransactionOptions_ReadOnly.ProtoReflect.Descriptor instead.
func (*TransactionOptions_ReadOnly) Descriptor() ([]byte, []int) {
return file_google_spanner_v1_transaction_proto_rawDescGZIP(), []int{0, 2}
}
func (m *TransactionOptions_ReadOnly) GetTimestampBound() isTransactionOptions_ReadOnly_TimestampBound {
if m != nil {
return m.TimestampBound
}
return nil
}
func (x *TransactionOptions_ReadOnly) GetStrong() bool {
if x, ok := x.GetTimestampBound().(*TransactionOptions_ReadOnly_Strong); ok {
return x.Strong
}
return false
}
func (x *TransactionOptions_ReadOnly) GetMinReadTimestamp() *timestamp.Timestamp {
if x, ok := x.GetTimestampBound().(*TransactionOptions_ReadOnly_MinReadTimestamp); ok {
return x.MinReadTimestamp
}
return nil
}
func (x *TransactionOptions_ReadOnly) GetMaxStaleness() *duration.Duration {
if x, ok := x.GetTimestampBound().(*TransactionOptions_ReadOnly_MaxStaleness); ok {
return x.MaxStaleness
}
return nil
}
func (x *TransactionOptions_ReadOnly) GetReadTimestamp() *timestamp.Timestamp {
if x, ok := x.GetTimestampBound().(*TransactionOptions_ReadOnly_ReadTimestamp); ok {
return x.ReadTimestamp
}
return nil
}
func (x *TransactionOptions_ReadOnly) GetExactStaleness() *duration.Duration {
if x, ok := x.GetTimestampBound().(*TransactionOptions_ReadOnly_ExactStaleness); ok {
return x.ExactStaleness
}
return nil
}
func (x *TransactionOptions_ReadOnly) GetReturnReadTimestamp() bool {
if x != nil {
return x.ReturnReadTimestamp
}
return false
}
type isTransactionOptions_ReadOnly_TimestampBound interface {
isTransactionOptions_ReadOnly_TimestampBound()
}
type TransactionOptions_ReadOnly_Strong struct {
// Read at a timestamp where all previously committed transactions
// are visible.
Strong bool `protobuf:"varint,1,opt,name=strong,proto3,oneof"`
}
type TransactionOptions_ReadOnly_MinReadTimestamp struct {
// Executes all reads at a timestamp >= `min_read_timestamp`.
//
// This is useful for requesting fresher data than some previous
// read, or data that is fresh enough to observe the effects of some
// previously committed transaction whose timestamp is known.
//
// Note that this option can only be used in single-use transactions.
//
// A timestamp in RFC3339 UTC \"Zulu\" format, accurate to nanoseconds.
// Example: `"2014-10-02T15:01:23.045123456Z"`.
MinReadTimestamp *timestamp.Timestamp `protobuf:"bytes,2,opt,name=min_read_timestamp,json=minReadTimestamp,proto3,oneof"`
}
type TransactionOptions_ReadOnly_MaxStaleness struct {
// Read data at a timestamp >= `NOW - max_staleness`
// seconds. Guarantees that all writes that have committed more
// than the specified number of seconds ago are visible. Because
// Cloud Spanner chooses the exact timestamp, this mode works even if
// the client's local clock is substantially skewed from Cloud Spanner
// commit timestamps.
//
// Useful for reading the freshest data available at a nearby
// replica, while bounding the possible staleness if the local
// replica has fallen behind.
//
// Note that this option can only be used in single-use
// transactions.
MaxStaleness *duration.Duration `protobuf:"bytes,3,opt,name=max_staleness,json=maxStaleness,proto3,oneof"`
}
type TransactionOptions_ReadOnly_ReadTimestamp struct {
// Executes all reads at the given timestamp. Unlike other modes,
// reads at a specific timestamp are repeatable; the same read at
// the same timestamp always returns the same data. If the
// timestamp is in the future, the read will block until the
// specified timestamp, modulo the read's deadline.
//
// Useful for large scale consistent reads such as mapreduces, or
// for coordinating many reads against a consistent snapshot of the
// data.
//
// A timestamp in RFC3339 UTC \"Zulu\" format, accurate to nanoseconds.
// Example: `"2014-10-02T15:01:23.045123456Z"`.
ReadTimestamp *timestamp.Timestamp `protobuf:"bytes,4,opt,name=read_timestamp,json=readTimestamp,proto3,oneof"`
}
type TransactionOptions_ReadOnly_ExactStaleness struct {
// Executes all reads at a timestamp that is `exact_staleness`
// old. The timestamp is chosen soon after the read is started.
//
// Guarantees that all writes that have committed more than the
// specified number of seconds ago are visible. Because Cloud Spanner
// chooses the exact timestamp, this mode works even if the client's
// local clock is substantially skewed from Cloud Spanner commit
// timestamps.
//
// Useful for reading at nearby replicas without the distributed
// timestamp negotiation overhead of `max_staleness`.
ExactStaleness *duration.Duration `protobuf:"bytes,5,opt,name=exact_staleness,json=exactStaleness,proto3,oneof"`
}
func (*TransactionOptions_ReadOnly_Strong) isTransactionOptions_ReadOnly_TimestampBound() {}
func (*TransactionOptions_ReadOnly_MinReadTimestamp) isTransactionOptions_ReadOnly_TimestampBound() {}
func (*TransactionOptions_ReadOnly_MaxStaleness) isTransactionOptions_ReadOnly_TimestampBound() {}
func (*TransactionOptions_ReadOnly_ReadTimestamp) isTransactionOptions_ReadOnly_TimestampBound() {}
func (*TransactionOptions_ReadOnly_ExactStaleness) isTransactionOptions_ReadOnly_TimestampBound() {}
var File_google_spanner_v1_transaction_proto protoreflect.FileDescriptor
var file_google_spanner_v1_transaction_proto_rawDesc = []byte{
0x0a, 0x23, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2f, 0x73, 0x70, 0x61, 0x6e, 0x6e, 0x65, 0x72,
0x2f, 0x76, 0x31, 0x2f, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x61, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x2e,
0x70, 0x72, 0x6f, 0x74, 0x6f, 0x12, 0x11, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2e, 0x73, 0x70,
0x61, 0x6e, 0x6e, 0x65, 0x72, 0x2e, 0x76, 0x31, 0x1a, 0x1e, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65,
0x2f, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x62, 0x75, 0x66, 0x2f, 0x64, 0x75, 0x72, 0x61, 0x74, 0x69,
0x6f, 0x6e, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x1a, 0x1f, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65,
0x2f, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x62, 0x75, 0x66, 0x2f, 0x74, 0x69, 0x6d, 0x65, 0x73, 0x74,
0x61, 0x6d, 0x70, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x1a, 0x1c, 0x67, 0x6f, 0x6f, 0x67, 0x6c,
0x65, 0x2f, 0x61, 0x70, 0x69, 0x2f, 0x61, 0x6e, 0x6e, 0x6f, 0x74, 0x61, 0x74, 0x69, 0x6f, 0x6e,
0x73, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x22, 0xc4, 0x05, 0x0a, 0x12, 0x54, 0x72, 0x61, 0x6e,
0x73, 0x61, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x4f, 0x70, 0x74, 0x69, 0x6f, 0x6e, 0x73, 0x12, 0x50,
0x0a, 0x0a, 0x72, 0x65, 0x61, 0x64, 0x5f, 0x77, 0x72, 0x69, 0x74, 0x65, 0x18, 0x01, 0x20, 0x01,
0x28, 0x0b, 0x32, 0x2f, 0x2e, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2e, 0x73, 0x70, 0x61, 0x6e,
0x6e, 0x65, 0x72, 0x2e, 0x76, 0x31, 0x2e, 0x54, 0x72, 0x61, 0x6e, 0x73, 0x61, 0x63, 0x74, 0x69,
0x6f, 0x6e, 0x4f, 0x70, 0x74, 0x69, 0x6f, 0x6e, 0x73, 0x2e, 0x52, 0x65, 0x61, 0x64, 0x57, 0x72,
0x69, 0x74, 0x65, 0x48, 0x00, 0x52, 0x09, 0x72, 0x65, 0x61, 0x64, 0x57, 0x72, 0x69, 0x74, 0x65,
0x12, 0x5f, 0x0a, 0x0f, 0x70, 0x61, 0x72, 0x74, 0x69, 0x74, 0x69, 0x6f, 0x6e, 0x65, 0x64, 0x5f,
0x64, 0x6d, 0x6c, 0x18, 0x03, 0x20, 0x01, 0x28, 0x0b, 0x32, 0x34, 0x2e, 0x67, 0x6f, 0x6f, 0x67,
0x6c, 0x65, 0x2e, 0x73, 0x70, 0x61, 0x6e, 0x6e, 0x65, 0x72, 0x2e, 0x76, 0x31, 0x2e, 0x54, 0x72,
0x61, 0x6e, 0x73, 0x61, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x4f, 0x70, 0x74, 0x69, 0x6f, 0x6e, 0x73,
0x2e, 0x50, 0x61, 0x72, 0x74, 0x69, 0x74, 0x69, 0x6f, 0x6e, 0x65, 0x64, 0x44, 0x6d, 0x6c, 0x48,
0x00, 0x52, 0x0e, 0x70, 0x61, 0x72, 0x74, 0x69, 0x74, 0x69, 0x6f, 0x6e, 0x65, 0x64, 0x44, 0x6d,
0x6c, 0x12, 0x4d, 0x0a, 0x09, 0x72, 0x65, 0x61, 0x64, 0x5f, 0x6f, 0x6e, 0x6c, 0x79, 0x18, 0x02,
0x20, 0x01, 0x28, 0x0b, 0x32, 0x2e, 0x2e, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2e, 0x73, 0x70,
0x61, 0x6e, 0x6e, 0x65, 0x72, 0x2e, 0x76, 0x31, 0x2e, 0x54, 0x72, 0x61, 0x6e, 0x73, 0x61, 0x63,
0x74, 0x69, 0x6f, 0x6e, 0x4f, 0x70, 0x74, 0x69, 0x6f, 0x6e, 0x73, 0x2e, 0x52, 0x65, 0x61, 0x64,
0x4f, 0x6e, 0x6c, 0x79, 0x48, 0x00, 0x52, 0x08, 0x72, 0x65, 0x61, 0x64, 0x4f, 0x6e, 0x6c, 0x79,
0x1a, 0x0b, 0x0a, 0x09, 0x52, 0x65, 0x61, 0x64, 0x57, 0x72, 0x69, 0x74, 0x65, 0x1a, 0x10, 0x0a,
0x0e, 0x50, 0x61, 0x72, 0x74, 0x69, 0x74, 0x69, 0x6f, 0x6e, 0x65, 0x64, 0x44, 0x6d, 0x6c, 0x1a,
0x84, 0x03, 0x0a, 0x08, 0x52, 0x65, 0x61, 0x64, 0x4f, 0x6e, 0x6c, 0x79, 0x12, 0x18, 0x0a, 0x06,
0x73, 0x74, 0x72, 0x6f, 0x6e, 0x67, 0x18, 0x01, 0x20, 0x01, 0x28, 0x08, 0x48, 0x00, 0x52, 0x06,
0x73, 0x74, 0x72, 0x6f, 0x6e, 0x67, 0x12, 0x4a, 0x0a, 0x12, 0x6d, 0x69, 0x6e, 0x5f, 0x72, 0x65,
0x61, 0x64, 0x5f, 0x74, 0x69, 0x6d, 0x65, 0x73, 0x74, 0x61, 0x6d, 0x70, 0x18, 0x02, 0x20, 0x01,
0x28, 0x0b, 0x32, 0x1a, 0x2e, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2e, 0x70, 0x72, 0x6f, 0x74,
0x6f, 0x62, 0x75, 0x66, 0x2e, 0x54, 0x69, 0x6d, 0x65, 0x73, 0x74, 0x61, 0x6d, 0x70, 0x48, 0x00,
0x52, 0x10, 0x6d, 0x69, 0x6e, 0x52, 0x65, 0x61, 0x64, 0x54, 0x69, 0x6d, 0x65, 0x73, 0x74, 0x61,
0x6d, 0x70, 0x12, 0x40, 0x0a, 0x0d, 0x6d, 0x61, 0x78, 0x5f, 0x73, 0x74, 0x61, 0x6c, 0x65, 0x6e,
0x65, 0x73, 0x73, 0x18, 0x03, 0x20, 0x01, 0x28, 0x0b, 0x32, 0x19, 0x2e, 0x67, 0x6f, 0x6f, 0x67,
0x6c, 0x65, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x62, 0x75, 0x66, 0x2e, 0x44, 0x75, 0x72, 0x61,
0x74, 0x69, 0x6f, 0x6e, 0x48, 0x00, 0x52, 0x0c, 0x6d, 0x61, 0x78, 0x53, 0x74, 0x61, 0x6c, 0x65,
0x6e, 0x65, 0x73, 0x73, 0x12, 0x43, 0x0a, 0x0e, 0x72, 0x65, 0x61, 0x64, 0x5f, 0x74, 0x69, 0x6d,
0x65, 0x73, 0x74, 0x61, 0x6d, 0x70, 0x18, 0x04, 0x20, 0x01, 0x28, 0x0b, 0x32, 0x1a, 0x2e, 0x67,
0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x62, 0x75, 0x66, 0x2e, 0x54,
0x69, 0x6d, 0x65, 0x73, 0x74, 0x61, 0x6d, 0x70, 0x48, 0x00, 0x52, 0x0d, 0x72, 0x65, 0x61, 0x64,
0x54, 0x69, 0x6d, 0x65, 0x73, 0x74, 0x61, 0x6d, 0x70, 0x12, 0x44, 0x0a, 0x0f, 0x65, 0x78, 0x61,
0x63, 0x74, 0x5f, 0x73, 0x74, 0x61, 0x6c, 0x65, 0x6e, 0x65, 0x73, 0x73, 0x18, 0x05, 0x20, 0x01,
0x28, 0x0b, 0x32, 0x19, 0x2e, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2e, 0x70, 0x72, 0x6f, 0x74,
0x6f, 0x62, 0x75, 0x66, 0x2e, 0x44, 0x75, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x48, 0x00, 0x52,
0x0e, 0x65, 0x78, 0x61, 0x63, 0x74, 0x53, 0x74, 0x61, 0x6c, 0x65, 0x6e, 0x65, 0x73, 0x73, 0x12,
0x32, 0x0a, 0x15, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x5f, 0x72, 0x65, 0x61, 0x64, 0x5f, 0x74,
0x69, 0x6d, 0x65, 0x73, 0x74, 0x61, 0x6d, 0x70, 0x18, 0x06, 0x20, 0x01, 0x28, 0x08, 0x52, 0x13,
0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x52, 0x65, 0x61, 0x64, 0x54, 0x69, 0x6d, 0x65, 0x73, 0x74,
0x61, 0x6d, 0x70, 0x42, 0x11, 0x0a, 0x0f, 0x74, 0x69, 0x6d, 0x65, 0x73, 0x74, 0x61, 0x6d, 0x70,
0x5f, 0x62, 0x6f, 0x75, 0x6e, 0x64, 0x42, 0x06, 0x0a, 0x04, 0x6d, 0x6f, 0x64, 0x65, 0x22, 0x60,
0x0a, 0x0b, 0x54, 0x72, 0x61, 0x6e, 0x73, 0x61, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x12, 0x0e, 0x0a,
0x02, 0x69, 0x64, 0x18, 0x01, 0x20, 0x01, 0x28, 0x0c, 0x52, 0x02, 0x69, 0x64, 0x12, 0x41, 0x0a,
0x0e, 0x72, 0x65, 0x61, 0x64, 0x5f, 0x74, 0x69, 0x6d, 0x65, 0x73, 0x74, 0x61, 0x6d, 0x70, 0x18,
0x02, 0x20, 0x01, 0x28, 0x0b, 0x32, 0x1a, 0x2e, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2e, 0x70,
0x72, 0x6f, 0x74, 0x6f, 0x62, 0x75, 0x66, 0x2e, 0x54, 0x69, 0x6d, 0x65, 0x73, 0x74, 0x61, 0x6d,
0x70, 0x52, 0x0d, 0x72, 0x65, 0x61, 0x64, 0x54, 0x69, 0x6d, 0x65, 0x73, 0x74, 0x61, 0x6d, 0x70,
0x22, 0xba, 0x01, 0x0a, 0x13, 0x54, 0x72, 0x61, 0x6e, 0x73, 0x61, 0x63, 0x74, 0x69, 0x6f, 0x6e,
0x53, 0x65, 0x6c, 0x65, 0x63, 0x74, 0x6f, 0x72, 0x12, 0x46, 0x0a, 0x0a, 0x73, 0x69, 0x6e, 0x67,
0x6c, 0x65, 0x5f, 0x75, 0x73, 0x65, 0x18, 0x01, 0x20, 0x01, 0x28, 0x0b, 0x32, 0x25, 0x2e, 0x67,
0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2e, 0x73, 0x70, 0x61, 0x6e, 0x6e, 0x65, 0x72, 0x2e, 0x76, 0x31,
0x2e, 0x54, 0x72, 0x61, 0x6e, 0x73, 0x61, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x4f, 0x70, 0x74, 0x69,
0x6f, 0x6e, 0x73, 0x48, 0x00, 0x52, 0x09, 0x73, 0x69, 0x6e, 0x67, 0x6c, 0x65, 0x55, 0x73, 0x65,
0x12, 0x10, 0x0a, 0x02, 0x69, 0x64, 0x18, 0x02, 0x20, 0x01, 0x28, 0x0c, 0x48, 0x00, 0x52, 0x02,
0x69, 0x64, 0x12, 0x3d, 0x0a, 0x05, 0x62, 0x65, 0x67, 0x69, 0x6e, 0x18, 0x03, 0x20, 0x01, 0x28,
0x0b, 0x32, 0x25, 0x2e, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2e, 0x73, 0x70, 0x61, 0x6e, 0x6e,
0x65, 0x72, 0x2e, 0x76, 0x31, 0x2e, 0x54, 0x72, 0x61, 0x6e, 0x73, 0x61, 0x63, 0x74, 0x69, 0x6f,
0x6e, 0x4f, 0x70, 0x74, 0x69, 0x6f, 0x6e, 0x73, 0x48, 0x00, 0x52, 0x05, 0x62, 0x65, 0x67, 0x69,
0x6e, 0x42, 0x0a, 0x0a, 0x08, 0x73, 0x65, 0x6c, 0x65, 0x63, 0x74, 0x6f, 0x72, 0x42, 0xb6, 0x01,
0x0a, 0x15, 0x63, 0x6f, 0x6d, 0x2e, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2e, 0x73, 0x70, 0x61,
0x6e, 0x6e, 0x65, 0x72, 0x2e, 0x76, 0x31, 0x42, 0x10, 0x54, 0x72, 0x61, 0x6e, 0x73, 0x61, 0x63,
0x74, 0x69, 0x6f, 0x6e, 0x50, 0x72, 0x6f, 0x74, 0x6f, 0x50, 0x01, 0x5a, 0x38, 0x67, 0x6f, 0x6f,
0x67, 0x6c, 0x65, 0x2e, 0x67, 0x6f, 0x6c, 0x61, 0x6e, 0x67, 0x2e, 0x6f, 0x72, 0x67, 0x2f, 0x67,
0x65, 0x6e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x2f, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x61, 0x70,
0x69, 0x73, 0x2f, 0x73, 0x70, 0x61, 0x6e, 0x6e, 0x65, 0x72, 0x2f, 0x76, 0x31, 0x3b, 0x73, 0x70,
0x61, 0x6e, 0x6e, 0x65, 0x72, 0xaa, 0x02, 0x17, 0x47, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2e, 0x43,
0x6c, 0x6f, 0x75, 0x64, 0x2e, 0x53, 0x70, 0x61, 0x6e, 0x6e, 0x65, 0x72, 0x2e, 0x56, 0x31, 0xca,
0x02, 0x17, 0x47, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x5c, 0x43, 0x6c, 0x6f, 0x75, 0x64, 0x5c, 0x53,
0x70, 0x61, 0x6e, 0x6e, 0x65, 0x72, 0x5c, 0x56, 0x31, 0xea, 0x02, 0x1a, 0x47, 0x6f, 0x6f, 0x67,
0x6c, 0x65, 0x3a, 0x3a, 0x43, 0x6c, 0x6f, 0x75, 0x64, 0x3a, 0x3a, 0x53, 0x70, 0x61, 0x6e, 0x6e,
0x65, 0x72, 0x3a, 0x3a, 0x56, 0x31, 0x62, 0x06, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x33,
}
var (
file_google_spanner_v1_transaction_proto_rawDescOnce sync.Once
file_google_spanner_v1_transaction_proto_rawDescData = file_google_spanner_v1_transaction_proto_rawDesc
)
func file_google_spanner_v1_transaction_proto_rawDescGZIP() []byte {
file_google_spanner_v1_transaction_proto_rawDescOnce.Do(func() {
file_google_spanner_v1_transaction_proto_rawDescData = protoimpl.X.CompressGZIP(file_google_spanner_v1_transaction_proto_rawDescData)
})
return file_google_spanner_v1_transaction_proto_rawDescData
}
var file_google_spanner_v1_transaction_proto_msgTypes = make([]protoimpl.MessageInfo, 6)
var file_google_spanner_v1_transaction_proto_goTypes = []interface{}{
(*TransactionOptions)(nil), // 0: google.spanner.v1.TransactionOptions
(*Transaction)(nil), // 1: google.spanner.v1.Transaction
(*TransactionSelector)(nil), // 2: google.spanner.v1.TransactionSelector
(*TransactionOptions_ReadWrite)(nil), // 3: google.spanner.v1.TransactionOptions.ReadWrite
(*TransactionOptions_PartitionedDml)(nil), // 4: google.spanner.v1.TransactionOptions.PartitionedDml
(*TransactionOptions_ReadOnly)(nil), // 5: google.spanner.v1.TransactionOptions.ReadOnly
(*timestamp.Timestamp)(nil), // 6: google.protobuf.Timestamp
(*duration.Duration)(nil), // 7: google.protobuf.Duration
}
var file_google_spanner_v1_transaction_proto_depIdxs = []int32{
3, // 0: google.spanner.v1.TransactionOptions.read_write:type_name -> google.spanner.v1.TransactionOptions.ReadWrite
4, // 1: google.spanner.v1.TransactionOptions.partitioned_dml:type_name -> google.spanner.v1.TransactionOptions.PartitionedDml
5, // 2: google.spanner.v1.TransactionOptions.read_only:type_name -> google.spanner.v1.TransactionOptions.ReadOnly
6, // 3: google.spanner.v1.Transaction.read_timestamp:type_name -> google.protobuf.Timestamp
0, // 4: google.spanner.v1.TransactionSelector.single_use:type_name -> google.spanner.v1.TransactionOptions
0, // 5: google.spanner.v1.TransactionSelector.begin:type_name -> google.spanner.v1.TransactionOptions
6, // 6: google.spanner.v1.TransactionOptions.ReadOnly.min_read_timestamp:type_name -> google.protobuf.Timestamp
7, // 7: google.spanner.v1.TransactionOptions.ReadOnly.max_staleness:type_name -> google.protobuf.Duration
6, // 8: google.spanner.v1.TransactionOptions.ReadOnly.read_timestamp:type_name -> google.protobuf.Timestamp
7, // 9: google.spanner.v1.TransactionOptions.ReadOnly.exact_staleness:type_name -> google.protobuf.Duration
10, // [10:10] is the sub-list for method output_type
10, // [10:10] is the sub-list for method input_type
10, // [10:10] is the sub-list for extension type_name
10, // [10:10] is the sub-list for extension extendee
0, // [0:10] is the sub-list for field type_name
}
func init() { file_google_spanner_v1_transaction_proto_init() }
func file_google_spanner_v1_transaction_proto_init() {
if File_google_spanner_v1_transaction_proto != nil {
return
}
if !protoimpl.UnsafeEnabled {
file_google_spanner_v1_transaction_proto_msgTypes[0].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*TransactionOptions); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
file_google_spanner_v1_transaction_proto_msgTypes[1].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*Transaction); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
file_google_spanner_v1_transaction_proto_msgTypes[2].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*TransactionSelector); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
file_google_spanner_v1_transaction_proto_msgTypes[3].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*TransactionOptions_ReadWrite); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
file_google_spanner_v1_transaction_proto_msgTypes[4].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*TransactionOptions_PartitionedDml); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
file_google_spanner_v1_transaction_proto_msgTypes[5].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*TransactionOptions_ReadOnly); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
}
file_google_spanner_v1_transaction_proto_msgTypes[0].OneofWrappers = []interface{}{
(*TransactionOptions_ReadWrite_)(nil),
(*TransactionOptions_PartitionedDml_)(nil),
(*TransactionOptions_ReadOnly_)(nil),
}
file_google_spanner_v1_transaction_proto_msgTypes[2].OneofWrappers = []interface{}{
(*TransactionSelector_SingleUse)(nil),
(*TransactionSelector_Id)(nil),
(*TransactionSelector_Begin)(nil),
}
file_google_spanner_v1_transaction_proto_msgTypes[5].OneofWrappers = []interface{}{
(*TransactionOptions_ReadOnly_Strong)(nil),
(*TransactionOptions_ReadOnly_MinReadTimestamp)(nil),
(*TransactionOptions_ReadOnly_MaxStaleness)(nil),
(*TransactionOptions_ReadOnly_ReadTimestamp)(nil),
(*TransactionOptions_ReadOnly_ExactStaleness)(nil),
}
type x struct{}
out := protoimpl.TypeBuilder{
File: protoimpl.DescBuilder{
GoPackagePath: reflect.TypeOf(x{}).PkgPath(),
RawDescriptor: file_google_spanner_v1_transaction_proto_rawDesc,
NumEnums: 0,
NumMessages: 6,
NumExtensions: 0,
NumServices: 0,
},
GoTypes: file_google_spanner_v1_transaction_proto_goTypes,
DependencyIndexes: file_google_spanner_v1_transaction_proto_depIdxs,
MessageInfos: file_google_spanner_v1_transaction_proto_msgTypes,
}.Build()
File_google_spanner_v1_transaction_proto = out.File
file_google_spanner_v1_transaction_proto_rawDesc = nil
file_google_spanner_v1_transaction_proto_goTypes = nil
file_google_spanner_v1_transaction_proto_depIdxs = nil
}