blob: 36ddf2e934efd622d632289c97bb413fec186fdf [file] [log] [blame]
// Copyright 2014 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package report summarizes a performance profile into a
// human-readable report.
package report
import (
"fmt"
"io"
"path/filepath"
"regexp"
"sort"
"strconv"
"strings"
"text/tabwriter"
"time"
"github.com/google/pprof/internal/graph"
"github.com/google/pprof/internal/measurement"
"github.com/google/pprof/internal/plugin"
"github.com/google/pprof/profile"
)
// Output formats.
const (
Callgrind = iota
Comments
Dis
Dot
List
Proto
Raw
Tags
Text
TopProto
Traces
Tree
WebList
)
// Options are the formatting and filtering options used to generate a
// profile.
type Options struct {
OutputFormat int
CumSort bool
CallTree bool
DropNegative bool
CompactLabels bool
Ratio float64
Title string
ProfileLabels []string
ActiveFilters []string
NumLabelUnits map[string]string
NodeCount int
NodeFraction float64
EdgeFraction float64
SampleValue func(s []int64) int64
SampleMeanDivisor func(s []int64) int64
SampleType string
SampleUnit string // Unit for the sample data from the profile.
OutputUnit string // Units for data formatting in report.
Symbol *regexp.Regexp // Symbols to include on disassembly report.
SourcePath string // Search path for source files.
TrimPath string // Paths to trim from source file paths.
IntelSyntax bool // Whether or not to print assembly in Intel syntax.
}
// Generate generates a report as directed by the Report.
func Generate(w io.Writer, rpt *Report, obj plugin.ObjTool) error {
o := rpt.options
switch o.OutputFormat {
case Comments:
return printComments(w, rpt)
case Dot:
return printDOT(w, rpt)
case Tree:
return printTree(w, rpt)
case Text:
return printText(w, rpt)
case Traces:
return printTraces(w, rpt)
case Raw:
fmt.Fprint(w, rpt.prof.String())
return nil
case Tags:
return printTags(w, rpt)
case Proto:
return printProto(w, rpt)
case TopProto:
return printTopProto(w, rpt)
case Dis:
return printAssembly(w, rpt, obj)
case List:
return printSource(w, rpt)
case WebList:
return printWebSource(w, rpt, obj)
case Callgrind:
return printCallgrind(w, rpt)
}
return fmt.Errorf("unexpected output format")
}
// newTrimmedGraph creates a graph for this report, trimmed according
// to the report options.
func (rpt *Report) newTrimmedGraph() (g *graph.Graph, origCount, droppedNodes, droppedEdges int) {
o := rpt.options
// Build a graph and refine it. On each refinement step we must rebuild the graph from the samples,
// as the graph itself doesn't contain enough information to preserve full precision.
visualMode := o.OutputFormat == Dot
cumSort := o.CumSort
// The call_tree option is only honored when generating visual representations of the callgraph.
callTree := o.CallTree && (o.OutputFormat == Dot || o.OutputFormat == Callgrind)
// First step: Build complete graph to identify low frequency nodes, based on their cum weight.
g = rpt.newGraph(nil)
totalValue, _ := g.Nodes.Sum()
nodeCutoff := abs64(int64(float64(totalValue) * o.NodeFraction))
edgeCutoff := abs64(int64(float64(totalValue) * o.EdgeFraction))
// Filter out nodes with cum value below nodeCutoff.
if nodeCutoff > 0 {
if callTree {
if nodesKept := g.DiscardLowFrequencyNodePtrs(nodeCutoff); len(g.Nodes) != len(nodesKept) {
droppedNodes = len(g.Nodes) - len(nodesKept)
g.TrimTree(nodesKept)
}
} else {
if nodesKept := g.DiscardLowFrequencyNodes(nodeCutoff); len(g.Nodes) != len(nodesKept) {
droppedNodes = len(g.Nodes) - len(nodesKept)
g = rpt.newGraph(nodesKept)
}
}
}
origCount = len(g.Nodes)
// Second step: Limit the total number of nodes. Apply specialized heuristics to improve
// visualization when generating dot output.
g.SortNodes(cumSort, visualMode)
if nodeCount := o.NodeCount; nodeCount > 0 {
// Remove low frequency tags and edges as they affect selection.
g.TrimLowFrequencyTags(nodeCutoff)
g.TrimLowFrequencyEdges(edgeCutoff)
if callTree {
if nodesKept := g.SelectTopNodePtrs(nodeCount, visualMode); len(g.Nodes) != len(nodesKept) {
g.TrimTree(nodesKept)
g.SortNodes(cumSort, visualMode)
}
} else {
if nodesKept := g.SelectTopNodes(nodeCount, visualMode); len(g.Nodes) != len(nodesKept) {
g = rpt.newGraph(nodesKept)
g.SortNodes(cumSort, visualMode)
}
}
}
// Final step: Filter out low frequency tags and edges, and remove redundant edges that clutter
// the graph.
g.TrimLowFrequencyTags(nodeCutoff)
droppedEdges = g.TrimLowFrequencyEdges(edgeCutoff)
if visualMode {
g.RemoveRedundantEdges()
}
return
}
func (rpt *Report) selectOutputUnit(g *graph.Graph) {
o := rpt.options
// Select best unit for profile output.
// Find the appropriate units for the smallest non-zero sample
if o.OutputUnit != "minimum" || len(g.Nodes) == 0 {
return
}
var minValue int64
for _, n := range g.Nodes {
nodeMin := abs64(n.FlatValue())
if nodeMin == 0 {
nodeMin = abs64(n.CumValue())
}
if nodeMin > 0 && (minValue == 0 || nodeMin < minValue) {
minValue = nodeMin
}
}
maxValue := rpt.total
if minValue == 0 {
minValue = maxValue
}
if r := o.Ratio; r > 0 && r != 1 {
minValue = int64(float64(minValue) * r)
maxValue = int64(float64(maxValue) * r)
}
_, minUnit := measurement.Scale(minValue, o.SampleUnit, "minimum")
_, maxUnit := measurement.Scale(maxValue, o.SampleUnit, "minimum")
unit := minUnit
if minUnit != maxUnit && minValue*100 < maxValue && o.OutputFormat != Callgrind {
// Minimum and maximum values have different units. Scale
// minimum by 100 to use larger units, allowing minimum value to
// be scaled down to 0.01, except for callgrind reports since
// they can only represent integer values.
_, unit = measurement.Scale(100*minValue, o.SampleUnit, "minimum")
}
if unit != "" {
o.OutputUnit = unit
} else {
o.OutputUnit = o.SampleUnit
}
}
// newGraph creates a new graph for this report. If nodes is non-nil,
// only nodes whose info matches are included. Otherwise, all nodes
// are included, without trimming.
func (rpt *Report) newGraph(nodes graph.NodeSet) *graph.Graph {
o := rpt.options
// Clean up file paths using heuristics.
prof := rpt.prof
for _, f := range prof.Function {
f.Filename = trimPath(f.Filename, o.TrimPath, o.SourcePath)
}
// Removes all numeric tags except for the bytes tag prior
// to making graph.
// TODO: modify to select first numeric tag if no bytes tag
for _, s := range prof.Sample {
numLabels := make(map[string][]int64, len(s.NumLabel))
numUnits := make(map[string][]string, len(s.NumLabel))
for k, vs := range s.NumLabel {
if k == "bytes" {
unit := o.NumLabelUnits[k]
numValues := make([]int64, len(vs))
numUnit := make([]string, len(vs))
for i, v := range vs {
numValues[i] = v
numUnit[i] = unit
}
numLabels[k] = append(numLabels[k], numValues...)
numUnits[k] = append(numUnits[k], numUnit...)
}
}
s.NumLabel = numLabels
s.NumUnit = numUnits
}
// Remove label marking samples from the base profiles, so it does not appear
// as a nodelet in the graph view.
prof.RemoveLabel("pprof::base")
formatTag := func(v int64, key string) string {
return measurement.ScaledLabel(v, key, o.OutputUnit)
}
gopt := &graph.Options{
SampleValue: o.SampleValue,
SampleMeanDivisor: o.SampleMeanDivisor,
FormatTag: formatTag,
CallTree: o.CallTree && (o.OutputFormat == Dot || o.OutputFormat == Callgrind),
DropNegative: o.DropNegative,
KeptNodes: nodes,
}
// Only keep binary names for disassembly-based reports, otherwise
// remove it to allow merging of functions across binaries.
switch o.OutputFormat {
case Raw, List, WebList, Dis, Callgrind:
gopt.ObjNames = true
}
return graph.New(rpt.prof, gopt)
}
// printProto writes the incoming proto via thw writer w.
// If the divide_by option has been specified, samples are scaled appropriately.
func printProto(w io.Writer, rpt *Report) error {
p, o := rpt.prof, rpt.options
// Apply the sample ratio to all samples before saving the profile.
if r := o.Ratio; r > 0 && r != 1 {
for _, sample := range p.Sample {
for i, v := range sample.Value {
sample.Value[i] = int64(float64(v) * r)
}
}
}
return p.Write(w)
}
// printTopProto writes a list of the hottest routines in a profile as a profile.proto.
func printTopProto(w io.Writer, rpt *Report) error {
p := rpt.prof
o := rpt.options
g, _, _, _ := rpt.newTrimmedGraph()
rpt.selectOutputUnit(g)
out := profile.Profile{
SampleType: []*profile.ValueType{
{Type: "cum", Unit: o.OutputUnit},
{Type: "flat", Unit: o.OutputUnit},
},
TimeNanos: p.TimeNanos,
DurationNanos: p.DurationNanos,
PeriodType: p.PeriodType,
Period: p.Period,
}
functionMap := make(functionMap)
for i, n := range g.Nodes {
f, added := functionMap.findOrAdd(n.Info)
if added {
out.Function = append(out.Function, f)
}
flat, cum := n.FlatValue(), n.CumValue()
l := &profile.Location{
ID: uint64(i + 1),
Address: n.Info.Address,
Line: []profile.Line{
{
Line: int64(n.Info.Lineno),
Function: f,
},
},
}
fv, _ := measurement.Scale(flat, o.SampleUnit, o.OutputUnit)
cv, _ := measurement.Scale(cum, o.SampleUnit, o.OutputUnit)
s := &profile.Sample{
Location: []*profile.Location{l},
Value: []int64{int64(cv), int64(fv)},
}
out.Location = append(out.Location, l)
out.Sample = append(out.Sample, s)
}
return out.Write(w)
}
type functionMap map[string]*profile.Function
// findOrAdd takes a node representing a function, adds the function
// represented by the node to the map if the function is not already present,
// and returns the function the node represents. This also returns a boolean,
// which is true if the function was added and false otherwise.
func (fm functionMap) findOrAdd(ni graph.NodeInfo) (*profile.Function, bool) {
fName := fmt.Sprintf("%q%q%q%d", ni.Name, ni.OrigName, ni.File, ni.StartLine)
if f := fm[fName]; f != nil {
return f, false
}
f := &profile.Function{
ID: uint64(len(fm) + 1),
Name: ni.Name,
SystemName: ni.OrigName,
Filename: ni.File,
StartLine: int64(ni.StartLine),
}
fm[fName] = f
return f, true
}
// printAssembly prints an annotated assembly listing.
func printAssembly(w io.Writer, rpt *Report, obj plugin.ObjTool) error {
return PrintAssembly(w, rpt, obj, -1)
}
// PrintAssembly prints annotated disassembly of rpt to w.
func PrintAssembly(w io.Writer, rpt *Report, obj plugin.ObjTool, maxFuncs int) error {
o := rpt.options
prof := rpt.prof
g := rpt.newGraph(nil)
// If the regexp source can be parsed as an address, also match
// functions that land on that address.
var address *uint64
if hex, err := strconv.ParseUint(o.Symbol.String(), 0, 64); err == nil {
address = &hex
}
fmt.Fprintln(w, "Total:", rpt.formatValue(rpt.total))
symbols := symbolsFromBinaries(prof, g, o.Symbol, address, obj)
symNodes := nodesPerSymbol(g.Nodes, symbols)
// Sort for printing.
var syms []*objSymbol
for s := range symNodes {
syms = append(syms, s)
}
byName := func(a, b *objSymbol) bool {
if na, nb := a.sym.Name[0], b.sym.Name[0]; na != nb {
return na < nb
}
return a.sym.Start < b.sym.Start
}
if maxFuncs < 0 {
sort.Sort(orderSyms{syms, byName})
} else {
byFlatSum := func(a, b *objSymbol) bool {
suma, _ := symNodes[a].Sum()
sumb, _ := symNodes[b].Sum()
if suma != sumb {
return suma > sumb
}
return byName(a, b)
}
sort.Sort(orderSyms{syms, byFlatSum})
if len(syms) > maxFuncs {
syms = syms[:maxFuncs]
}
}
if len(syms) == 0 {
return fmt.Errorf("no matches found for regexp: %s", o.Symbol)
}
// Correlate the symbols from the binary with the profile samples.
for _, s := range syms {
sns := symNodes[s]
// Gather samples for this symbol.
flatSum, cumSum := sns.Sum()
// Get the function assembly.
insts, err := obj.Disasm(s.sym.File, s.sym.Start, s.sym.End, o.IntelSyntax)
if err != nil {
return err
}
ns := annotateAssembly(insts, sns, s.file)
fmt.Fprintf(w, "ROUTINE ======================== %s\n", s.sym.Name[0])
for _, name := range s.sym.Name[1:] {
fmt.Fprintf(w, " AKA ======================== %s\n", name)
}
fmt.Fprintf(w, "%10s %10s (flat, cum) %s of Total\n",
rpt.formatValue(flatSum), rpt.formatValue(cumSum),
measurement.Percentage(cumSum, rpt.total))
function, file, line := "", "", 0
for _, n := range ns {
locStr := ""
// Skip loc information if it hasn't changed from previous instruction.
if n.function != function || n.file != file || n.line != line {
function, file, line = n.function, n.file, n.line
if n.function != "" {
locStr = n.function + " "
}
if n.file != "" {
locStr += n.file
if n.line != 0 {
locStr += fmt.Sprintf(":%d", n.line)
}
}
}
switch {
case locStr == "":
// No location info, just print the instruction.
fmt.Fprintf(w, "%10s %10s %10x: %s\n",
valueOrDot(n.flatValue(), rpt),
valueOrDot(n.cumValue(), rpt),
n.address, n.instruction,
)
case len(n.instruction) < 40:
// Short instruction, print loc on the same line.
fmt.Fprintf(w, "%10s %10s %10x: %-40s;%s\n",
valueOrDot(n.flatValue(), rpt),
valueOrDot(n.cumValue(), rpt),
n.address, n.instruction,
locStr,
)
default:
// Long instruction, print loc on a separate line.
fmt.Fprintf(w, "%74s;%s\n", "", locStr)
fmt.Fprintf(w, "%10s %10s %10x: %s\n",
valueOrDot(n.flatValue(), rpt),
valueOrDot(n.cumValue(), rpt),
n.address, n.instruction,
)
}
}
}
return nil
}
// symbolsFromBinaries examines the binaries listed on the profile
// that have associated samples, and identifies symbols matching rx.
func symbolsFromBinaries(prof *profile.Profile, g *graph.Graph, rx *regexp.Regexp, address *uint64, obj plugin.ObjTool) []*objSymbol {
hasSamples := make(map[string]bool)
// Only examine mappings that have samples that match the
// regexp. This is an optimization to speed up pprof.
for _, n := range g.Nodes {
if name := n.Info.PrintableName(); rx.MatchString(name) && n.Info.Objfile != "" {
hasSamples[n.Info.Objfile] = true
}
}
// Walk all mappings looking for matching functions with samples.
var objSyms []*objSymbol
for _, m := range prof.Mapping {
if !hasSamples[m.File] {
if address == nil || !(m.Start <= *address && *address <= m.Limit) {
continue
}
}
f, err := obj.Open(m.File, m.Start, m.Limit, m.Offset, m.KernelRelocationSymbol)
if err != nil {
fmt.Printf("%v\n", err)
continue
}
// Find symbols in this binary matching the user regexp.
var addr uint64
if address != nil {
addr = *address
}
msyms, err := f.Symbols(rx, addr)
f.Close()
if err != nil {
continue
}
for _, ms := range msyms {
objSyms = append(objSyms,
&objSymbol{
sym: ms,
file: f,
},
)
}
}
return objSyms
}
// objSym represents a symbol identified from a binary. It includes
// the SymbolInfo from the disasm package and the base that must be
// added to correspond to sample addresses
type objSymbol struct {
sym *plugin.Sym
file plugin.ObjFile
}
// orderSyms is a wrapper type to sort []*objSymbol by a supplied comparator.
type orderSyms struct {
v []*objSymbol
less func(a, b *objSymbol) bool
}
func (o orderSyms) Len() int { return len(o.v) }
func (o orderSyms) Less(i, j int) bool { return o.less(o.v[i], o.v[j]) }
func (o orderSyms) Swap(i, j int) { o.v[i], o.v[j] = o.v[j], o.v[i] }
// nodesPerSymbol classifies nodes into a group of symbols.
func nodesPerSymbol(ns graph.Nodes, symbols []*objSymbol) map[*objSymbol]graph.Nodes {
symNodes := make(map[*objSymbol]graph.Nodes)
for _, s := range symbols {
// Gather samples for this symbol.
for _, n := range ns {
if address, err := s.file.ObjAddr(n.Info.Address); err == nil && address >= s.sym.Start && address < s.sym.End {
symNodes[s] = append(symNodes[s], n)
}
}
}
return symNodes
}
type assemblyInstruction struct {
address uint64
instruction string
function string
file string
line int
flat, cum int64
flatDiv, cumDiv int64
startsBlock bool
inlineCalls []callID
}
type callID struct {
file string
line int
}
func (a *assemblyInstruction) flatValue() int64 {
if a.flatDiv != 0 {
return a.flat / a.flatDiv
}
return a.flat
}
func (a *assemblyInstruction) cumValue() int64 {
if a.cumDiv != 0 {
return a.cum / a.cumDiv
}
return a.cum
}
// annotateAssembly annotates a set of assembly instructions with a
// set of samples. It returns a set of nodes to display. base is an
// offset to adjust the sample addresses.
func annotateAssembly(insts []plugin.Inst, samples graph.Nodes, file plugin.ObjFile) []assemblyInstruction {
// Add end marker to simplify printing loop.
insts = append(insts, plugin.Inst{
Addr: ^uint64(0),
})
// Ensure samples are sorted by address.
samples.Sort(graph.AddressOrder)
s := 0
asm := make([]assemblyInstruction, 0, len(insts))
for ix, in := range insts[:len(insts)-1] {
n := assemblyInstruction{
address: in.Addr,
instruction: in.Text,
function: in.Function,
line: in.Line,
}
if in.File != "" {
n.file = filepath.Base(in.File)
}
// Sum all the samples until the next instruction (to account
// for samples attributed to the middle of an instruction).
for next := insts[ix+1].Addr; s < len(samples); s++ {
if addr, err := file.ObjAddr(samples[s].Info.Address); err != nil || addr >= next {
break
}
sample := samples[s]
n.flatDiv += sample.FlatDiv
n.flat += sample.Flat
n.cumDiv += sample.CumDiv
n.cum += sample.Cum
if f := sample.Info.File; f != "" && n.file == "" {
n.file = filepath.Base(f)
}
if ln := sample.Info.Lineno; ln != 0 && n.line == 0 {
n.line = ln
}
if f := sample.Info.Name; f != "" && n.function == "" {
n.function = f
}
}
asm = append(asm, n)
}
return asm
}
// valueOrDot formats a value according to a report, intercepting zero
// values.
func valueOrDot(value int64, rpt *Report) string {
if value == 0 {
return "."
}
return rpt.formatValue(value)
}
// printTags collects all tags referenced in the profile and prints
// them in a sorted table.
func printTags(w io.Writer, rpt *Report) error {
p := rpt.prof
o := rpt.options
formatTag := func(v int64, key string) string {
return measurement.ScaledLabel(v, key, o.OutputUnit)
}
// Hashtable to keep accumulate tags as key,value,count.
tagMap := make(map[string]map[string]int64)
for _, s := range p.Sample {
for key, vals := range s.Label {
for _, val := range vals {
valueMap, ok := tagMap[key]
if !ok {
valueMap = make(map[string]int64)
tagMap[key] = valueMap
}
valueMap[val] += o.SampleValue(s.Value)
}
}
for key, vals := range s.NumLabel {
unit := o.NumLabelUnits[key]
for _, nval := range vals {
val := formatTag(nval, unit)
valueMap, ok := tagMap[key]
if !ok {
valueMap = make(map[string]int64)
tagMap[key] = valueMap
}
valueMap[val] += o.SampleValue(s.Value)
}
}
}
tagKeys := make([]*graph.Tag, 0, len(tagMap))
for key := range tagMap {
tagKeys = append(tagKeys, &graph.Tag{Name: key})
}
tabw := tabwriter.NewWriter(w, 0, 0, 1, ' ', tabwriter.AlignRight)
for _, tagKey := range graph.SortTags(tagKeys, true) {
var total int64
key := tagKey.Name
tags := make([]*graph.Tag, 0, len(tagMap[key]))
for t, c := range tagMap[key] {
total += c
tags = append(tags, &graph.Tag{Name: t, Flat: c})
}
f, u := measurement.Scale(total, o.SampleUnit, o.OutputUnit)
fmt.Fprintf(tabw, "%s:\t Total %.1f%s\n", key, f, u)
for _, t := range graph.SortTags(tags, true) {
f, u := measurement.Scale(t.FlatValue(), o.SampleUnit, o.OutputUnit)
if total > 0 {
fmt.Fprintf(tabw, " \t%.1f%s (%s):\t %s\n", f, u, measurement.Percentage(t.FlatValue(), total), t.Name)
} else {
fmt.Fprintf(tabw, " \t%.1f%s:\t %s\n", f, u, t.Name)
}
}
fmt.Fprintln(tabw)
}
return tabw.Flush()
}
// printComments prints all freeform comments in the profile.
func printComments(w io.Writer, rpt *Report) error {
p := rpt.prof
for _, c := range p.Comments {
fmt.Fprintln(w, c)
}
return nil
}
// TextItem holds a single text report entry.
type TextItem struct {
Name string
InlineLabel string // Not empty if inlined
Flat, Cum int64 // Raw values
FlatFormat, CumFormat string // Formatted values
}
// TextItems returns a list of text items from the report and a list
// of labels that describe the report.
func TextItems(rpt *Report) ([]TextItem, []string) {
g, origCount, droppedNodes, _ := rpt.newTrimmedGraph()
rpt.selectOutputUnit(g)
labels := reportLabels(rpt, g, origCount, droppedNodes, 0, false)
var items []TextItem
var flatSum int64
for _, n := range g.Nodes {
name, flat, cum := n.Info.PrintableName(), n.FlatValue(), n.CumValue()
var inline, noinline bool
for _, e := range n.In {
if e.Inline {
inline = true
} else {
noinline = true
}
}
var inl string
if inline {
if noinline {
inl = "(partial-inline)"
} else {
inl = "(inline)"
}
}
flatSum += flat
items = append(items, TextItem{
Name: name,
InlineLabel: inl,
Flat: flat,
Cum: cum,
FlatFormat: rpt.formatValue(flat),
CumFormat: rpt.formatValue(cum),
})
}
return items, labels
}
// printText prints a flat text report for a profile.
func printText(w io.Writer, rpt *Report) error {
items, labels := TextItems(rpt)
fmt.Fprintln(w, strings.Join(labels, "\n"))
fmt.Fprintf(w, "%10s %5s%% %5s%% %10s %5s%%\n",
"flat", "flat", "sum", "cum", "cum")
var flatSum int64
for _, item := range items {
inl := item.InlineLabel
if inl != "" {
inl = " " + inl
}
flatSum += item.Flat
fmt.Fprintf(w, "%10s %s %s %10s %s %s%s\n",
item.FlatFormat, measurement.Percentage(item.Flat, rpt.total),
measurement.Percentage(flatSum, rpt.total),
item.CumFormat, measurement.Percentage(item.Cum, rpt.total),
item.Name, inl)
}
return nil
}
// printTraces prints all traces from a profile.
func printTraces(w io.Writer, rpt *Report) error {
fmt.Fprintln(w, strings.Join(ProfileLabels(rpt), "\n"))
prof := rpt.prof
o := rpt.options
const separator = "-----------+-------------------------------------------------------"
_, locations := graph.CreateNodes(prof, &graph.Options{})
for _, sample := range prof.Sample {
type stk struct {
*graph.NodeInfo
inline bool
}
var stack []stk
for _, loc := range sample.Location {
nodes := locations[loc.ID]
for i, n := range nodes {
// The inline flag may be inaccurate if 'show' or 'hide' filter is
// used. See https://github.com/google/pprof/issues/511.
inline := i != len(nodes)-1
stack = append(stack, stk{&n.Info, inline})
}
}
if len(stack) == 0 {
continue
}
fmt.Fprintln(w, separator)
// Print any text labels for the sample.
var labels []string
for s, vs := range sample.Label {
labels = append(labels, fmt.Sprintf("%10s: %s\n", s, strings.Join(vs, " ")))
}
sort.Strings(labels)
fmt.Fprint(w, strings.Join(labels, ""))
// Print any numeric labels for the sample
var numLabels []string
for key, vals := range sample.NumLabel {
unit := o.NumLabelUnits[key]
numValues := make([]string, len(vals))
for i, vv := range vals {
numValues[i] = measurement.Label(vv, unit)
}
numLabels = append(numLabels, fmt.Sprintf("%10s: %s\n", key, strings.Join(numValues, " ")))
}
sort.Strings(numLabels)
fmt.Fprint(w, strings.Join(numLabels, ""))
var d, v int64
v = o.SampleValue(sample.Value)
if o.SampleMeanDivisor != nil {
d = o.SampleMeanDivisor(sample.Value)
}
// Print call stack.
if d != 0 {
v = v / d
}
for i, s := range stack {
var vs, inline string
if i == 0 {
vs = rpt.formatValue(v)
}
if s.inline {
inline = " (inline)"
}
fmt.Fprintf(w, "%10s %s%s\n", vs, s.PrintableName(), inline)
}
}
fmt.Fprintln(w, separator)
return nil
}
// printCallgrind prints a graph for a profile on callgrind format.
func printCallgrind(w io.Writer, rpt *Report) error {
o := rpt.options
rpt.options.NodeFraction = 0
rpt.options.EdgeFraction = 0
rpt.options.NodeCount = 0
g, _, _, _ := rpt.newTrimmedGraph()
rpt.selectOutputUnit(g)
nodeNames := getDisambiguatedNames(g)
fmt.Fprintln(w, "positions: instr line")
fmt.Fprintln(w, "events:", o.SampleType+"("+o.OutputUnit+")")
objfiles := make(map[string]int)
files := make(map[string]int)
names := make(map[string]int)
// prevInfo points to the previous NodeInfo.
// It is used to group cost lines together as much as possible.
var prevInfo *graph.NodeInfo
for _, n := range g.Nodes {
if prevInfo == nil || n.Info.Objfile != prevInfo.Objfile || n.Info.File != prevInfo.File || n.Info.Name != prevInfo.Name {
fmt.Fprintln(w)
fmt.Fprintln(w, "ob="+callgrindName(objfiles, n.Info.Objfile))
fmt.Fprintln(w, "fl="+callgrindName(files, n.Info.File))
fmt.Fprintln(w, "fn="+callgrindName(names, n.Info.Name))
}
addr := callgrindAddress(prevInfo, n.Info.Address)
sv, _ := measurement.Scale(n.FlatValue(), o.SampleUnit, o.OutputUnit)
fmt.Fprintf(w, "%s %d %d\n", addr, n.Info.Lineno, int64(sv))
// Print outgoing edges.
for _, out := range n.Out.Sort() {
c, _ := measurement.Scale(out.Weight, o.SampleUnit, o.OutputUnit)
callee := out.Dest
fmt.Fprintln(w, "cfl="+callgrindName(files, callee.Info.File))
fmt.Fprintln(w, "cfn="+callgrindName(names, nodeNames[callee]))
// pprof doesn't have a flat weight for a call, leave as 0.
fmt.Fprintf(w, "calls=0 %s %d\n", callgrindAddress(prevInfo, callee.Info.Address), callee.Info.Lineno)
// TODO: This address may be in the middle of a call
// instruction. It would be best to find the beginning
// of the instruction, but the tools seem to handle
// this OK.
fmt.Fprintf(w, "* * %d\n", int64(c))
}
prevInfo = &n.Info
}
return nil
}
// getDisambiguatedNames returns a map from each node in the graph to
// the name to use in the callgrind output. Callgrind merges all
// functions with the same [file name, function name]. Add a [%d/n]
// suffix to disambiguate nodes with different values of
// node.Function, which we want to keep separate. In particular, this
// affects graphs created with --call_tree, where nodes from different
// contexts are associated to different Functions.
func getDisambiguatedNames(g *graph.Graph) map[*graph.Node]string {
nodeName := make(map[*graph.Node]string, len(g.Nodes))
type names struct {
file, function string
}
// nameFunctionIndex maps the callgrind names (filename, function)
// to the node.Function values found for that name, and each
// node.Function value to a sequential index to be used on the
// disambiguated name.
nameFunctionIndex := make(map[names]map[*graph.Node]int)
for _, n := range g.Nodes {
nm := names{n.Info.File, n.Info.Name}
p, ok := nameFunctionIndex[nm]
if !ok {
p = make(map[*graph.Node]int)
nameFunctionIndex[nm] = p
}
if _, ok := p[n.Function]; !ok {
p[n.Function] = len(p)
}
}
for _, n := range g.Nodes {
nm := names{n.Info.File, n.Info.Name}
nodeName[n] = n.Info.Name
if p := nameFunctionIndex[nm]; len(p) > 1 {
// If there is more than one function, add suffix to disambiguate.
nodeName[n] += fmt.Sprintf(" [%d/%d]", p[n.Function]+1, len(p))
}
}
return nodeName
}
// callgrindName implements the callgrind naming compression scheme.
// For names not previously seen returns "(N) name", where N is a
// unique index. For names previously seen returns "(N)" where N is
// the index returned the first time.
func callgrindName(names map[string]int, name string) string {
if name == "" {
return ""
}
if id, ok := names[name]; ok {
return fmt.Sprintf("(%d)", id)
}
id := len(names) + 1
names[name] = id
return fmt.Sprintf("(%d) %s", id, name)
}
// callgrindAddress implements the callgrind subposition compression scheme if
// possible. If prevInfo != nil, it contains the previous address. The current
// address can be given relative to the previous address, with an explicit +/-
// to indicate it is relative, or * for the same address.
func callgrindAddress(prevInfo *graph.NodeInfo, curr uint64) string {
abs := fmt.Sprintf("%#x", curr)
if prevInfo == nil {
return abs
}
prev := prevInfo.Address
if prev == curr {
return "*"
}
diff := int64(curr - prev)
relative := fmt.Sprintf("%+d", diff)
// Only bother to use the relative address if it is actually shorter.
if len(relative) < len(abs) {
return relative
}
return abs
}
// printTree prints a tree-based report in text form.
func printTree(w io.Writer, rpt *Report) error {
const separator = "----------------------------------------------------------+-------------"
const legend = " flat flat% sum% cum cum% calls calls% + context "
g, origCount, droppedNodes, _ := rpt.newTrimmedGraph()
rpt.selectOutputUnit(g)
fmt.Fprintln(w, strings.Join(reportLabels(rpt, g, origCount, droppedNodes, 0, false), "\n"))
fmt.Fprintln(w, separator)
fmt.Fprintln(w, legend)
var flatSum int64
rx := rpt.options.Symbol
matched := 0
for _, n := range g.Nodes {
name, flat, cum := n.Info.PrintableName(), n.FlatValue(), n.CumValue()
// Skip any entries that do not match the regexp (for the "peek" command).
if rx != nil && !rx.MatchString(name) {
continue
}
matched++
fmt.Fprintln(w, separator)
// Print incoming edges.
inEdges := n.In.Sort()
for _, in := range inEdges {
var inline string
if in.Inline {
inline = " (inline)"
}
fmt.Fprintf(w, "%50s %s | %s%s\n", rpt.formatValue(in.Weight),
measurement.Percentage(in.Weight, cum), in.Src.Info.PrintableName(), inline)
}
// Print current node.
flatSum += flat
fmt.Fprintf(w, "%10s %s %s %10s %s | %s\n",
rpt.formatValue(flat),
measurement.Percentage(flat, rpt.total),
measurement.Percentage(flatSum, rpt.total),
rpt.formatValue(cum),
measurement.Percentage(cum, rpt.total),
name)
// Print outgoing edges.
outEdges := n.Out.Sort()
for _, out := range outEdges {
var inline string
if out.Inline {
inline = " (inline)"
}
fmt.Fprintf(w, "%50s %s | %s%s\n", rpt.formatValue(out.Weight),
measurement.Percentage(out.Weight, cum), out.Dest.Info.PrintableName(), inline)
}
}
if len(g.Nodes) > 0 {
fmt.Fprintln(w, separator)
}
if rx != nil && matched == 0 {
return fmt.Errorf("no matches found for regexp: %s", rx)
}
return nil
}
// GetDOT returns a graph suitable for dot processing along with some
// configuration information.
func GetDOT(rpt *Report) (*graph.Graph, *graph.DotConfig) {
g, origCount, droppedNodes, droppedEdges := rpt.newTrimmedGraph()
rpt.selectOutputUnit(g)
labels := reportLabels(rpt, g, origCount, droppedNodes, droppedEdges, true)
c := &graph.DotConfig{
Title: rpt.options.Title,
Labels: labels,
FormatValue: rpt.formatValue,
Total: rpt.total,
}
return g, c
}
// printDOT prints an annotated callgraph in DOT format.
func printDOT(w io.Writer, rpt *Report) error {
g, c := GetDOT(rpt)
graph.ComposeDot(w, g, &graph.DotAttributes{}, c)
return nil
}
// ProfileLabels returns printable labels for a profile.
func ProfileLabels(rpt *Report) []string {
label := []string{}
prof := rpt.prof
o := rpt.options
if len(prof.Mapping) > 0 {
if prof.Mapping[0].File != "" {
label = append(label, "File: "+filepath.Base(prof.Mapping[0].File))
}
if prof.Mapping[0].BuildID != "" {
label = append(label, "Build ID: "+prof.Mapping[0].BuildID)
}
}
// Only include comments that do not start with '#'.
for _, c := range prof.Comments {
if !strings.HasPrefix(c, "#") {
label = append(label, c)
}
}
if o.SampleType != "" {
label = append(label, "Type: "+o.SampleType)
}
if prof.TimeNanos != 0 {
const layout = "Jan 2, 2006 at 3:04pm (MST)"
label = append(label, "Time: "+time.Unix(0, prof.TimeNanos).Format(layout))
}
if prof.DurationNanos != 0 {
duration := measurement.Label(prof.DurationNanos, "nanoseconds")
totalNanos, totalUnit := measurement.Scale(rpt.total, o.SampleUnit, "nanoseconds")
var ratio string
if totalUnit == "ns" && totalNanos != 0 {
ratio = "(" + measurement.Percentage(int64(totalNanos), prof.DurationNanos) + ")"
}
label = append(label, fmt.Sprintf("Duration: %s, Total samples = %s %s", duration, rpt.formatValue(rpt.total), ratio))
}
return label
}
// reportLabels returns printable labels for a report. Includes
// profileLabels.
func reportLabels(rpt *Report, g *graph.Graph, origCount, droppedNodes, droppedEdges int, fullHeaders bool) []string {
nodeFraction := rpt.options.NodeFraction
edgeFraction := rpt.options.EdgeFraction
nodeCount := len(g.Nodes)
var label []string
if len(rpt.options.ProfileLabels) > 0 {
label = append(label, rpt.options.ProfileLabels...)
} else if fullHeaders || !rpt.options.CompactLabels {
label = ProfileLabels(rpt)
}
var flatSum int64
for _, n := range g.Nodes {
flatSum = flatSum + n.FlatValue()
}
if len(rpt.options.ActiveFilters) > 0 {
activeFilters := legendActiveFilters(rpt.options.ActiveFilters)
label = append(label, activeFilters...)
}
label = append(label, fmt.Sprintf("Showing nodes accounting for %s, %s of %s total", rpt.formatValue(flatSum), strings.TrimSpace(measurement.Percentage(flatSum, rpt.total)), rpt.formatValue(rpt.total)))
if rpt.total != 0 {
if droppedNodes > 0 {
label = append(label, genLabel(droppedNodes, "node", "cum",
rpt.formatValue(abs64(int64(float64(rpt.total)*nodeFraction)))))
}
if droppedEdges > 0 {
label = append(label, genLabel(droppedEdges, "edge", "freq",
rpt.formatValue(abs64(int64(float64(rpt.total)*edgeFraction)))))
}
if nodeCount > 0 && nodeCount < origCount {
label = append(label, fmt.Sprintf("Showing top %d nodes out of %d",
nodeCount, origCount))
}
}
// Help new users understand the graph.
// A new line is intentionally added here to better show this message.
if fullHeaders {
label = append(label, "\nSee https://git.io/JfYMW for how to read the graph")
}
return label
}
func legendActiveFilters(activeFilters []string) []string {
legendActiveFilters := make([]string, len(activeFilters)+1)
legendActiveFilters[0] = "Active filters:"
for i, s := range activeFilters {
if len(s) > 80 {
s = s[:80] + "…"
}
legendActiveFilters[i+1] = " " + s
}
return legendActiveFilters
}
func genLabel(d int, n, l, f string) string {
if d > 1 {
n = n + "s"
}
return fmt.Sprintf("Dropped %d %s (%s <= %s)", d, n, l, f)
}
// New builds a new report indexing the sample values interpreting the
// samples with the provided function.
func New(prof *profile.Profile, o *Options) *Report {
format := func(v int64) string {
if r := o.Ratio; r > 0 && r != 1 {
fv := float64(v) * r
v = int64(fv)
}
return measurement.ScaledLabel(v, o.SampleUnit, o.OutputUnit)
}
return &Report{prof, computeTotal(prof, o.SampleValue, o.SampleMeanDivisor),
o, format}
}
// NewDefault builds a new report indexing the last sample value
// available.
func NewDefault(prof *profile.Profile, options Options) *Report {
index := len(prof.SampleType) - 1
o := &options
if o.Title == "" && len(prof.Mapping) > 0 && prof.Mapping[0].File != "" {
o.Title = filepath.Base(prof.Mapping[0].File)
}
o.SampleType = prof.SampleType[index].Type
o.SampleUnit = strings.ToLower(prof.SampleType[index].Unit)
o.SampleValue = func(v []int64) int64 {
return v[index]
}
return New(prof, o)
}
// computeTotal computes the sum of the absolute value of all sample values.
// If any samples have label indicating they belong to the diff base, then the
// total will only include samples with that label.
func computeTotal(prof *profile.Profile, value, meanDiv func(v []int64) int64) int64 {
var div, total, diffDiv, diffTotal int64
for _, sample := range prof.Sample {
var d, v int64
v = value(sample.Value)
if meanDiv != nil {
d = meanDiv(sample.Value)
}
if v < 0 {
v = -v
}
total += v
div += d
if sample.DiffBaseSample() {
diffTotal += v
diffDiv += d
}
}
if diffTotal > 0 {
total = diffTotal
div = diffDiv
}
if div != 0 {
return total / div
}
return total
}
// Report contains the data and associated routines to extract a
// report from a profile.
type Report struct {
prof *profile.Profile
total int64
options *Options
formatValue func(int64) string
}
// Total returns the total number of samples in a report.
func (rpt *Report) Total() int64 { return rpt.total }
func abs64(i int64) int64 {
if i < 0 {
return -i
}
return i
}