blob: 31e278c90e8c7d6e9dae1e36b71c391c61c2b9ae [file] [log] [blame]
// Code generated by protoc-gen-go. DO NOT EDIT.
// source: google/monitoring/v3/common.proto
package monitoring
import (
fmt "fmt"
math "math"
proto "github.com/golang/protobuf/proto"
duration "github.com/golang/protobuf/ptypes/duration"
timestamp "github.com/golang/protobuf/ptypes/timestamp"
distribution "google.golang.org/genproto/googleapis/api/distribution"
)
// Reference imports to suppress errors if they are not otherwise used.
var _ = proto.Marshal
var _ = fmt.Errorf
var _ = math.Inf
// This is a compile-time assertion to ensure that this generated file
// is compatible with the proto package it is being compiled against.
// A compilation error at this line likely means your copy of the
// proto package needs to be updated.
const _ = proto.ProtoPackageIsVersion3 // please upgrade the proto package
// Specifies an ordering relationship on two arguments, called `left` and
// `right`.
type ComparisonType int32
const (
// No ordering relationship is specified.
ComparisonType_COMPARISON_UNSPECIFIED ComparisonType = 0
// True if the left argument is greater than the right argument.
ComparisonType_COMPARISON_GT ComparisonType = 1
// True if the left argument is greater than or equal to the right argument.
ComparisonType_COMPARISON_GE ComparisonType = 2
// True if the left argument is less than the right argument.
ComparisonType_COMPARISON_LT ComparisonType = 3
// True if the left argument is less than or equal to the right argument.
ComparisonType_COMPARISON_LE ComparisonType = 4
// True if the left argument is equal to the right argument.
ComparisonType_COMPARISON_EQ ComparisonType = 5
// True if the left argument is not equal to the right argument.
ComparisonType_COMPARISON_NE ComparisonType = 6
)
var ComparisonType_name = map[int32]string{
0: "COMPARISON_UNSPECIFIED",
1: "COMPARISON_GT",
2: "COMPARISON_GE",
3: "COMPARISON_LT",
4: "COMPARISON_LE",
5: "COMPARISON_EQ",
6: "COMPARISON_NE",
}
var ComparisonType_value = map[string]int32{
"COMPARISON_UNSPECIFIED": 0,
"COMPARISON_GT": 1,
"COMPARISON_GE": 2,
"COMPARISON_LT": 3,
"COMPARISON_LE": 4,
"COMPARISON_EQ": 5,
"COMPARISON_NE": 6,
}
func (x ComparisonType) String() string {
return proto.EnumName(ComparisonType_name, int32(x))
}
func (ComparisonType) EnumDescriptor() ([]byte, []int) {
return fileDescriptor_013c57c1dcbb8d65, []int{0}
}
// The tier of service for a Workspace. Please see the
// [service tiers
// documentation](https://cloud.google.com/monitoring/workspaces/tiers) for more
// details.
type ServiceTier int32 // Deprecated: Do not use.
const (
// An invalid sentinel value, used to indicate that a tier has not
// been provided explicitly.
ServiceTier_SERVICE_TIER_UNSPECIFIED ServiceTier = 0
// The Stackdriver Basic tier, a free tier of service that provides basic
// features, a moderate allotment of logs, and access to built-in metrics.
// A number of features are not available in this tier. For more details,
// see [the service tiers
// documentation](https://cloud.google.com/monitoring/workspaces/tiers).
ServiceTier_SERVICE_TIER_BASIC ServiceTier = 1
// The Stackdriver Premium tier, a higher, more expensive tier of service
// that provides access to all Stackdriver features, lets you use Stackdriver
// with AWS accounts, and has a larger allotments for logs and metrics. For
// more details, see [the service tiers
// documentation](https://cloud.google.com/monitoring/workspaces/tiers).
ServiceTier_SERVICE_TIER_PREMIUM ServiceTier = 2
)
var ServiceTier_name = map[int32]string{
0: "SERVICE_TIER_UNSPECIFIED",
1: "SERVICE_TIER_BASIC",
2: "SERVICE_TIER_PREMIUM",
}
var ServiceTier_value = map[string]int32{
"SERVICE_TIER_UNSPECIFIED": 0,
"SERVICE_TIER_BASIC": 1,
"SERVICE_TIER_PREMIUM": 2,
}
func (x ServiceTier) String() string {
return proto.EnumName(ServiceTier_name, int32(x))
}
func (ServiceTier) EnumDescriptor() ([]byte, []int) {
return fileDescriptor_013c57c1dcbb8d65, []int{1}
}
// The `Aligner` specifies the operation that will be applied to the data
// points in each alignment period in a time series. Except for
// `ALIGN_NONE`, which specifies that no operation be applied, each alignment
// operation replaces the set of data values in each alignment period with
// a single value: the result of applying the operation to the data values.
// An aligned time series has a single data value at the end of each
// `alignment_period`.
//
// An alignment operation can change the data type of the values, too. For
// example, if you apply a counting operation to boolean values, the data
// `value_type` in the original time series is `BOOLEAN`, but the `value_type`
// in the aligned result is `INT64`.
type Aggregation_Aligner int32
const (
// No alignment. Raw data is returned. Not valid if cross-series reduction
// is requested. The `value_type` of the result is the same as the
// `value_type` of the input.
Aggregation_ALIGN_NONE Aggregation_Aligner = 0
// Align and convert to
// [DELTA][google.api.MetricDescriptor.MetricKind.DELTA].
// The output is `delta = y1 - y0`.
//
// This alignment is valid for
// [CUMULATIVE][google.api.MetricDescriptor.MetricKind.CUMULATIVE] and
// `DELTA` metrics. If the selected alignment period results in periods
// with no data, then the aligned value for such a period is created by
// interpolation. The `value_type` of the aligned result is the same as
// the `value_type` of the input.
Aggregation_ALIGN_DELTA Aggregation_Aligner = 1
// Align and convert to a rate. The result is computed as
// `rate = (y1 - y0)/(t1 - t0)`, or "delta over time".
// Think of this aligner as providing the slope of the line that passes
// through the value at the start and at the end of the `alignment_period`.
//
// This aligner is valid for `CUMULATIVE`
// and `DELTA` metrics with numeric values. If the selected alignment
// period results in periods with no data, then the aligned value for
// such a period is created by interpolation. The output is a `GAUGE`
// metric with `value_type` `DOUBLE`.
//
// If, by "rate", you mean "percentage change", see the
// `ALIGN_PERCENT_CHANGE` aligner instead.
Aggregation_ALIGN_RATE Aggregation_Aligner = 2
// Align by interpolating between adjacent points around the alignment
// period boundary. This aligner is valid for `GAUGE` metrics with
// numeric values. The `value_type` of the aligned result is the same as the
// `value_type` of the input.
Aggregation_ALIGN_INTERPOLATE Aggregation_Aligner = 3
// Align by moving the most recent data point before the end of the
// alignment period to the boundary at the end of the alignment
// period. This aligner is valid for `GAUGE` metrics. The `value_type` of
// the aligned result is the same as the `value_type` of the input.
Aggregation_ALIGN_NEXT_OLDER Aggregation_Aligner = 4
// Align the time series by returning the minimum value in each alignment
// period. This aligner is valid for `GAUGE` and `DELTA` metrics with
// numeric values. The `value_type` of the aligned result is the same as
// the `value_type` of the input.
Aggregation_ALIGN_MIN Aggregation_Aligner = 10
// Align the time series by returning the maximum value in each alignment
// period. This aligner is valid for `GAUGE` and `DELTA` metrics with
// numeric values. The `value_type` of the aligned result is the same as
// the `value_type` of the input.
Aggregation_ALIGN_MAX Aggregation_Aligner = 11
// Align the time series by returning the mean value in each alignment
// period. This aligner is valid for `GAUGE` and `DELTA` metrics with
// numeric values. The `value_type` of the aligned result is `DOUBLE`.
Aggregation_ALIGN_MEAN Aggregation_Aligner = 12
// Align the time series by returning the number of values in each alignment
// period. This aligner is valid for `GAUGE` and `DELTA` metrics with
// numeric or Boolean values. The `value_type` of the aligned result is
// `INT64`.
Aggregation_ALIGN_COUNT Aggregation_Aligner = 13
// Align the time series by returning the sum of the values in each
// alignment period. This aligner is valid for `GAUGE` and `DELTA`
// metrics with numeric and distribution values. The `value_type` of the
// aligned result is the same as the `value_type` of the input.
Aggregation_ALIGN_SUM Aggregation_Aligner = 14
// Align the time series by returning the standard deviation of the values
// in each alignment period. This aligner is valid for `GAUGE` and
// `DELTA` metrics with numeric values. The `value_type` of the output is
// `DOUBLE`.
Aggregation_ALIGN_STDDEV Aggregation_Aligner = 15
// Align the time series by returning the number of `True` values in
// each alignment period. This aligner is valid for `GAUGE` metrics with
// Boolean values. The `value_type` of the output is `INT64`.
Aggregation_ALIGN_COUNT_TRUE Aggregation_Aligner = 16
// Align the time series by returning the number of `False` values in
// each alignment period. This aligner is valid for `GAUGE` metrics with
// Boolean values. The `value_type` of the output is `INT64`.
Aggregation_ALIGN_COUNT_FALSE Aggregation_Aligner = 24
// Align the time series by returning the ratio of the number of `True`
// values to the total number of values in each alignment period. This
// aligner is valid for `GAUGE` metrics with Boolean values. The output
// value is in the range [0.0, 1.0] and has `value_type` `DOUBLE`.
Aggregation_ALIGN_FRACTION_TRUE Aggregation_Aligner = 17
// Align the time series by using [percentile
// aggregation](https://en.wikipedia.org/wiki/Percentile). The resulting
// data point in each alignment period is the 99th percentile of all data
// points in the period. This aligner is valid for `GAUGE` and `DELTA`
// metrics with distribution values. The output is a `GAUGE` metric with
// `value_type` `DOUBLE`.
Aggregation_ALIGN_PERCENTILE_99 Aggregation_Aligner = 18
// Align the time series by using [percentile
// aggregation](https://en.wikipedia.org/wiki/Percentile). The resulting
// data point in each alignment period is the 95th percentile of all data
// points in the period. This aligner is valid for `GAUGE` and `DELTA`
// metrics with distribution values. The output is a `GAUGE` metric with
// `value_type` `DOUBLE`.
Aggregation_ALIGN_PERCENTILE_95 Aggregation_Aligner = 19
// Align the time series by using [percentile
// aggregation](https://en.wikipedia.org/wiki/Percentile). The resulting
// data point in each alignment period is the 50th percentile of all data
// points in the period. This aligner is valid for `GAUGE` and `DELTA`
// metrics with distribution values. The output is a `GAUGE` metric with
// `value_type` `DOUBLE`.
Aggregation_ALIGN_PERCENTILE_50 Aggregation_Aligner = 20
// Align the time series by using [percentile
// aggregation](https://en.wikipedia.org/wiki/Percentile). The resulting
// data point in each alignment period is the 5th percentile of all data
// points in the period. This aligner is valid for `GAUGE` and `DELTA`
// metrics with distribution values. The output is a `GAUGE` metric with
// `value_type` `DOUBLE`.
Aggregation_ALIGN_PERCENTILE_05 Aggregation_Aligner = 21
// Align and convert to a percentage change. This aligner is valid for
// `GAUGE` and `DELTA` metrics with numeric values. This alignment returns
// `((current - previous)/previous) * 100`, where the value of `previous` is
// determined based on the `alignment_period`.
//
// If the values of `current` and `previous` are both 0, then the returned
// value is 0. If only `previous` is 0, the returned value is infinity.
//
// A 10-minute moving mean is computed at each point of the alignment period
// prior to the above calculation to smooth the metric and prevent false
// positives from very short-lived spikes. The moving mean is only
// applicable for data whose values are `>= 0`. Any values `< 0` are
// treated as a missing datapoint, and are ignored. While `DELTA`
// metrics are accepted by this alignment, special care should be taken that
// the values for the metric will always be positive. The output is a
// `GAUGE` metric with `value_type` `DOUBLE`.
Aggregation_ALIGN_PERCENT_CHANGE Aggregation_Aligner = 23
)
var Aggregation_Aligner_name = map[int32]string{
0: "ALIGN_NONE",
1: "ALIGN_DELTA",
2: "ALIGN_RATE",
3: "ALIGN_INTERPOLATE",
4: "ALIGN_NEXT_OLDER",
10: "ALIGN_MIN",
11: "ALIGN_MAX",
12: "ALIGN_MEAN",
13: "ALIGN_COUNT",
14: "ALIGN_SUM",
15: "ALIGN_STDDEV",
16: "ALIGN_COUNT_TRUE",
24: "ALIGN_COUNT_FALSE",
17: "ALIGN_FRACTION_TRUE",
18: "ALIGN_PERCENTILE_99",
19: "ALIGN_PERCENTILE_95",
20: "ALIGN_PERCENTILE_50",
21: "ALIGN_PERCENTILE_05",
23: "ALIGN_PERCENT_CHANGE",
}
var Aggregation_Aligner_value = map[string]int32{
"ALIGN_NONE": 0,
"ALIGN_DELTA": 1,
"ALIGN_RATE": 2,
"ALIGN_INTERPOLATE": 3,
"ALIGN_NEXT_OLDER": 4,
"ALIGN_MIN": 10,
"ALIGN_MAX": 11,
"ALIGN_MEAN": 12,
"ALIGN_COUNT": 13,
"ALIGN_SUM": 14,
"ALIGN_STDDEV": 15,
"ALIGN_COUNT_TRUE": 16,
"ALIGN_COUNT_FALSE": 24,
"ALIGN_FRACTION_TRUE": 17,
"ALIGN_PERCENTILE_99": 18,
"ALIGN_PERCENTILE_95": 19,
"ALIGN_PERCENTILE_50": 20,
"ALIGN_PERCENTILE_05": 21,
"ALIGN_PERCENT_CHANGE": 23,
}
func (x Aggregation_Aligner) String() string {
return proto.EnumName(Aggregation_Aligner_name, int32(x))
}
func (Aggregation_Aligner) EnumDescriptor() ([]byte, []int) {
return fileDescriptor_013c57c1dcbb8d65, []int{2, 0}
}
// A Reducer operation describes how to aggregate data points from multiple
// time series into a single time series, where the value of each data point
// in the resulting series is a function of all the already aligned values in
// the input time series.
type Aggregation_Reducer int32
const (
// No cross-time series reduction. The output of the `Aligner` is
// returned.
Aggregation_REDUCE_NONE Aggregation_Reducer = 0
// Reduce by computing the mean value across time series for each
// alignment period. This reducer is valid for
// [DELTA][google.api.MetricDescriptor.MetricKind.DELTA] and
// [GAUGE][google.api.MetricDescriptor.MetricKind.GAUGE] metrics with
// numeric or distribution values. The `value_type` of the output is
// [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE].
Aggregation_REDUCE_MEAN Aggregation_Reducer = 1
// Reduce by computing the minimum value across time series for each
// alignment period. This reducer is valid for `DELTA` and `GAUGE` metrics
// with numeric values. The `value_type` of the output is the same as the
// `value_type` of the input.
Aggregation_REDUCE_MIN Aggregation_Reducer = 2
// Reduce by computing the maximum value across time series for each
// alignment period. This reducer is valid for `DELTA` and `GAUGE` metrics
// with numeric values. The `value_type` of the output is the same as the
// `value_type` of the input.
Aggregation_REDUCE_MAX Aggregation_Reducer = 3
// Reduce by computing the sum across time series for each
// alignment period. This reducer is valid for `DELTA` and `GAUGE` metrics
// with numeric and distribution values. The `value_type` of the output is
// the same as the `value_type` of the input.
Aggregation_REDUCE_SUM Aggregation_Reducer = 4
// Reduce by computing the standard deviation across time series
// for each alignment period. This reducer is valid for `DELTA` and
// `GAUGE` metrics with numeric or distribution values. The `value_type`
// of the output is `DOUBLE`.
Aggregation_REDUCE_STDDEV Aggregation_Reducer = 5
// Reduce by computing the number of data points across time series
// for each alignment period. This reducer is valid for `DELTA` and
// `GAUGE` metrics of numeric, Boolean, distribution, and string
// `value_type`. The `value_type` of the output is `INT64`.
Aggregation_REDUCE_COUNT Aggregation_Reducer = 6
// Reduce by computing the number of `True`-valued data points across time
// series for each alignment period. This reducer is valid for `DELTA` and
// `GAUGE` metrics of Boolean `value_type`. The `value_type` of the output
// is `INT64`.
Aggregation_REDUCE_COUNT_TRUE Aggregation_Reducer = 7
// Reduce by computing the number of `False`-valued data points across time
// series for each alignment period. This reducer is valid for `DELTA` and
// `GAUGE` metrics of Boolean `value_type`. The `value_type` of the output
// is `INT64`.
Aggregation_REDUCE_COUNT_FALSE Aggregation_Reducer = 15
// Reduce by computing the ratio of the number of `True`-valued data points
// to the total number of data points for each alignment period. This
// reducer is valid for `DELTA` and `GAUGE` metrics of Boolean `value_type`.
// The output value is in the range [0.0, 1.0] and has `value_type`
// `DOUBLE`.
Aggregation_REDUCE_FRACTION_TRUE Aggregation_Reducer = 8
// Reduce by computing the [99th
// percentile](https://en.wikipedia.org/wiki/Percentile) of data points
// across time series for each alignment period. This reducer is valid for
// `GAUGE` and `DELTA` metrics of numeric and distribution type. The value
// of the output is `DOUBLE`.
Aggregation_REDUCE_PERCENTILE_99 Aggregation_Reducer = 9
// Reduce by computing the [95th
// percentile](https://en.wikipedia.org/wiki/Percentile) of data points
// across time series for each alignment period. This reducer is valid for
// `GAUGE` and `DELTA` metrics of numeric and distribution type. The value
// of the output is `DOUBLE`.
Aggregation_REDUCE_PERCENTILE_95 Aggregation_Reducer = 10
// Reduce by computing the [50th
// percentile](https://en.wikipedia.org/wiki/Percentile) of data points
// across time series for each alignment period. This reducer is valid for
// `GAUGE` and `DELTA` metrics of numeric and distribution type. The value
// of the output is `DOUBLE`.
Aggregation_REDUCE_PERCENTILE_50 Aggregation_Reducer = 11
// Reduce by computing the [5th
// percentile](https://en.wikipedia.org/wiki/Percentile) of data points
// across time series for each alignment period. This reducer is valid for
// `GAUGE` and `DELTA` metrics of numeric and distribution type. The value
// of the output is `DOUBLE`.
Aggregation_REDUCE_PERCENTILE_05 Aggregation_Reducer = 12
)
var Aggregation_Reducer_name = map[int32]string{
0: "REDUCE_NONE",
1: "REDUCE_MEAN",
2: "REDUCE_MIN",
3: "REDUCE_MAX",
4: "REDUCE_SUM",
5: "REDUCE_STDDEV",
6: "REDUCE_COUNT",
7: "REDUCE_COUNT_TRUE",
15: "REDUCE_COUNT_FALSE",
8: "REDUCE_FRACTION_TRUE",
9: "REDUCE_PERCENTILE_99",
10: "REDUCE_PERCENTILE_95",
11: "REDUCE_PERCENTILE_50",
12: "REDUCE_PERCENTILE_05",
}
var Aggregation_Reducer_value = map[string]int32{
"REDUCE_NONE": 0,
"REDUCE_MEAN": 1,
"REDUCE_MIN": 2,
"REDUCE_MAX": 3,
"REDUCE_SUM": 4,
"REDUCE_STDDEV": 5,
"REDUCE_COUNT": 6,
"REDUCE_COUNT_TRUE": 7,
"REDUCE_COUNT_FALSE": 15,
"REDUCE_FRACTION_TRUE": 8,
"REDUCE_PERCENTILE_99": 9,
"REDUCE_PERCENTILE_95": 10,
"REDUCE_PERCENTILE_50": 11,
"REDUCE_PERCENTILE_05": 12,
}
func (x Aggregation_Reducer) String() string {
return proto.EnumName(Aggregation_Reducer_name, int32(x))
}
func (Aggregation_Reducer) EnumDescriptor() ([]byte, []int) {
return fileDescriptor_013c57c1dcbb8d65, []int{2, 1}
}
// A single strongly-typed value.
type TypedValue struct {
// The typed value field.
//
// Types that are valid to be assigned to Value:
// *TypedValue_BoolValue
// *TypedValue_Int64Value
// *TypedValue_DoubleValue
// *TypedValue_StringValue
// *TypedValue_DistributionValue
Value isTypedValue_Value `protobuf_oneof:"value"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *TypedValue) Reset() { *m = TypedValue{} }
func (m *TypedValue) String() string { return proto.CompactTextString(m) }
func (*TypedValue) ProtoMessage() {}
func (*TypedValue) Descriptor() ([]byte, []int) {
return fileDescriptor_013c57c1dcbb8d65, []int{0}
}
func (m *TypedValue) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_TypedValue.Unmarshal(m, b)
}
func (m *TypedValue) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_TypedValue.Marshal(b, m, deterministic)
}
func (m *TypedValue) XXX_Merge(src proto.Message) {
xxx_messageInfo_TypedValue.Merge(m, src)
}
func (m *TypedValue) XXX_Size() int {
return xxx_messageInfo_TypedValue.Size(m)
}
func (m *TypedValue) XXX_DiscardUnknown() {
xxx_messageInfo_TypedValue.DiscardUnknown(m)
}
var xxx_messageInfo_TypedValue proto.InternalMessageInfo
type isTypedValue_Value interface {
isTypedValue_Value()
}
type TypedValue_BoolValue struct {
BoolValue bool `protobuf:"varint,1,opt,name=bool_value,json=boolValue,proto3,oneof"`
}
type TypedValue_Int64Value struct {
Int64Value int64 `protobuf:"varint,2,opt,name=int64_value,json=int64Value,proto3,oneof"`
}
type TypedValue_DoubleValue struct {
DoubleValue float64 `protobuf:"fixed64,3,opt,name=double_value,json=doubleValue,proto3,oneof"`
}
type TypedValue_StringValue struct {
StringValue string `protobuf:"bytes,4,opt,name=string_value,json=stringValue,proto3,oneof"`
}
type TypedValue_DistributionValue struct {
DistributionValue *distribution.Distribution `protobuf:"bytes,5,opt,name=distribution_value,json=distributionValue,proto3,oneof"`
}
func (*TypedValue_BoolValue) isTypedValue_Value() {}
func (*TypedValue_Int64Value) isTypedValue_Value() {}
func (*TypedValue_DoubleValue) isTypedValue_Value() {}
func (*TypedValue_StringValue) isTypedValue_Value() {}
func (*TypedValue_DistributionValue) isTypedValue_Value() {}
func (m *TypedValue) GetValue() isTypedValue_Value {
if m != nil {
return m.Value
}
return nil
}
func (m *TypedValue) GetBoolValue() bool {
if x, ok := m.GetValue().(*TypedValue_BoolValue); ok {
return x.BoolValue
}
return false
}
func (m *TypedValue) GetInt64Value() int64 {
if x, ok := m.GetValue().(*TypedValue_Int64Value); ok {
return x.Int64Value
}
return 0
}
func (m *TypedValue) GetDoubleValue() float64 {
if x, ok := m.GetValue().(*TypedValue_DoubleValue); ok {
return x.DoubleValue
}
return 0
}
func (m *TypedValue) GetStringValue() string {
if x, ok := m.GetValue().(*TypedValue_StringValue); ok {
return x.StringValue
}
return ""
}
func (m *TypedValue) GetDistributionValue() *distribution.Distribution {
if x, ok := m.GetValue().(*TypedValue_DistributionValue); ok {
return x.DistributionValue
}
return nil
}
// XXX_OneofWrappers is for the internal use of the proto package.
func (*TypedValue) XXX_OneofWrappers() []interface{} {
return []interface{}{
(*TypedValue_BoolValue)(nil),
(*TypedValue_Int64Value)(nil),
(*TypedValue_DoubleValue)(nil),
(*TypedValue_StringValue)(nil),
(*TypedValue_DistributionValue)(nil),
}
}
// A closed time interval. It extends from the start time to the end time, and includes both: `[startTime, endTime]`. Valid time intervals depend on the [`MetricKind`](/monitoring/api/ref_v3/rest/v3/projects.metricDescriptors#MetricKind) of the metric value. In no case can the end time be earlier than the start time.
//
// * For a `GAUGE` metric, the `startTime` value is technically optional; if
// no value is specified, the start time defaults to the value of the
// end time, and the interval represents a single point in time. If both
// start and end times are specified, they must be identical. Such an
// interval is valid only for `GAUGE` metrics, which are point-in-time
// measurements.
//
// * For `DELTA` and `CUMULATIVE` metrics, the start time must be earlier
// than the end time.
//
// * In all cases, the start time of the next interval must be
// at least a microsecond after the end time of the previous interval.
// Because the interval is closed, if the start time of a new interval
// is the same as the end time of the previous interval, data written
// at the new start time could overwrite data written at the previous
// end time.
type TimeInterval struct {
// Required. The end of the time interval.
EndTime *timestamp.Timestamp `protobuf:"bytes,2,opt,name=end_time,json=endTime,proto3" json:"end_time,omitempty"`
// Optional. The beginning of the time interval. The default value
// for the start time is the end time. The start time must not be
// later than the end time.
StartTime *timestamp.Timestamp `protobuf:"bytes,1,opt,name=start_time,json=startTime,proto3" json:"start_time,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *TimeInterval) Reset() { *m = TimeInterval{} }
func (m *TimeInterval) String() string { return proto.CompactTextString(m) }
func (*TimeInterval) ProtoMessage() {}
func (*TimeInterval) Descriptor() ([]byte, []int) {
return fileDescriptor_013c57c1dcbb8d65, []int{1}
}
func (m *TimeInterval) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_TimeInterval.Unmarshal(m, b)
}
func (m *TimeInterval) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_TimeInterval.Marshal(b, m, deterministic)
}
func (m *TimeInterval) XXX_Merge(src proto.Message) {
xxx_messageInfo_TimeInterval.Merge(m, src)
}
func (m *TimeInterval) XXX_Size() int {
return xxx_messageInfo_TimeInterval.Size(m)
}
func (m *TimeInterval) XXX_DiscardUnknown() {
xxx_messageInfo_TimeInterval.DiscardUnknown(m)
}
var xxx_messageInfo_TimeInterval proto.InternalMessageInfo
func (m *TimeInterval) GetEndTime() *timestamp.Timestamp {
if m != nil {
return m.EndTime
}
return nil
}
func (m *TimeInterval) GetStartTime() *timestamp.Timestamp {
if m != nil {
return m.StartTime
}
return nil
}
// Describes how to combine multiple time series to provide a different view of
// the data. Aggregation of time series is done in two steps. First, each time
// series in the set is _aligned_ to the same time interval boundaries, then the
// set of time series is optionally _reduced_ in number.
//
// Alignment consists of applying the `per_series_aligner` operation
// to each time series after its data has been divided into regular
// `alignment_period` time intervals. This process takes _all_ of the data
// points in an alignment period, applies a mathematical transformation such as
// averaging, minimum, maximum, delta, etc., and converts them into a single
// data point per period.
//
// Reduction is when the aligned and transformed time series can optionally be
// combined, reducing the number of time series through similar mathematical
// transformations. Reduction involves applying a `cross_series_reducer` to
// all the time series, optionally sorting the time series into subsets with
// `group_by_fields`, and applying the reducer to each subset.
//
// The raw time series data can contain a huge amount of information from
// multiple sources. Alignment and reduction transforms this mass of data into
// a more manageable and representative collection of data, for example "the
// 95% latency across the average of all tasks in a cluster". This
// representative data can be more easily graphed and comprehended, and the
// individual time series data is still available for later drilldown. For more
// details, see [Aggregating Time
// Series](/monitoring/api/v3/metrics#aggregating_time_series).
type Aggregation struct {
// The `alignment_period` specifies a time interval, in seconds, that is used
// to divide the data in all the
// [time series][google.monitoring.v3.TimeSeries] into consistent blocks of
// time. This will be done before the per-series aligner can be applied to
// the data.
//
// The value must be at least 60 seconds. If a per-series aligner other than
// `ALIGN_NONE` is specified, this field is required or an error is returned.
// If no per-series aligner is specified, or the aligner `ALIGN_NONE` is
// specified, then this field is ignored.
AlignmentPeriod *duration.Duration `protobuf:"bytes,1,opt,name=alignment_period,json=alignmentPeriod,proto3" json:"alignment_period,omitempty"`
// An `Aligner` describes how to bring the data points in a single
// time series into temporal alignment. Except for `ALIGN_NONE`, all
// alignments cause all the data points in an `alignment_period` to be
// mathematically grouped together, resulting in a single data point for
// each `alignment_period` with end timestamp at the end of the period.
//
// Not all alignment operations may be applied to all time series. The valid
// choices depend on the `metric_kind` and `value_type` of the original time
// series. Alignment can change the `metric_kind` or the `value_type` of
// the time series.
//
// Time series data must be aligned in order to perform cross-time
// series reduction. If `cross_series_reducer` is specified, then
// `per_series_aligner` must be specified and not equal to `ALIGN_NONE`
// and `alignment_period` must be specified; otherwise, an error is
// returned.
PerSeriesAligner Aggregation_Aligner `protobuf:"varint,2,opt,name=per_series_aligner,json=perSeriesAligner,proto3,enum=google.monitoring.v3.Aggregation_Aligner" json:"per_series_aligner,omitempty"`
// The reduction operation to be used to combine time series into a single
// time series, where the value of each data point in the resulting series is
// a function of all the already aligned values in the input time series.
//
// Not all reducer operations can be applied to all time series. The valid
// choices depend on the `metric_kind` and the `value_type` of the original
// time series. Reduction can yield a time series with a different
// `metric_kind` or `value_type` than the input time series.
//
// Time series data must first be aligned (see `per_series_aligner`) in order
// to perform cross-time series reduction. If `cross_series_reducer` is
// specified, then `per_series_aligner` must be specified, and must not be
// `ALIGN_NONE`. An `alignment_period` must also be specified; otherwise, an
// error is returned.
CrossSeriesReducer Aggregation_Reducer `protobuf:"varint,4,opt,name=cross_series_reducer,json=crossSeriesReducer,proto3,enum=google.monitoring.v3.Aggregation_Reducer" json:"cross_series_reducer,omitempty"`
// The set of fields to preserve when `cross_series_reducer` is
// specified. The `group_by_fields` determine how the time series are
// partitioned into subsets prior to applying the aggregation
// operation. Each subset contains time series that have the same
// value for each of the grouping fields. Each individual time
// series is a member of exactly one subset. The
// `cross_series_reducer` is applied to each subset of time series.
// It is not possible to reduce across different resource types, so
// this field implicitly contains `resource.type`. Fields not
// specified in `group_by_fields` are aggregated away. If
// `group_by_fields` is not specified and all the time series have
// the same resource type, then the time series are aggregated into
// a single output time series. If `cross_series_reducer` is not
// defined, this field is ignored.
GroupByFields []string `protobuf:"bytes,5,rep,name=group_by_fields,json=groupByFields,proto3" json:"group_by_fields,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *Aggregation) Reset() { *m = Aggregation{} }
func (m *Aggregation) String() string { return proto.CompactTextString(m) }
func (*Aggregation) ProtoMessage() {}
func (*Aggregation) Descriptor() ([]byte, []int) {
return fileDescriptor_013c57c1dcbb8d65, []int{2}
}
func (m *Aggregation) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_Aggregation.Unmarshal(m, b)
}
func (m *Aggregation) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_Aggregation.Marshal(b, m, deterministic)
}
func (m *Aggregation) XXX_Merge(src proto.Message) {
xxx_messageInfo_Aggregation.Merge(m, src)
}
func (m *Aggregation) XXX_Size() int {
return xxx_messageInfo_Aggregation.Size(m)
}
func (m *Aggregation) XXX_DiscardUnknown() {
xxx_messageInfo_Aggregation.DiscardUnknown(m)
}
var xxx_messageInfo_Aggregation proto.InternalMessageInfo
func (m *Aggregation) GetAlignmentPeriod() *duration.Duration {
if m != nil {
return m.AlignmentPeriod
}
return nil
}
func (m *Aggregation) GetPerSeriesAligner() Aggregation_Aligner {
if m != nil {
return m.PerSeriesAligner
}
return Aggregation_ALIGN_NONE
}
func (m *Aggregation) GetCrossSeriesReducer() Aggregation_Reducer {
if m != nil {
return m.CrossSeriesReducer
}
return Aggregation_REDUCE_NONE
}
func (m *Aggregation) GetGroupByFields() []string {
if m != nil {
return m.GroupByFields
}
return nil
}
func init() {
proto.RegisterEnum("google.monitoring.v3.ComparisonType", ComparisonType_name, ComparisonType_value)
proto.RegisterEnum("google.monitoring.v3.ServiceTier", ServiceTier_name, ServiceTier_value)
proto.RegisterEnum("google.monitoring.v3.Aggregation_Aligner", Aggregation_Aligner_name, Aggregation_Aligner_value)
proto.RegisterEnum("google.monitoring.v3.Aggregation_Reducer", Aggregation_Reducer_name, Aggregation_Reducer_value)
proto.RegisterType((*TypedValue)(nil), "google.monitoring.v3.TypedValue")
proto.RegisterType((*TimeInterval)(nil), "google.monitoring.v3.TimeInterval")
proto.RegisterType((*Aggregation)(nil), "google.monitoring.v3.Aggregation")
}
func init() { proto.RegisterFile("google/monitoring/v3/common.proto", fileDescriptor_013c57c1dcbb8d65) }
var fileDescriptor_013c57c1dcbb8d65 = []byte{
// 946 bytes of a gzipped FileDescriptorProto
0x1f, 0x8b, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0xff, 0x8c, 0x95, 0x41, 0x6f, 0xe2, 0xc6,
0x1b, 0xc6, 0x31, 0x24, 0x21, 0xbc, 0x4e, 0xc2, 0x64, 0x36, 0x9b, 0xe5, 0x8f, 0xfe, 0xed, 0xb2,
0xa9, 0x54, 0xd1, 0x3d, 0x98, 0x28, 0x29, 0x95, 0xa2, 0x4a, 0x95, 0x1c, 0x33, 0x49, 0x2c, 0x81,
0xa1, 0x83, 0x49, 0xa3, 0x36, 0x92, 0x65, 0xc2, 0xac, 0x65, 0x09, 0x6c, 0x6b, 0x30, 0x91, 0x72,
0xeb, 0xbd, 0xdf, 0xa1, 0x97, 0xde, 0x7a, 0xeb, 0xd7, 0xe8, 0x87, 0xe9, 0xa5, 0x5f, 0xa0, 0xf2,
0x8c, 0xbd, 0x36, 0x94, 0xaa, 0x3d, 0xbe, 0xbf, 0xe7, 0x79, 0xdf, 0x99, 0x79, 0xc6, 0x1a, 0xc3,
0x3b, 0x2f, 0x0c, 0xbd, 0x39, 0xeb, 0x2c, 0xc2, 0xc0, 0x8f, 0x43, 0xee, 0x07, 0x5e, 0xe7, 0xf9,
0xb2, 0xf3, 0x14, 0x2e, 0x16, 0x61, 0xa0, 0x45, 0x3c, 0x8c, 0x43, 0x7c, 0x22, 0x2d, 0x5a, 0x6e,
0xd1, 0x9e, 0x2f, 0x9b, 0x9f, 0xa4, 0x8d, 0x6e, 0xe4, 0x77, 0x66, 0xfe, 0x32, 0xe6, 0xfe, 0x74,
0x15, 0xfb, 0x59, 0x53, 0xf3, 0xd3, 0x54, 0x16, 0xd5, 0x74, 0xf5, 0xa1, 0x33, 0x5b, 0x71, 0xb7,
0xa0, 0xbf, 0xdd, 0xd4, 0x63, 0x7f, 0xc1, 0x96, 0xb1, 0xbb, 0x88, 0xa4, 0xe1, 0xec, 0x0f, 0x05,
0xc0, 0x7e, 0x89, 0xd8, 0xec, 0xde, 0x9d, 0xaf, 0x18, 0x7e, 0x0b, 0x30, 0x0d, 0xc3, 0xb9, 0xf3,
0x9c, 0x54, 0x0d, 0xa5, 0xa5, 0xb4, 0xf7, 0xef, 0x4a, 0xb4, 0x96, 0x30, 0x69, 0x78, 0x07, 0xaa,
0x1f, 0xc4, 0x5f, 0x7d, 0x99, 0x3a, 0xca, 0x2d, 0xa5, 0x5d, 0xb9, 0x2b, 0x51, 0x10, 0x50, 0x5a,
0x3e, 0x83, 0x83, 0x59, 0xb8, 0x9a, 0xce, 0x59, 0xea, 0xa9, 0xb4, 0x94, 0xb6, 0x72, 0x57, 0xa2,
0xaa, 0xa4, 0x1f, 0x4d, 0xc9, 0x61, 0x02, 0x2f, 0x35, 0xed, 0xb4, 0x94, 0x76, 0x2d, 0x31, 0x49,
0x2a, 0x4d, 0x26, 0xe0, 0xe2, 0x99, 0x53, 0xeb, 0x6e, 0x4b, 0x69, 0xab, 0x17, 0x0d, 0x2d, 0xcd,
0xcb, 0x8d, 0x7c, 0xad, 0x57, 0x70, 0xdd, 0x95, 0xe8, 0x71, 0xb1, 0x4b, 0x8c, 0xba, 0xae, 0xc2,
0xae, 0xe8, 0x3e, 0xfb, 0x51, 0x81, 0x03, 0xdb, 0x5f, 0x30, 0x33, 0x88, 0x19, 0x7f, 0x76, 0xe7,
0xb8, 0x0b, 0xfb, 0x2c, 0x98, 0x39, 0x49, 0x30, 0xe2, 0x38, 0xea, 0x45, 0x33, 0x1b, 0x9d, 0xa5,
0xa6, 0xd9, 0x59, 0x6a, 0xb4, 0xca, 0x82, 0x59, 0x52, 0xe1, 0x2b, 0x80, 0x65, 0xec, 0xf2, 0x58,
0x36, 0x2a, 0xff, 0xda, 0x58, 0x13, 0xee, 0xa4, 0x3e, 0xfb, 0xb3, 0x0a, 0xaa, 0xee, 0x79, 0x9c,
0x79, 0xe2, 0xaa, 0x70, 0x0f, 0x90, 0x3b, 0xf7, 0xbd, 0x60, 0xc1, 0x82, 0xd8, 0x89, 0x18, 0xf7,
0xc3, 0x59, 0x3a, 0xf0, 0x7f, 0x7f, 0x1b, 0xd8, 0x4b, 0xef, 0x97, 0xd6, 0x3f, 0xb6, 0x8c, 0x44,
0x07, 0xfe, 0x0e, 0x70, 0xc4, 0xb8, 0xb3, 0x64, 0xdc, 0x67, 0x4b, 0x47, 0xa8, 0x8c, 0x8b, 0x13,
0x1d, 0x5d, 0x7c, 0xa1, 0x6d, 0xfb, 0xb8, 0xb4, 0xc2, 0x26, 0x34, 0x5d, 0x36, 0x50, 0x14, 0x31,
0x3e, 0x16, 0x33, 0x52, 0x82, 0x7f, 0x80, 0x93, 0x27, 0x1e, 0x2e, 0x97, 0xd9, 0x68, 0xce, 0x66,
0xab, 0x27, 0xc6, 0xc5, 0x95, 0xfd, 0xa7, 0xd1, 0x54, 0x36, 0x50, 0x2c, 0xc6, 0xc8, 0xe1, 0x29,
0xc3, 0x9f, 0x43, 0xdd, 0xe3, 0xe1, 0x2a, 0x72, 0xa6, 0x2f, 0xce, 0x07, 0x9f, 0xcd, 0x67, 0xcb,
0xc6, 0x6e, 0xab, 0xd2, 0xae, 0xd1, 0x43, 0x81, 0xaf, 0x5f, 0x6e, 0x04, 0x3c, 0xfb, 0xa9, 0x02,
0xd5, 0x6c, 0x43, 0x47, 0x00, 0x7a, 0xdf, 0xbc, 0xb5, 0x1c, 0x6b, 0x68, 0x11, 0x54, 0xc2, 0x75,
0x50, 0x65, 0xdd, 0x23, 0x7d, 0x5b, 0x47, 0x4a, 0x6e, 0xa0, 0xba, 0x4d, 0x50, 0x19, 0xbf, 0x86,
0x63, 0x59, 0x9b, 0x96, 0x4d, 0xe8, 0x68, 0xd8, 0x4f, 0x70, 0x05, 0x9f, 0x00, 0x4a, 0xe7, 0x90,
0x07, 0xdb, 0x19, 0xf6, 0x7b, 0x84, 0xa2, 0x1d, 0x7c, 0x08, 0x35, 0x49, 0x07, 0xa6, 0x85, 0xa0,
0x50, 0xea, 0x0f, 0x48, 0xcd, 0x47, 0x0f, 0x88, 0x6e, 0xa1, 0x83, 0x7c, 0x6d, 0x63, 0x38, 0xb1,
0x6c, 0x74, 0x98, 0xfb, 0xc7, 0x93, 0x01, 0x3a, 0xc2, 0x08, 0x0e, 0xd2, 0xd2, 0xee, 0xf5, 0xc8,
0x3d, 0xaa, 0xe7, 0xab, 0x8a, 0x0e, 0xc7, 0xa6, 0x13, 0x82, 0x50, 0xbe, 0x45, 0x49, 0x6f, 0xf4,
0xfe, 0x98, 0xa0, 0x06, 0x7e, 0x03, 0xaf, 0x24, 0xbe, 0xa1, 0xba, 0x61, 0x9b, 0x43, 0x4b, 0xfa,
0x8f, 0x73, 0x61, 0x44, 0xa8, 0x41, 0x2c, 0xdb, 0xec, 0x13, 0xe7, 0xea, 0x0a, 0xe1, 0xed, 0x42,
0x17, 0xbd, 0xda, 0x2a, 0x74, 0xcf, 0xd1, 0xc9, 0x56, 0xe1, 0xbc, 0x8b, 0x5e, 0xe3, 0x06, 0x9c,
0xac, 0x09, 0x8e, 0x71, 0xa7, 0x5b, 0xb7, 0x04, 0xbd, 0x39, 0xfb, 0xad, 0x0c, 0xd5, 0xec, 0x06,
0xeb, 0xa0, 0x52, 0xd2, 0x9b, 0x18, 0xa4, 0x70, 0x1d, 0x29, 0x10, 0x19, 0x89, 0xeb, 0xc8, 0x80,
0x69, 0xa1, 0x72, 0xb1, 0xd6, 0x1f, 0x50, 0xa5, 0x50, 0x27, 0x99, 0xed, 0xe0, 0x63, 0x38, 0xcc,
0x6a, 0x19, 0xda, 0x6e, 0x12, 0x63, 0x8a, 0x64, 0xce, 0x7b, 0x49, 0x60, 0x45, 0x22, 0x73, 0xa9,
0xe2, 0x53, 0xc0, 0x6b, 0x58, 0x06, 0x59, 0x4f, 0xce, 0x92, 0xf2, 0xf5, 0x24, 0xf7, 0x0b, 0xca,
0x7a, 0x94, 0xb5, 0x7f, 0x50, 0xba, 0x08, 0xb6, 0x2b, 0xdd, 0x73, 0xa4, 0x6e, 0x57, 0xce, 0xbb,
0xe8, 0xe0, 0xfd, 0xcf, 0x0a, 0x1c, 0x19, 0xe1, 0x22, 0x72, 0xb9, 0xbf, 0x0c, 0x83, 0xe4, 0xcd,
0xc5, 0x4d, 0x38, 0x35, 0x86, 0x83, 0x91, 0x4e, 0xcd, 0xf1, 0xd0, 0x72, 0x26, 0xd6, 0x78, 0x44,
0x0c, 0xf3, 0xc6, 0x24, 0x3d, 0x54, 0x4a, 0x42, 0x28, 0x68, 0xb7, 0x36, 0x52, 0x36, 0x51, 0xf2,
0x65, 0xaf, 0xa3, 0xbe, 0x8d, 0x2a, 0x9b, 0x88, 0xc8, 0x40, 0x0b, 0x88, 0x7c, 0x8b, 0x76, 0x37,
0x90, 0x45, 0xd0, 0xde, 0x7b, 0x17, 0xd4, 0x31, 0xe3, 0xcf, 0xfe, 0x13, 0xb3, 0x7d, 0xc6, 0xf1,
0xff, 0xa1, 0x31, 0x26, 0xf4, 0xde, 0x34, 0x88, 0x63, 0x9b, 0x84, 0x6e, 0x6c, 0xef, 0x14, 0xf0,
0x9a, 0x7a, 0xad, 0x8f, 0x4d, 0x03, 0x29, 0xc9, 0xf9, 0xd7, 0xf8, 0x88, 0x92, 0x81, 0x39, 0x19,
0xa0, 0x72, 0xb3, 0xdc, 0x50, 0xae, 0x7f, 0x51, 0xa0, 0xf1, 0x14, 0x2e, 0xb6, 0x3e, 0x19, 0xd7,
0xaa, 0x21, 0x7e, 0x87, 0xa3, 0xe4, 0xa9, 0x1b, 0x29, 0xdf, 0x7f, 0x93, 0x9a, 0xbc, 0x70, 0xee,
0x06, 0x9e, 0x16, 0x72, 0xaf, 0xe3, 0xb1, 0x40, 0x3c, 0x84, 0x1d, 0x29, 0xb9, 0x91, 0xbf, 0x5c,
0xff, 0xa3, 0x7e, 0x9d, 0x57, 0xbf, 0x96, 0x9b, 0xb7, 0x72, 0x80, 0x31, 0x0f, 0x57, 0x33, 0x6d,
0x90, 0xaf, 0x75, 0x7f, 0xf9, 0x7b, 0x26, 0x3e, 0x0a, 0xf1, 0x31, 0x17, 0x1f, 0xef, 0x2f, 0xa7,
0x7b, 0x62, 0x91, 0xcb, 0xbf, 0x02, 0x00, 0x00, 0xff, 0xff, 0xf5, 0x70, 0xc6, 0x75, 0xb5, 0x07,
0x00, 0x00,
}