blob: 74b904c402e61eadd48f96a2345b7aeeb15fd556 [file] [log] [blame]
// Copyright 2014 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package graph collects a set of samples into a directed graph.
package graph
import (
"fmt"
"math"
"path/filepath"
"regexp"
"sort"
"strconv"
"strings"
"github.com/google/pprof/profile"
)
var (
// Removes package name and method arguments for Java method names.
// See tests for examples.
javaRegExp = regexp.MustCompile(`^(?:[a-z]\w*\.)*([A-Z][\w\$]*\.(?:<init>|[a-z][\w\$]*(?:\$\d+)?))(?:(?:\()|$)`)
// Removes package name and method arguments for Go function names.
// See tests for examples.
goRegExp = regexp.MustCompile(`^(?:[\w\-\.]+\/)+(.+)`)
// Removes potential module versions in a package path.
goVerRegExp = regexp.MustCompile(`^(.*?)/v(?:[2-9]|[1-9][0-9]+)([./].*)$`)
// Strips C++ namespace prefix from a C++ function / method name.
// NOTE: Make sure to keep the template parameters in the name. Normally,
// template parameters are stripped from the C++ names but when
// -symbolize=demangle=templates flag is used, they will not be.
// See tests for examples.
cppRegExp = regexp.MustCompile(`^(?:[_a-zA-Z]\w*::)+(_*[A-Z]\w*::~?[_a-zA-Z]\w*(?:<.*>)?)`)
cppAnonymousPrefixRegExp = regexp.MustCompile(`^\(anonymous namespace\)::`)
)
// Graph summarizes a performance profile into a format that is
// suitable for visualization.
type Graph struct {
Nodes Nodes
}
// Options encodes the options for constructing a graph
type Options struct {
SampleValue func(s []int64) int64 // Function to compute the value of a sample
SampleMeanDivisor func(s []int64) int64 // Function to compute the divisor for mean graphs, or nil
FormatTag func(int64, string) string // Function to format a sample tag value into a string
ObjNames bool // Always preserve obj filename
OrigFnNames bool // Preserve original (eg mangled) function names
CallTree bool // Build a tree instead of a graph
DropNegative bool // Drop nodes with overall negative values
KeptNodes NodeSet // If non-nil, only use nodes in this set
}
// Nodes is an ordered collection of graph nodes.
type Nodes []*Node
// Node is an entry on a profiling report. It represents a unique
// program location.
type Node struct {
// Info describes the source location associated to this node.
Info NodeInfo
// Function represents the function that this node belongs to. On
// graphs with sub-function resolution (eg line number or
// addresses), two nodes in a NodeMap that are part of the same
// function have the same value of Node.Function. If the Node
// represents the whole function, it points back to itself.
Function *Node
// Values associated to this node. Flat is exclusive to this node,
// Cum includes all descendents.
Flat, FlatDiv, Cum, CumDiv int64
// In and out Contains the nodes immediately reaching or reached by
// this node.
In, Out EdgeMap
// LabelTags provide additional information about subsets of a sample.
LabelTags TagMap
// NumericTags provide additional values for subsets of a sample.
// Numeric tags are optionally associated to a label tag. The key
// for NumericTags is the name of the LabelTag they are associated
// to, or "" for numeric tags not associated to a label tag.
NumericTags map[string]TagMap
}
// FlatValue returns the exclusive value for this node, computing the
// mean if a divisor is available.
func (n *Node) FlatValue() int64 {
if n.FlatDiv == 0 {
return n.Flat
}
return n.Flat / n.FlatDiv
}
// CumValue returns the inclusive value for this node, computing the
// mean if a divisor is available.
func (n *Node) CumValue() int64 {
if n.CumDiv == 0 {
return n.Cum
}
return n.Cum / n.CumDiv
}
// AddToEdge increases the weight of an edge between two nodes. If
// there isn't such an edge one is created.
func (n *Node) AddToEdge(to *Node, v int64, residual, inline bool) {
n.AddToEdgeDiv(to, 0, v, residual, inline)
}
// AddToEdgeDiv increases the weight of an edge between two nodes. If
// there isn't such an edge one is created.
func (n *Node) AddToEdgeDiv(to *Node, dv, v int64, residual, inline bool) {
if n.Out[to] != to.In[n] {
panic(fmt.Errorf("asymmetric edges %v %v", *n, *to))
}
if e := n.Out[to]; e != nil {
e.WeightDiv += dv
e.Weight += v
if residual {
e.Residual = true
}
if !inline {
e.Inline = false
}
return
}
info := &Edge{Src: n, Dest: to, WeightDiv: dv, Weight: v, Residual: residual, Inline: inline}
n.Out[to] = info
to.In[n] = info
}
// NodeInfo contains the attributes for a node.
type NodeInfo struct {
Name string
OrigName string
Address uint64
File string
StartLine, Lineno int
Objfile string
}
// PrintableName calls the Node's Formatter function with a single space separator.
func (i *NodeInfo) PrintableName() string {
return strings.Join(i.NameComponents(), " ")
}
// NameComponents returns the components of the printable name to be used for a node.
func (i *NodeInfo) NameComponents() []string {
var name []string
if i.Address != 0 {
name = append(name, fmt.Sprintf("%016x", i.Address))
}
if fun := i.Name; fun != "" {
name = append(name, fun)
}
switch {
case i.Lineno != 0:
// User requested line numbers, provide what we have.
name = append(name, fmt.Sprintf("%s:%d", i.File, i.Lineno))
case i.File != "":
// User requested file name, provide it.
name = append(name, i.File)
case i.Name != "":
// User requested function name. It was already included.
case i.Objfile != "":
// Only binary name is available
name = append(name, "["+filepath.Base(i.Objfile)+"]")
default:
// Do not leave it empty if there is no information at all.
name = append(name, "<unknown>")
}
return name
}
// NodeMap maps from a node info struct to a node. It is used to merge
// report entries with the same info.
type NodeMap map[NodeInfo]*Node
// NodeSet is a collection of node info structs.
type NodeSet map[NodeInfo]bool
// NodePtrSet is a collection of nodes. Trimming a graph or tree requires a set
// of objects which uniquely identify the nodes to keep. In a graph, NodeInfo
// works as a unique identifier; however, in a tree multiple nodes may share
// identical NodeInfos. A *Node does uniquely identify a node so we can use that
// instead. Though a *Node also uniquely identifies a node in a graph,
// currently, during trimming, graphs are rebuilt from scratch using only the
// NodeSet, so there would not be the required context of the initial graph to
// allow for the use of *Node.
type NodePtrSet map[*Node]bool
// FindOrInsertNode takes the info for a node and either returns a matching node
// from the node map if one exists, or adds one to the map if one does not.
// If kept is non-nil, nodes are only added if they can be located on it.
func (nm NodeMap) FindOrInsertNode(info NodeInfo, kept NodeSet) *Node {
if kept != nil {
if _, ok := kept[info]; !ok {
return nil
}
}
if n, ok := nm[info]; ok {
return n
}
n := &Node{
Info: info,
In: make(EdgeMap),
Out: make(EdgeMap),
LabelTags: make(TagMap),
NumericTags: make(map[string]TagMap),
}
nm[info] = n
if info.Address == 0 && info.Lineno == 0 {
// This node represents the whole function, so point Function
// back to itself.
n.Function = n
return n
}
// Find a node that represents the whole function.
info.Address = 0
info.Lineno = 0
n.Function = nm.FindOrInsertNode(info, nil)
return n
}
// EdgeMap is used to represent the incoming/outgoing edges from a node.
type EdgeMap map[*Node]*Edge
// Edge contains any attributes to be represented about edges in a graph.
type Edge struct {
Src, Dest *Node
// The summary weight of the edge
Weight, WeightDiv int64
// residual edges connect nodes that were connected through a
// separate node, which has been removed from the report.
Residual bool
// An inline edge represents a call that was inlined into the caller.
Inline bool
}
// WeightValue returns the weight value for this edge, normalizing if a
// divisor is available.
func (e *Edge) WeightValue() int64 {
if e.WeightDiv == 0 {
return e.Weight
}
return e.Weight / e.WeightDiv
}
// Tag represent sample annotations
type Tag struct {
Name string
Unit string // Describe the value, "" for non-numeric tags
Value int64
Flat, FlatDiv int64
Cum, CumDiv int64
}
// FlatValue returns the exclusive value for this tag, computing the
// mean if a divisor is available.
func (t *Tag) FlatValue() int64 {
if t.FlatDiv == 0 {
return t.Flat
}
return t.Flat / t.FlatDiv
}
// CumValue returns the inclusive value for this tag, computing the
// mean if a divisor is available.
func (t *Tag) CumValue() int64 {
if t.CumDiv == 0 {
return t.Cum
}
return t.Cum / t.CumDiv
}
// TagMap is a collection of tags, classified by their name.
type TagMap map[string]*Tag
// SortTags sorts a slice of tags based on their weight.
func SortTags(t []*Tag, flat bool) []*Tag {
ts := tags{t, flat}
sort.Sort(ts)
return ts.t
}
// New summarizes performance data from a profile into a graph.
func New(prof *profile.Profile, o *Options) *Graph {
if o.CallTree {
return newTree(prof, o)
}
g, _ := newGraph(prof, o)
return g
}
// newGraph computes a graph from a profile. It returns the graph, and
// a map from the profile location indices to the corresponding graph
// nodes.
func newGraph(prof *profile.Profile, o *Options) (*Graph, map[uint64]Nodes) {
nodes, locationMap := CreateNodes(prof, o)
seenNode := make(map[*Node]bool)
seenEdge := make(map[nodePair]bool)
for _, sample := range prof.Sample {
var w, dw int64
w = o.SampleValue(sample.Value)
if o.SampleMeanDivisor != nil {
dw = o.SampleMeanDivisor(sample.Value)
}
if dw == 0 && w == 0 {
continue
}
for k := range seenNode {
delete(seenNode, k)
}
for k := range seenEdge {
delete(seenEdge, k)
}
var parent *Node
// A residual edge goes over one or more nodes that were not kept.
residual := false
labels := joinLabels(sample)
// Group the sample frames, based on a global map.
for i := len(sample.Location) - 1; i >= 0; i-- {
l := sample.Location[i]
locNodes := locationMap[l.ID]
for ni := len(locNodes) - 1; ni >= 0; ni-- {
n := locNodes[ni]
if n == nil {
residual = true
continue
}
// Add cum weight to all nodes in stack, avoiding double counting.
if _, ok := seenNode[n]; !ok {
seenNode[n] = true
n.addSample(dw, w, labels, sample.NumLabel, sample.NumUnit, o.FormatTag, false)
}
// Update edge weights for all edges in stack, avoiding double counting.
if _, ok := seenEdge[nodePair{n, parent}]; !ok && parent != nil && n != parent {
seenEdge[nodePair{n, parent}] = true
parent.AddToEdgeDiv(n, dw, w, residual, ni != len(locNodes)-1)
}
parent = n
residual = false
}
}
if parent != nil && !residual {
// Add flat weight to leaf node.
parent.addSample(dw, w, labels, sample.NumLabel, sample.NumUnit, o.FormatTag, true)
}
}
return selectNodesForGraph(nodes, o.DropNegative), locationMap
}
func selectNodesForGraph(nodes Nodes, dropNegative bool) *Graph {
// Collect nodes into a graph.
gNodes := make(Nodes, 0, len(nodes))
for _, n := range nodes {
if n == nil {
continue
}
if n.Cum == 0 && n.Flat == 0 {
continue
}
if dropNegative && isNegative(n) {
continue
}
gNodes = append(gNodes, n)
}
return &Graph{gNodes}
}
type nodePair struct {
src, dest *Node
}
func newTree(prof *profile.Profile, o *Options) (g *Graph) {
parentNodeMap := make(map[*Node]NodeMap, len(prof.Sample))
for _, sample := range prof.Sample {
var w, dw int64
w = o.SampleValue(sample.Value)
if o.SampleMeanDivisor != nil {
dw = o.SampleMeanDivisor(sample.Value)
}
if dw == 0 && w == 0 {
continue
}
var parent *Node
labels := joinLabels(sample)
// Group the sample frames, based on a per-node map.
for i := len(sample.Location) - 1; i >= 0; i-- {
l := sample.Location[i]
lines := l.Line
if len(lines) == 0 {
lines = []profile.Line{{}} // Create empty line to include location info.
}
for lidx := len(lines) - 1; lidx >= 0; lidx-- {
nodeMap := parentNodeMap[parent]
if nodeMap == nil {
nodeMap = make(NodeMap)
parentNodeMap[parent] = nodeMap
}
n := nodeMap.findOrInsertLine(l, lines[lidx], o)
if n == nil {
continue
}
n.addSample(dw, w, labels, sample.NumLabel, sample.NumUnit, o.FormatTag, false)
if parent != nil {
parent.AddToEdgeDiv(n, dw, w, false, lidx != len(lines)-1)
}
parent = n
}
}
if parent != nil {
parent.addSample(dw, w, labels, sample.NumLabel, sample.NumUnit, o.FormatTag, true)
}
}
nodes := make(Nodes, len(prof.Location))
for _, nm := range parentNodeMap {
nodes = append(nodes, nm.nodes()...)
}
return selectNodesForGraph(nodes, o.DropNegative)
}
// ShortenFunctionName returns a shortened version of a function's name.
func ShortenFunctionName(f string) string {
f = cppAnonymousPrefixRegExp.ReplaceAllString(f, "")
f = goVerRegExp.ReplaceAllString(f, `${1}${2}`)
for _, re := range []*regexp.Regexp{goRegExp, javaRegExp, cppRegExp} {
if matches := re.FindStringSubmatch(f); len(matches) >= 2 {
return strings.Join(matches[1:], "")
}
}
return f
}
// TrimTree trims a Graph in forest form, keeping only the nodes in kept. This
// will not work correctly if even a single node has multiple parents.
func (g *Graph) TrimTree(kept NodePtrSet) {
// Creates a new list of nodes
oldNodes := g.Nodes
g.Nodes = make(Nodes, 0, len(kept))
for _, cur := range oldNodes {
// A node may not have multiple parents
if len(cur.In) > 1 {
panic("TrimTree only works on trees")
}
// If a node should be kept, add it to the new list of nodes
if _, ok := kept[cur]; ok {
g.Nodes = append(g.Nodes, cur)
continue
}
// If a node has no parents, then delete all of the in edges of its
// children to make them each roots of their own trees.
if len(cur.In) == 0 {
for _, outEdge := range cur.Out {
delete(outEdge.Dest.In, cur)
}
continue
}
// Get the parent. This works since at this point cur.In must contain only
// one element.
if len(cur.In) != 1 {
panic("Get parent assertion failed. cur.In expected to be of length 1.")
}
var parent *Node
for _, edge := range cur.In {
parent = edge.Src
}
parentEdgeInline := parent.Out[cur].Inline
// Remove the edge from the parent to this node
delete(parent.Out, cur)
// Reconfigure every edge from the current node to now begin at the parent.
for _, outEdge := range cur.Out {
child := outEdge.Dest
delete(child.In, cur)
child.In[parent] = outEdge
parent.Out[child] = outEdge
outEdge.Src = parent
outEdge.Residual = true
// If the edge from the parent to the current node and the edge from the
// current node to the child are both inline, then this resulting residual
// edge should also be inline
outEdge.Inline = parentEdgeInline && outEdge.Inline
}
}
g.RemoveRedundantEdges()
}
func joinLabels(s *profile.Sample) string {
if len(s.Label) == 0 {
return ""
}
var labels []string
for key, vals := range s.Label {
for _, v := range vals {
labels = append(labels, key+":"+v)
}
}
sort.Strings(labels)
return strings.Join(labels, `\n`)
}
// isNegative returns true if the node is considered as "negative" for the
// purposes of drop_negative.
func isNegative(n *Node) bool {
switch {
case n.Flat < 0:
return true
case n.Flat == 0 && n.Cum < 0:
return true
default:
return false
}
}
// CreateNodes creates graph nodes for all locations in a profile. It
// returns set of all nodes, plus a mapping of each location to the
// set of corresponding nodes (one per location.Line).
func CreateNodes(prof *profile.Profile, o *Options) (Nodes, map[uint64]Nodes) {
locations := make(map[uint64]Nodes, len(prof.Location))
nm := make(NodeMap, len(prof.Location))
for _, l := range prof.Location {
lines := l.Line
if len(lines) == 0 {
lines = []profile.Line{{}} // Create empty line to include location info.
}
nodes := make(Nodes, len(lines))
for ln := range lines {
nodes[ln] = nm.findOrInsertLine(l, lines[ln], o)
}
locations[l.ID] = nodes
}
return nm.nodes(), locations
}
func (nm NodeMap) nodes() Nodes {
nodes := make(Nodes, 0, len(nm))
for _, n := range nm {
nodes = append(nodes, n)
}
return nodes
}
func (nm NodeMap) findOrInsertLine(l *profile.Location, li profile.Line, o *Options) *Node {
var objfile string
if m := l.Mapping; m != nil && m.File != "" {
objfile = m.File
}
if ni := nodeInfo(l, li, objfile, o); ni != nil {
return nm.FindOrInsertNode(*ni, o.KeptNodes)
}
return nil
}
func nodeInfo(l *profile.Location, line profile.Line, objfile string, o *Options) *NodeInfo {
if line.Function == nil {
return &NodeInfo{Address: l.Address, Objfile: objfile}
}
ni := &NodeInfo{
Address: l.Address,
Lineno: int(line.Line),
Name: line.Function.Name,
}
if fname := line.Function.Filename; fname != "" {
ni.File = filepath.Clean(fname)
}
if o.OrigFnNames {
ni.OrigName = line.Function.SystemName
}
if o.ObjNames || (ni.Name == "" && ni.OrigName == "") {
ni.Objfile = objfile
ni.StartLine = int(line.Function.StartLine)
}
return ni
}
type tags struct {
t []*Tag
flat bool
}
func (t tags) Len() int { return len(t.t) }
func (t tags) Swap(i, j int) { t.t[i], t.t[j] = t.t[j], t.t[i] }
func (t tags) Less(i, j int) bool {
if !t.flat {
if t.t[i].Cum != t.t[j].Cum {
return abs64(t.t[i].Cum) > abs64(t.t[j].Cum)
}
}
if t.t[i].Flat != t.t[j].Flat {
return abs64(t.t[i].Flat) > abs64(t.t[j].Flat)
}
return t.t[i].Name < t.t[j].Name
}
// Sum adds the flat and cum values of a set of nodes.
func (ns Nodes) Sum() (flat int64, cum int64) {
for _, n := range ns {
flat += n.Flat
cum += n.Cum
}
return
}
func (n *Node) addSample(dw, w int64, labels string, numLabel map[string][]int64, numUnit map[string][]string, format func(int64, string) string, flat bool) {
// Update sample value
if flat {
n.FlatDiv += dw
n.Flat += w
} else {
n.CumDiv += dw
n.Cum += w
}
// Add string tags
if labels != "" {
t := n.LabelTags.findOrAddTag(labels, "", 0)
if flat {
t.FlatDiv += dw
t.Flat += w
} else {
t.CumDiv += dw
t.Cum += w
}
}
numericTags := n.NumericTags[labels]
if numericTags == nil {
numericTags = TagMap{}
n.NumericTags[labels] = numericTags
}
// Add numeric tags
if format == nil {
format = defaultLabelFormat
}
for k, nvals := range numLabel {
units := numUnit[k]
for i, v := range nvals {
var t *Tag
if len(units) > 0 {
t = numericTags.findOrAddTag(format(v, units[i]), units[i], v)
} else {
t = numericTags.findOrAddTag(format(v, k), k, v)
}
if flat {
t.FlatDiv += dw
t.Flat += w
} else {
t.CumDiv += dw
t.Cum += w
}
}
}
}
func defaultLabelFormat(v int64, key string) string {
return strconv.FormatInt(v, 10)
}
func (m TagMap) findOrAddTag(label, unit string, value int64) *Tag {
l := m[label]
if l == nil {
l = &Tag{
Name: label,
Unit: unit,
Value: value,
}
m[label] = l
}
return l
}
// String returns a text representation of a graph, for debugging purposes.
func (g *Graph) String() string {
var s []string
nodeIndex := make(map[*Node]int, len(g.Nodes))
for i, n := range g.Nodes {
nodeIndex[n] = i + 1
}
for i, n := range g.Nodes {
name := n.Info.PrintableName()
var in, out []int
for _, from := range n.In {
in = append(in, nodeIndex[from.Src])
}
for _, to := range n.Out {
out = append(out, nodeIndex[to.Dest])
}
s = append(s, fmt.Sprintf("%d: %s[flat=%d cum=%d] %x -> %v ", i+1, name, n.Flat, n.Cum, in, out))
}
return strings.Join(s, "\n")
}
// DiscardLowFrequencyNodes returns a set of the nodes at or over a
// specific cum value cutoff.
func (g *Graph) DiscardLowFrequencyNodes(nodeCutoff int64) NodeSet {
return makeNodeSet(g.Nodes, nodeCutoff)
}
// DiscardLowFrequencyNodePtrs returns a NodePtrSet of nodes at or over a
// specific cum value cutoff.
func (g *Graph) DiscardLowFrequencyNodePtrs(nodeCutoff int64) NodePtrSet {
cutNodes := getNodesAboveCumCutoff(g.Nodes, nodeCutoff)
kept := make(NodePtrSet, len(cutNodes))
for _, n := range cutNodes {
kept[n] = true
}
return kept
}
func makeNodeSet(nodes Nodes, nodeCutoff int64) NodeSet {
cutNodes := getNodesAboveCumCutoff(nodes, nodeCutoff)
kept := make(NodeSet, len(cutNodes))
for _, n := range cutNodes {
kept[n.Info] = true
}
return kept
}
// getNodesAboveCumCutoff returns all the nodes which have a Cum value greater
// than or equal to cutoff.
func getNodesAboveCumCutoff(nodes Nodes, nodeCutoff int64) Nodes {
cutoffNodes := make(Nodes, 0, len(nodes))
for _, n := range nodes {
if abs64(n.Cum) < nodeCutoff {
continue
}
cutoffNodes = append(cutoffNodes, n)
}
return cutoffNodes
}
// TrimLowFrequencyTags removes tags that have less than
// the specified weight.
func (g *Graph) TrimLowFrequencyTags(tagCutoff int64) {
// Remove nodes with value <= total*nodeFraction
for _, n := range g.Nodes {
n.LabelTags = trimLowFreqTags(n.LabelTags, tagCutoff)
for s, nt := range n.NumericTags {
n.NumericTags[s] = trimLowFreqTags(nt, tagCutoff)
}
}
}
func trimLowFreqTags(tags TagMap, minValue int64) TagMap {
kept := TagMap{}
for s, t := range tags {
if abs64(t.Flat) >= minValue || abs64(t.Cum) >= minValue {
kept[s] = t
}
}
return kept
}
// TrimLowFrequencyEdges removes edges that have less than
// the specified weight. Returns the number of edges removed
func (g *Graph) TrimLowFrequencyEdges(edgeCutoff int64) int {
var droppedEdges int
for _, n := range g.Nodes {
for src, e := range n.In {
if abs64(e.Weight) < edgeCutoff {
delete(n.In, src)
delete(src.Out, n)
droppedEdges++
}
}
}
return droppedEdges
}
// SortNodes sorts the nodes in a graph based on a specific heuristic.
func (g *Graph) SortNodes(cum bool, visualMode bool) {
// Sort nodes based on requested mode
switch {
case visualMode:
// Specialized sort to produce a more visually-interesting graph
g.Nodes.Sort(EntropyOrder)
case cum:
g.Nodes.Sort(CumNameOrder)
default:
g.Nodes.Sort(FlatNameOrder)
}
}
// SelectTopNodePtrs returns a set of the top maxNodes *Node in a graph.
func (g *Graph) SelectTopNodePtrs(maxNodes int, visualMode bool) NodePtrSet {
set := make(NodePtrSet)
for _, node := range g.selectTopNodes(maxNodes, visualMode) {
set[node] = true
}
return set
}
// SelectTopNodes returns a set of the top maxNodes nodes in a graph.
func (g *Graph) SelectTopNodes(maxNodes int, visualMode bool) NodeSet {
return makeNodeSet(g.selectTopNodes(maxNodes, visualMode), 0)
}
// selectTopNodes returns a slice of the top maxNodes nodes in a graph.
func (g *Graph) selectTopNodes(maxNodes int, visualMode bool) Nodes {
if maxNodes > 0 {
if visualMode {
var count int
// If generating a visual graph, count tags as nodes. Update
// maxNodes to account for them.
for i, n := range g.Nodes {
tags := countTags(n)
if tags > maxNodelets {
tags = maxNodelets
}
if count += tags + 1; count >= maxNodes {
maxNodes = i + 1
break
}
}
}
}
if maxNodes > len(g.Nodes) {
maxNodes = len(g.Nodes)
}
return g.Nodes[:maxNodes]
}
// countTags counts the tags with flat count. This underestimates the
// number of tags being displayed, but in practice is close enough.
func countTags(n *Node) int {
count := 0
for _, e := range n.LabelTags {
if e.Flat != 0 {
count++
}
}
for _, t := range n.NumericTags {
for _, e := range t {
if e.Flat != 0 {
count++
}
}
}
return count
}
// RemoveRedundantEdges removes residual edges if the destination can
// be reached through another path. This is done to simplify the graph
// while preserving connectivity.
func (g *Graph) RemoveRedundantEdges() {
// Walk the nodes and outgoing edges in reverse order to prefer
// removing edges with the lowest weight.
for i := len(g.Nodes); i > 0; i-- {
n := g.Nodes[i-1]
in := n.In.Sort()
for j := len(in); j > 0; j-- {
e := in[j-1]
if !e.Residual {
// Do not remove edges heavier than a non-residual edge, to
// avoid potential confusion.
break
}
if isRedundantEdge(e) {
delete(e.Src.Out, e.Dest)
delete(e.Dest.In, e.Src)
}
}
}
}
// isRedundantEdge determines if there is a path that allows e.Src
// to reach e.Dest after removing e.
func isRedundantEdge(e *Edge) bool {
src, n := e.Src, e.Dest
seen := map[*Node]bool{n: true}
queue := Nodes{n}
for len(queue) > 0 {
n := queue[0]
queue = queue[1:]
for _, ie := range n.In {
if e == ie || seen[ie.Src] {
continue
}
if ie.Src == src {
return true
}
seen[ie.Src] = true
queue = append(queue, ie.Src)
}
}
return false
}
// nodeSorter is a mechanism used to allow a report to be sorted
// in different ways.
type nodeSorter struct {
rs Nodes
less func(l, r *Node) bool
}
func (s nodeSorter) Len() int { return len(s.rs) }
func (s nodeSorter) Swap(i, j int) { s.rs[i], s.rs[j] = s.rs[j], s.rs[i] }
func (s nodeSorter) Less(i, j int) bool { return s.less(s.rs[i], s.rs[j]) }
// Sort reorders a slice of nodes based on the specified ordering
// criteria. The result is sorted in decreasing order for (absolute)
// numeric quantities, alphabetically for text, and increasing for
// addresses.
func (ns Nodes) Sort(o NodeOrder) error {
var s nodeSorter
switch o {
case FlatNameOrder:
s = nodeSorter{ns,
func(l, r *Node) bool {
if iv, jv := abs64(l.Flat), abs64(r.Flat); iv != jv {
return iv > jv
}
if iv, jv := l.Info.PrintableName(), r.Info.PrintableName(); iv != jv {
return iv < jv
}
if iv, jv := abs64(l.Cum), abs64(r.Cum); iv != jv {
return iv > jv
}
return compareNodes(l, r)
},
}
case FlatCumNameOrder:
s = nodeSorter{ns,
func(l, r *Node) bool {
if iv, jv := abs64(l.Flat), abs64(r.Flat); iv != jv {
return iv > jv
}
if iv, jv := abs64(l.Cum), abs64(r.Cum); iv != jv {
return iv > jv
}
if iv, jv := l.Info.PrintableName(), r.Info.PrintableName(); iv != jv {
return iv < jv
}
return compareNodes(l, r)
},
}
case NameOrder:
s = nodeSorter{ns,
func(l, r *Node) bool {
if iv, jv := l.Info.Name, r.Info.Name; iv != jv {
return iv < jv
}
return compareNodes(l, r)
},
}
case FileOrder:
s = nodeSorter{ns,
func(l, r *Node) bool {
if iv, jv := l.Info.File, r.Info.File; iv != jv {
return iv < jv
}
if iv, jv := l.Info.StartLine, r.Info.StartLine; iv != jv {
return iv < jv
}
return compareNodes(l, r)
},
}
case AddressOrder:
s = nodeSorter{ns,
func(l, r *Node) bool {
if iv, jv := l.Info.Address, r.Info.Address; iv != jv {
return iv < jv
}
return compareNodes(l, r)
},
}
case CumNameOrder, EntropyOrder:
// Hold scoring for score-based ordering
var score map[*Node]int64
scoreOrder := func(l, r *Node) bool {
if iv, jv := abs64(score[l]), abs64(score[r]); iv != jv {
return iv > jv
}
if iv, jv := l.Info.PrintableName(), r.Info.PrintableName(); iv != jv {
return iv < jv
}
if iv, jv := abs64(l.Flat), abs64(r.Flat); iv != jv {
return iv > jv
}
return compareNodes(l, r)
}
switch o {
case CumNameOrder:
score = make(map[*Node]int64, len(ns))
for _, n := range ns {
score[n] = n.Cum
}
s = nodeSorter{ns, scoreOrder}
case EntropyOrder:
score = make(map[*Node]int64, len(ns))
for _, n := range ns {
score[n] = entropyScore(n)
}
s = nodeSorter{ns, scoreOrder}
}
default:
return fmt.Errorf("report: unrecognized sort ordering: %d", o)
}
sort.Sort(s)
return nil
}
// compareNodes compares two nodes to provide a deterministic ordering
// between them. Two nodes cannot have the same Node.Info value.
func compareNodes(l, r *Node) bool {
return fmt.Sprint(l.Info) < fmt.Sprint(r.Info)
}
// entropyScore computes a score for a node representing how important
// it is to include this node on a graph visualization. It is used to
// sort the nodes and select which ones to display if we have more
// nodes than desired in the graph. This number is computed by looking
// at the flat and cum weights of the node and the incoming/outgoing
// edges. The fundamental idea is to penalize nodes that have a simple
// fallthrough from their incoming to the outgoing edge.
func entropyScore(n *Node) int64 {
score := float64(0)
if len(n.In) == 0 {
score++ // Favor entry nodes
} else {
score += edgeEntropyScore(n, n.In, 0)
}
if len(n.Out) == 0 {
score++ // Favor leaf nodes
} else {
score += edgeEntropyScore(n, n.Out, n.Flat)
}
return int64(score*float64(n.Cum)) + n.Flat
}
// edgeEntropyScore computes the entropy value for a set of edges
// coming in or out of a node. Entropy (as defined in information
// theory) refers to the amount of information encoded by the set of
// edges. A set of edges that have a more interesting distribution of
// samples gets a higher score.
func edgeEntropyScore(n *Node, edges EdgeMap, self int64) float64 {
score := float64(0)
total := self
for _, e := range edges {
if e.Weight > 0 {
total += abs64(e.Weight)
}
}
if total != 0 {
for _, e := range edges {
frac := float64(abs64(e.Weight)) / float64(total)
score += -frac * math.Log2(frac)
}
if self > 0 {
frac := float64(abs64(self)) / float64(total)
score += -frac * math.Log2(frac)
}
}
return score
}
// NodeOrder sets the ordering for a Sort operation
type NodeOrder int
// Sorting options for node sort.
const (
FlatNameOrder NodeOrder = iota
FlatCumNameOrder
CumNameOrder
NameOrder
FileOrder
AddressOrder
EntropyOrder
)
// Sort returns a slice of the edges in the map, in a consistent
// order. The sort order is first based on the edge weight
// (higher-to-lower) and then by the node names to avoid flakiness.
func (e EdgeMap) Sort() []*Edge {
el := make(edgeList, 0, len(e))
for _, w := range e {
el = append(el, w)
}
sort.Sort(el)
return el
}
// Sum returns the total weight for a set of nodes.
func (e EdgeMap) Sum() int64 {
var ret int64
for _, edge := range e {
ret += edge.Weight
}
return ret
}
type edgeList []*Edge
func (el edgeList) Len() int {
return len(el)
}
func (el edgeList) Less(i, j int) bool {
if el[i].Weight != el[j].Weight {
return abs64(el[i].Weight) > abs64(el[j].Weight)
}
from1 := el[i].Src.Info.PrintableName()
from2 := el[j].Src.Info.PrintableName()
if from1 != from2 {
return from1 < from2
}
to1 := el[i].Dest.Info.PrintableName()
to2 := el[j].Dest.Info.PrintableName()
return to1 < to2
}
func (el edgeList) Swap(i, j int) {
el[i], el[j] = el[j], el[i]
}
func abs64(i int64) int64 {
if i < 0 {
return -i
}
return i
}